高考10年真题汇总

合集下载

高考地理知识点复习《地质构造和构造地貌》十年真题汇总

高考地理知识点复习《地质构造和构造地貌》十年真题汇总

高考地理知识点复习《地质构造和构造地貌》十年真题汇总(2023·全国乙卷)新西兰南岛上的南阿尔卑斯山脉(约42°S-45°S)位于板块边界附近,呈东北—西南走向,其形态受板块运动和以流水为主的外力作用共同影响。

某科研团队对该山脉东西向剖面形态进行研究,观测到目前该山脉仍在升高并向西扩展;模拟研究表明未来该山脉升高速度逐渐放缓,高度将趋于稳定。

据此完成下面小题。

1.推测目前该山脉仍在升高并向西扩展是由于()A.板块挤压B.火山不断喷发C.板块张裂D.岩浆持续侵入2.假设不受内力作用,在外力作用下,该山脉()A.西坡侵蚀强烈,山脊线东移B.西坡侵蚀强烈,山脊线稳定C.东坡侵蚀强烈,山脊线西移D.东坡侵蚀强烈,山脊线稳定3.未来该山脉高度将趋于稳定,是由于随山体升高()A.板块运动逐渐加强B.板块运动逐渐减弱C.外力作用逐渐加强D.外力作用逐渐减弱【答案】1.A 2.A 3.C【解析】1.由材料并结合所学知识可知,该山脉位于太平洋板块和印度洋板块的消亡边界,受板块挤压影响,山脉高度会持续升高,A正确,C错误;从材料信息中为获取该山脉有火山持续喷发的相关信息,B错误;岩浆侵入不会对地表形态产生直接影响,D错误。

所以选A。

2.根据该山脉的纬度范围可知,该地常年受盛行西风控制,西风挟带的来自海洋的水汽在西坡地形抬升影响下易形成降水,山脉西坡的侵蚀作用比东坡更强烈,如果不考虑内力作用,西坡遭受强烈侵蚀后,山脊线会向东移动,A正确,B错误;东坡为盛行西风背风坡,降水较少,侵蚀作用较弱,CD错误。

所以选A。

3.地貌的演化是内外力共同作用的结果,内力使该地山脉持续隆升,地表起伏增大,地表受流水侵蚀作用增强。

根据材料可知,目前山脉高度持续增加,说明内力作用强度大于外力作用,而未来该山脉高度将趋于稳定,是因为随着山体升高,高差增大,对盛行西风的阻挡加强,降水增多,流水作用逐渐加强,内外力作用趋于平衡,使山脉高度将趋于稳定,故C 正确,ABD错误。

高考物理专项复习《直线运动》十年高考真题汇总

高考物理专项复习《直线运动》十年高考真题汇总

高考物理专项复习《直线运动》十年高考真题汇总 选择题:1.(2019•海南卷•T3)汽车在平直公路上以20m/s 的速度匀速行驶。

前方突遇险情,司机紧急刹车,汽车做匀减速运动,加速度大小为8m/s 2。

从开始刹车到汽车停止,汽车运动的距离为A.10mB.20mC.25mD.5om2.(2019•全国Ⅲ卷•T7)如图(a),物块和木板叠放在实验台上,物块用一不可伸长的细绳与固定在实验台上的力传感器相连,细绳水平。

t =0时,木板开始受到水平外力F 的作用,在t =4s时撤去外力。

细绳对物块的拉力f 随时间t 变化的关系如图(b)所示,木板的速度v 与时间t 的关系如图(c)所示。

木板与实验台之间的摩擦可以忽略。

重力加速度取g =10m/s 2。

由题给数据可以得出A. 木板的质量为1kgB. 2s~4s 内,力F 的大小为0.4NC. 0~2s 内,力F 的大小保持不变D. 物块与木板之间的动摩擦因数为0.23.(2019•全国Ⅰ卷•T5)如图,篮球架下的运动员原地垂直起跳扣篮,离地后重心上升的最大高度为H 。

上升第一个4H 所用的时间为t 1,第四个4H 所用的时间为t 2。

不计空气阻力,则21t t 满足A. 1<21t t <2B. 2<21t t <3C. 3<21t t <4D. 4<21t t <5 4.(2018·浙江卷)某驾驶员使用定速巡航,在高速公路上以时速110公里行驶了200公里,其中“时速110公里”、“行驶200公里”分别是指A. 速度、位移B. 速度、路程C. 速率、位移D. 速率、路程5.(2018·新课标I 卷)高铁列车在启动阶段的运动可看作初速度为零的均加速直线运动,在启动阶段列车的动能A. 与它所经历的时间成正比B. 与它的位移成正比C. 与它的速度成正比D. 与它的动量成正比 6.(2018·浙江卷)如图所示,竖直井中的升降机可将地下深处的矿石快速运送到地面。

成语使用近10年高考真题

成语使用近10年高考真题

成语使用近10年高考真题(包括自命题、全国一卷、全国二卷、全国三卷)2010年全国一卷2.下列各句中,加点的成语使用正确的一项是A.现在我们单位职工上下班或步行,或骑车,为的是倡导绿色、地毯生活。

尤为可喜的是,始作俑者是我们新来的局长。

B.几年前,学界几乎没有人不对他的学说大加挞伐,可现在当他被尊奉为大师之后,移樽就教的人简直要踏破他家的门槛。

C.他是当今少数几位声名卓著的电视剧编剧之一,这不光是因为他善于编故事,更重要的原因是他写的剧本声情并茂,情节曲折。

D.旁边一位中学生模样的青年诚恳地说:“叔叔,这些都是名人的字画,您就买一幅吧,挂在客厅里不仅没关打气,还可附庸风雅。

”2010年全国二卷2.下列各句中,加点的成语便用不恰当的一项是A.这名运动员看上去一副弱不胜衣的样子,实际上,他身体健,骨骼强健,耐力和速度非一般人可比。

B.在座的各位都是本领域的顶尖专家,我们请大家来,就是想听听各位的高见,大家不必客气.就姑妄言之吧。

C.他闲来无事,就经常上网发一些飞短流长的帖子,结果不仅弄得与同事邻里的关系很紧张,甚至还惹上了官司。

D.唐玄宗虽早就觉察到安安禄山有反叛之心,但并没有及时除掉他,反而放虎归山,让他出任范阳节度使,这未免有点蹊跷。

2010年全国三卷2. 下列句子中,加点的成语使用不恰当的一项是A.在积极应对自然灾害的同时,人们强烈感受到吸取经验教训的重要性,希望在未来的日子里能防患于未然。

B.军事专家认为极超音速导弹是反恐战争中非常有价值的“猎杀者”,一旦锁定目标,恐怖分子就无地自容了。

C.设计人员必须严格执行上级部门的有关决议,“创意”只能在规定的范围内驰骋,不能信马由缰,这是设计人员起码的职业操守。

D.双方无论研究方法多么不同,只有根本目标不相悖,就总有殊途同归的日子,在认识事物的过程中有这样那样的分歧是正常的。

2010年北京卷2.下列各句中,加点的成语使用恰当的一句是(3分)A.司机张师傅冒着生命危险解救乘客的事迹,一经新闻媒体报道,就被传得满城风雨,感动了无数市民。

高考地理知识点复习《海水的性质和海水的运动》十年真题汇总

高考地理知识点复习《海水的性质和海水的运动》十年真题汇总

高考地理知识点复习《海水的性质和海水的运动》十年真题汇总(2023·浙江卷)下图为南半球部分海域水温分布和海水运动示意图。

完成下面小题。

1.图中甲、乙丙、丁四处海域表层海水性质的比较,正确的是()A.甲密度最低B.丁盐度最小C.甲盐度大于丁D.乙密度大于丙2.磷虾主要分布在约50S以南的环南极洲海域,其栖息海域的营养物质主要来自于()①大陆冰川融化①暖寒流的交汇①深层海水上升①西风漂流携带A.①①B.①①C.①①D.①①【答案】1.D 2.C【解析】1.甲地纬度高,水温最低,密度最高,A错误;丁地水温最高,盐度最高,B错误;甲地水温低于丁地,所以甲地盐度小于丁地,C错误;乙地水温低于丙地,所以乙地海水密度高于丙地,D正确。

故答案选D。

2.依据题意,磷虾主要分布在约50S以南的环南极洲海域,而该海域南部有一股环绕南极大陆的南极环流,其水温很低,它在极地东风影响下向北流去时下沉。

而来自太平洋、大西洋和印度洋的暖流在南下时,遇到这股下沉的寒流,就形成上升流。

这股上升流可将深层海水中丰富的营养物质带至表层,使得微生物大量繁殖,成为磷虾摄食和栖息的理想场所,故①①正确;大陆冰川融化速度缓慢,提供的营养物质数量不大,①错;西风漂流为闭合的全球性环流,携带的营养物质少,①错。

①①正确,故选C。

(2023·浙江卷)读8月世界局部海洋表层盐度分布图。

完成下面小题。

3.P、Q附近洋流对流经地区的影响是()A.P沿岸降水增多B.Q附近海水温度降低C.Q沿岸降水减少D.P附近海水温度降低4.导致P、Q海域等盐度线向高值方向凸出的主要因素分别是()A.洋流、洋流B.纬度、洋流C.径流、纬度D.洋流、径流【答案】3.D 4.D【解析】3.根据图示信息可知,P附近洋流由水温低的海域流向水温高的海域,为寒流,对流经地区有降温减湿的作用;Q附近洋流由水温高的海域流向水温低的海域,为暖流,对流经地区有增温增湿的作用,ABC错误,D正确。

高考数学十年真题专题汇总—集合概念与运算

高考数学十年真题专题汇总—集合概念与运算

高考数学十年真题专题汇总—集合概念与运算年份题号考点考查内容2011文1集合运算两个离散集合的交集运算,集合的子集的个数2012理1与集合有关的新概念问题由新概念确定集合的个数文1集合间关系一元二次不等式解法,集合间关系的判断2013卷1理1集合间关系一元二次不等式的解法,集合间关系的判断文1集合运算集合概念,两个离散集合的交集运算卷2理1集合运算一元二次不等式解法,一个连续集合与一个离散集合的交集运算文1集合运算个连续集合与一个离散集合的交集运算2014卷1理1集合运算一元二次不等式解法,两个连续集合的交集运算文1集合运算两个连续集合的交集运算卷2理2集合元素一元二次不等式解法,一个连续集合与一个离散集合的交集运算文1集合元素一元二次方程解法,两个离散集合的交集运算2015卷1文1集合运算集合概念,两个离散集合的交集运算卷2理1集合运算一元二次不等式解法,一个连续集合与一个离散集合的交集运算文1集合运算两个连续集合的并集2016卷1理1集合运算一元二次不等式解法,一元一次不等式解法,两个连续集合交集运算文1集合运算一个连续集合与一个离散集合的交集运算卷2理1集合运算一元二次不等式解法,两个离散集合并集运算文1集合运算一元二次不等式解法,一个连续集合与一个离散集合的交集运算卷3理1集合运算一元二次不等式解法,两个连续集合的交集运算文1集合运算两个离散集合的补集运算2017卷1理1集合运算指数不等式解法,两个连续集合的并集、交集运算文1集合运算一元一次不等式解法,两个连续集合的并集、交集运算卷2理2集合运算一元二次方程解法,两个离散集合交集运算文1集合运算两个离散集合的并集运算卷3理1集合概念与表示直线与圆的位置关系,交集的概念.文1集合运算两个离散集合的交集运算2018卷1理1集合运算一元二次不等式解法,补集运算文1集合运算两个离散集合的交集运算卷2理2集合概念与表示点与圆的位置关系,集合概念文1集合运算两个离散集合的交集运算卷3文理1集合运算一元一次不等式解法,一个连续集合与一个离散集合的交集运算2019卷1理1集合运算一元二次不等式解法,两个连续集合的交集运算文2集合运算三个离散集合的补集、交集运算卷2理1集合运算一元二次不等式解法,一元一次不等式解法,两个连续集合的交集运算文1集合运算两个连续集合的交集运算卷3文理1集合运算一元二次不等式解法,一个连续集合与一个离散集合的交集运算2020卷1理2集合运算一元二次不等式的解法,含参数的一元一次不等式的解法,利用集合的交集运算求参数的值文1集合运算一元二次不等式解法,一个连续集合与一个离散集合的交集运算卷2理1集合运算两个离散集合的并集、补集运算文1集合运算绝对值不等式的解法,一个连续集合与一个离散集合的交集运算卷3理1集合运算二元一次方程及二元一次不等式混合组的整数解的解法,一个连续集合与一个离散集合的交集运算文1集合运算一个连续集合与一个离散集合的交集运算考点出现频率2021年预测集合的含义与表示37次考2次在理科卷中可能考查本考点集合间关系37次考2次可能在试卷中考查两个几何关系的判定或子集的个数问题集合间运算37次考32次常与一元二次不等式解法、一元一次不等式解法、指数、对数不等式解法结合重点考查集合的交集运算,也可能考查集合的并集、补集运算与集合有关的创新问题37次考1次考查与集合有关的创新问题可能性不大考点1集合的含义与表示1.【2020年高考全国Ⅲ卷文数1】已知集合{}1,2,3,5,7,11A =,{}315|B x x =<<,则A ∩B 中元素的个数为()A .2B .3C .4D .52.【2020年高考全国Ⅲ卷理数1】已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B 中元素的个数为()A .2B .3C .4D .63.【2017新课标3,理1】已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A B 中元素的个数为A .3B .2C .1D .04.【2018新课标2,理1】已知集合 = ,2+ 2≤3, ∈ , ∈ ,则 中元素的个数为()A .9B .8C .5D .45.【2013山东,理1】已知集合A ={0,1,2},则集合B ={}|,x y x A y A -∈∈中元素的个数是A .1B .3C .5D .96.【2013江西,理1】若集合{}2|10A x R ax ax =∈++=中只有一个元素,则a =A .4B .2C .0D .0或47.【2012江西,理1】若集合{1,1}A =-,{0,2}B =,则集合{|,,}z z x y x A y B =+∈∈中的元素的个数为()A .5B .4C .3D .28.【2011广东,理1】已知集合A ={(,)|,x y x y 为实数,且221}x y +=,B ={(,)|,x y x y 为实数,且1}x y +=,则A ⋂B 的元素个数为A .4B .3C .2D .19.【2011福建,理1】i 是虚数单位,若集合S ={-1,0,1},则A .i ∈SB .2i ∈SC .3i ∈SD .2i∈S 10.【2012天津,文9】集合{}R 25A x x =∈-≤中的最小整数为_______.考点2集合间关系1.【2012新课标,文1】已知集合2{|20}A x x x =--<,{|11}B x x =-<<,则A .A BÜB .B AÜC .A B=D .A B =∅2.【2012新课标卷1,理1】已知集合A={x |x 2-2x >0},B={x |-5<x <5},则()A 、A∩B=∅B 、A ∪B=RC 、B ⊆AD 、A ⊆B3.【2015重庆,理1】已知集合{}1,2,3A =,{}2,3B =,则A .A =BB .A B =∅∩C .A BÜD .B AÜ4.【2012福建,理1】已知集合{1,2,3,4}M =,{2,2}N =-,下列结论成立的是()A .N M⊆B .M N M= C .M N N= D .{2}M N = 5.【2011浙江,理1】若{|1},{|1}P x x Q x x =<=>-,则()A .P Q⊆B .Q P⊆C .R C P Q⊆D .R Q C P⊆6.【2011北京,理1】已知集合P =2{|1}x x ≤,{}M a =.若P M P = ,则a 的取值范围是A .(-∞,-1]B .[1,+∞)C .[-1,1]D .(-∞,-1] [1,+∞)7.【2013新课标1,理1】已知集合A ={x |x 2-2x >0},B ={x |-5<x <5=,则()A .A ∩B =∅B .A ∪B =RC .B ⊆AD .A ⊆B8.【2012大纲,文1】已知集合A ={x ︱x 是平行四边形},B ={x ︱x 是矩形},C ={x ︱x 是正方形},D ={x ︱x 是菱形},则A .A ⊆BB .C ⊆BC .D ⊆C D .A ⊆D9.【2012年湖北,文1】已知集合2{|320,}A x x x x =-+=∈R ,{|05,}B x x x =<<∈N ,则满足条件A CB ⊆⊆的集合C 的个数为()A .1B .2C .3D .4考点3集合间的基本运算1.【2011课标,文1】已知集合M={0,1,2,3,4},N={1,3,5},P=M ∩N ,则P 的子集共有(A)2个(B)4个(C)6个(D)8个2.【2013新课标2,理1】已知集合M={x ∈R|2(1)4x -<},N={-1,0,1,2,3},则M ∩N=A .{0,1,2}B .{-1,0,1,2}C .{-1,0,2,3}D .{0,1,2,3}3.【2013新课标2,文1】已知集合M={x|-3<x<1},N={-3,-2,-1,0,1},则M ∩N=()(A){-2,-1,0,1}(B){-3,-2,-1,0}(C){-2,-1,0}(D){-3,-2,-1}4.【2013新课标I ,文1】已知集合A={1,2,3,4},2{|,}B x x n n A ==∈,则A∩B=()(A){1,4}(B){2,3}(C){9,16}(D){1,2}5.【2014新课标1,理1】已知集合A={x |2230x x --≥},B={x |-2≤x <2},则A B ⋂=A .[-2,-1]B .[-1,2)C .[-1,1]D .[1,2)6.【2014新课标2,理1】设集合M={0,1,2},N={}2|320x x x -+≤,则M N ⋂=()A .{1}B .{2}C .{0,1}D .{1,2}7.【2014新课标1,文1】已知集合M ={|13}x x -<<,N ={|21}x x -<<则M N = ()A.)1,2(-B .)1,1(-C .)3,1(D .)3,2(-8.【2014新课标2,文1】设集合2{2,0,2},{|20}A B x x x =-=--=,则A B = ()A.∅B .{}2C .{0}D .{2}-9.【2015新课标2,理1】已知集合21,01,2A =--{,,},{}(1)(20B x x x =-+<,则A B = ()A .{}1,0A =-B .{}0,1C .{}1,0,1-D .{}0,1,210.【2015新课标1,文1】已知集合{32,},{6,8,10,12,14}A x x n n N B ==+∈=,则集合A B 中的元素个数为()(A)5(B)4(C)3(D)211.【2015新课标2,文1】已知集合{}|12A x x =-<<,{}|03B x x =<<,则A B = ()A .()1,3-B .()1,0-C .()0,2D .()2,312.【2016新课标1,理1】设集合}034|{2<+-=x x x A ,}032|{>-=x x B ,则B A ⋂=(A)3(3,2--(B)3(3,2-(C)3(1,2(D)3(,3)213.【2016新课标2,理2】已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则A B = ()(A){1}(B){12},(C){0123},,,(D){10123}-,,,,14.【2016新课标3,理1】设集合{}{}|(2)(3)0,|0S x x x T x x =--≥=>,则T S ⋂=(A)[2,3](B)(-∞,2]U [3,+∞)(C)[3,+∞)(D)(0,2]U [3,+∞)15.【2016新课标2,文1】已知集合{123}A =,,,2{|9}B x x =<,则A B = ()(A){210123}--,,,,,(B){21012}--,,,,(C){123},,(D){12},16.【2016新课标1,文1】设集合{1,3,5,7}A =,{|25}B x x =≤≤,则A B = ()(A){1,3}(B){3,5}(C){5,7}(D){1,7}17.【2016新课标3,文1】设集合{0,2,4,6,8,10},{4,8}A B ==,则A B ð=(A){48},(B){026},,(C){02610},,,(D){0246810},,,,,18.【2017新课标1,理1】已知集合A ={x |x <1},B ={x |31x <},则A .{|0}AB x x =< B .A B =RC .{|1}A B x x => D .A B =∅19.【2017新课标1,文1】已知集合A ={}|2x x <,B ={}|320x x ->,则()A .A B =3|2x x ⎧⎫<⎨⎬⎩⎭B .A B =∅C .A B 3|2x x ⎧⎫=<⎨⎬⎩⎭D .A B=R20.【2017新课标2,理2】设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1A B = ,则B =()A .{}1,3-B .{}1,0C .{}1,3D .{}1,521.【2017新课标2,文1】设集合{}{}123234A B ==,,, ,,, 则A B =()A .{}123,4,,B .{}123,,C .{}234,,D .{}134,,22.【2017新课标3,文1】已知集合A={1,2,3,4},B={2,4,6,8},则A ⋂B 中元素的个数为()A .1B .2C .3D .423.【2018新课标1,理1】已知集合 = 2− −2>0,则∁ =A . −1< <2B . −1≤ ≤2C . | <−1∪ | >2D . | ≤−1∪ | ≥224.【2018新课标3,理1】已知集合 = | −1≥0, =0,1,2,则 ∩ =A .0B .1C .1,2D .0,1,225.【2018新课标1,文1】已知集合,,则()A .B .C .D .26.【2018新课标2,文1】已知集合,,则A .B .C .D .27.【2019新课标1,理1】已知集合{}}242{60M x x N x x x =-<<=--<,,则M N ⋂=()A .}{43x x -<<B .}{42x x -<<-C .}{22x x -<<D .}{23x x <<28.【2019新课标1,文2】已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则C U B A =()A .{}1,6B .{}1,7C .{}6,7D .{}1,6,729.【2019新课标2,理1】设集合A ={x |x 2-5x +6>0},B ={x |x -1<0},则A ∩B =A .(-∞,1)B .(-2,1)C .(-3,-1)D .(3,+∞)30.【2019新课标2,文1】.已知集合={|1}A x x >-,{|2}B x x =<,则A ∩B =A .(–1,+∞)B .(–∞,2)C .(–1,2)D .∅31.【2019新课标3,理1】已知集合{}{}21,0,1,21A B x x ,=-=≤,则A B ⋂=()A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,232.【2019浙江,1】已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则U A B ð=A .{}1-B .{}0,1C .{}1,2,3-D .{}1,0,1,3-33.【2019天津,理1】设集合{1,1,2,3,5},{2,3,4},{|13}A B C x x =-==∈<R ,则()A C B =A .{}2B .{}2,3C .{}1,2,3-D .{}1,2,3,434.【2011辽宁,理1】已知M ,N 为集合I 的非空真子集,且M ,N 不相等,若 N ð=M I ∅,则=N M A .MB .NC .ID .∅35.【2018天津,理1】设全集为R ,集合{02}A x x =<<,{1}B x x =≥,则()=R I A B ðA .{01}x x <≤B .{01}x x <<C .{12}x x <≤D .{02}x x <<36.【2017山东,理1】设函数24y x =-的定义域A ,函数ln(1)y x =-的定义域为B ,则A B = ()A .(1,2)B .(1,2]C .(2,1)-D .[2,1)-37.【2017天津,理1】设集合{1,2,6}A =,{2,4}B =,{|15}C x x =∈-R ≤≤,则()A B C = A .{2}B .{1,2,4}C .{1,2,4,6}D .{|15}x x ∈-R ≤≤38.【2017浙江,理1】已知集合{|11}P x x =-<<,{|02}Q x x =<<,那么P Q =A .(1,2)-B .(0,1)C .(1,0)-D .(1,2)39.【2016年山东,理1】设集合2{|2,},{|10},x A y y x B x x ==∈=-<R 则A B =A .(1,1)-B .(0,1)C .(1,)-+∞D .(0,)+∞40.【2016年天津,理1】已知集合{1,2,3,4},{|32},A B y y x x A ===-∈,则A B =A .{1}B .{4}C .{1,3}D .{1,4}41.【2015浙江,理1】已知集合2{20},{12}P x x x Q x x =-=<≥≤,则()R P Q =ðA .[0,1)B .(0,2]C .(1,2)D .[1,2]42.【2015四川,理1】设集合{|(1)(2)0}A=x x x +-<,集合{|13}B x x =<<,则A B = A .{|13}x x -<<B .{|11}x x -<<C .{|12}x x <<D .{|23}x x <<43.【2015福建,理1】若集合{}234,,,A i i i i =(i 是虚数单位),{}1,1B =-,则A B 等于()A .{}1-B .{}1C .{}1,1-D .∅44.【2015广东,理1】若集合()(){}410M x x x =++=,()(){}410N x x x =--=,则M N = A .{}1,4B .{}1,4--C .{}0D .∅45.【2015陕西,理1】设集合2{|}M x x x ==,{|lg 0}N x x =≤,则M N =A .[0,1]B .(0,1]C .[0,1)D .(,1]-∞46.【2015天津,理1】已知全集{}1,2,3,4,5,6,7,8U =,集合{}2,3,5,6A =,集合{}1,3,4,6,7B =,则集合U A B =ðA .{}2,5B .{}3,6C .{}2,5,6D .{}2,3,5,6,847.【2014山东,理1】设集合},]2,0[,2{},21{∈==<-=x y y B x x A x 则=B A A .[0,2]B .(1,3)C .[1,3)D .(1,4)48.【2014浙江,理1】设全集{}2|≥∈=x N x U ,集合{}5|2≥∈=x N x A ,则=A C U A .∅B .}2{C .}5{D .}5,2{49.【2014辽宁,理1】已知全集,{|0},{|1}U R A x x B x x ==≤=≥,则集合()U C A B = A .{|0}x x ≥B .{|1}x x ≤C .{|01}x x ≤≤D .{|01}x x <<50.【2013山东,】已知集合B A 、均为全集}4,3,2,1{=U 的子集,且(){4}U A B = ð,{1,2}B =,则U A B =ðA .{3}B .{4}C .{3,4}D .∅51.【2013陕西,理1】设全集为R ,函数()f x =的定义域为M ,则C M R 为A .[-1,1]B .(-1,1)C .,1][1,)(∞-⋃+∞-D .,1)(1,)(∞-⋃+∞-52.【2013湖北,理1】已知全集为R ,集合112xA x ⎧⎫⎪⎪⎛⎫=≤⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,{}2|680B x x x =-+≤,则()R A C B =A .{}|0x x ≤B .{}|24x x ≤≤C .{}|024x x x ≤<>或D .{}|024x x x <≤≥或53.【2011江西,理1】若全集{1,2,3,4,5,6},{2,3},{1,4}U M N ===,则集合{5,6}等于A .M N⋃B .M N⋂C .()()n n C M C N ⋃D .()()n n C M C N ⋂54.【2011辽宁】已知M ,N 为集合I 的非空真子集,且M ,N 不相等,若 N ð=M I ∅,则=N M A .MB .NC .ID .∅55.【2017江苏】已知集合{1,2}A =,2{,3B a a =+},若{1}A B = ,则实数a 的值为_.56.【2020年高考全国Ⅰ卷文数1】已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B = ()A .{4,1}-B .{1,5}C .{3,5}D .{1,3}57.【2020年高考全国I 卷理数2】设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =()A .–4B .–2C .2D .458.【2020年高考全国II 卷文数1】已知集合A ={x ||x |<3,x ∈Z },B ={x ||x |>1,x ∈Z },则A ∩B =()A .∅B .{–3,–2,2,3)C .{–2,0,2}D .{–2,2}59.【2020年高考全国II 卷理数1】已知集合{}{}{}2,1,0,1,2,3,1,0,1,1,2U A B =--=-=,则()U A B =ð()A .{}2,3-B .{}2,2,3-C .{}2,1,0,3--D .{}2,1,0,2,3--60.【2020年高考浙江卷1】已知集合P ={|14}x x <<,{|23}Q x x =<<则P Q =()A .{|12}x x <≤B .{|23}x x <<C .{|23}x x <≤D .{|14}x x <<61.【2020年高考北京卷1】已知集合{1,0,1,2},{03}A B x x =-=<<,则A B = A .{1,0,1}-B .{0,1}C .{1,1,2}-D .{1,2}62.【2020年高考山东卷1】设集合{|13}A x x =≤≤,{|24}B x x =<<,则=A B A .{|23}x x <≤B .{|23}x x ≤≤C .{|14}x x ≤<D .{|14}x x <<63.【2020年高考天津卷1】设全集{3,2,1,0,1,2,3}U =---,集合{1,0,1,2},{3,0,2,3}A B =-=-,则()U A B = ð()A .{3,3}-B .{0,2}C .{1,1}-D .{3,2,1,1,3}---64.【2020年高考上海卷1】已知集合{}{}1,2,4,2,4,5A B ==,则A B = .65.【2020年高考江苏卷1】已知集合{}{}1,0,1,2,0,2,3A B =-=,则A B =.考点4与集合有关的创新问题1.(2012课标,理1).已知集合A ={1,2,3,4,5},B ={(x ,y )|x ∈A ,y ∈A ,x y -∈A },则B 中所含元素的个数为()A .3B .6C .8D .102.【2015湖北】已知集合22{(,)1,,}A x y x y x y =+≤∈Z ,{(,)||2,||2,B x y x y =≤≤,}x y ∈Z ,定义集合12121122{(,)(,),(,)}A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕中元素的个数为()A .77B .49C .45D .303.【2013广东,理8】设整数4n ≥,集合{}1,2,3,,X n = ,令集合{(,,)|,,S x y z x y z X =∈,且三条件,,x y z y z x z x y <<<<<<恰有一个成立},若(),,x y z 和(),,z w x 都在S 中,则下列选项正确的是A .(),,y z w S ∈,(),,x y w S ∉B .(),,y z w S ∈,(),,x y w S ∈C .(),,y z w S ∉,(),,x y w S∈D .(),,y z w S ∉,(),,x y w S∉4.【2012福建,文12】在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[k],即[k]={5n k +丨n ∈Z},k=0,1,2,3,4.给出如下四个结论:①2011∈[1];②-3∈[3];③Z=[0]∪[1]∪[2]∪[3]∪[4];④“整数a ,b 属于同一“类”的充要条件是“a b -∈[0]”.其中正确的结论个数是()A .1B .2C .3D .45.【2013浑南,文15】对于E ={12100,,,a a a }的子集X ={12,,,kii i a a a },定义X 的“特征数列”为12100,,,x x x ,其中121k i i i x x x ==== ,其余项均为0,例如子集{23,a a }的“特征数列”为0,1,1,0,0,…,0(1)子集{135,,a a a }的“特征数列”的前三项和等于;(2)若E 的子集P 的“特征数列”12100,,,p p p 满足11p =,11i i p p ++=,1≤i ≤99;E 的子集Q 的“特征数列”12100,,,q q q 满足11q =,121j j j q q q ++++=,1≤j ≤98,则P∩Q 的元素个数为_________.7.【2018北京,理20】设n 为正整数,集合12={|(,,,),{0,1},1,2,,}n k A t t t t k n αα=∈= .对于集合A中的任意元素12(,,,)n x x x α= 和12(,,,)n y y y β= ,记(,)M αβ=111122221[(||)(||)(||)]2n n n n x y x y x y x y x y x y +--++--+++-- .(1)当3n =时,若(1,1,0)α=,(0,1,1)β=,求(,)M αα和(,)M αβ的值;(2)当4n =时,设B 是A 的子集,且满足:对于B 中的任意元素,αβ,当,αβ相同时,(,)M αβ是奇数;当,αβ不同时,(,)M αβ是偶数.求集合B 中元素个数的最大值;(3)给定不小于2的n ,设B 是A 的子集,且满足:对于B 中的任意两个不同的元素,αβ,(,)0M αβ=.写出一个集合B ,使其元素个数最多,并说明理由.。

高考物理专项复习《牛顿运动定律的应用》十年高考真题汇总

高考物理专项复习《牛顿运动定律的应用》十年高考真题汇总

高考物理专项复习《牛顿运动定律的应用》十年高考真题汇总选择题1.(2019•海南卷•T5)如图,两物块P 、Q 置于水平地面上,其质量分别为m 、2m ,两者之间用水平轻绳连接。

两物块与地面之间的动摩擦因数均为µ,重力加速度大小为g ,现对Q 施加一水平向右的拉力F ,使两物块做匀加速直线运动,轻绳的张力大小为A.2F mg μ-B.13F mg μ+C.13F mg μ-D.13F 2.(2018·新课标I 卷)如图,轻弹簧的下端固定在水平桌面上,上端放有物块P ,系统处于静止状态,现用一竖直向上的力F 作用在P 上,使其向上做匀加速直线运动,以x 表示P 离开静止位置的位移,在弹簧恢复原长前,下列表示F 和x 之间关系的图像可能正确的是3.(2012·海南卷)根据牛顿第二定律,下列叙述正确的是A.物体加速度的大小跟它的质量和速度大小的乘积成反比B.物体所受合力必须达到一定值时,才能使物体产生加速度C.物体加速度的大小跟它所受作用力中任一个的大小成正比D.当物体质量改变但其所受合力的水平分力不变时,物体水平加速度大小与其质量成反比4.(2014·北京卷)应用物理知识分析生活中的常见现象,可以使物理学习更加有趣和深入,例如平伸手掌托起物体,由静止开始竖直向上运动,直至将物体抛出。

对此现象分析正确的是A.受托物体向上运动的过程中,物体始终处于超重状态B.受托物体向上运动的过程中,物体始终处于失重状态C.在物体离开手的瞬间,物体的加速度大于重力加速度D.在物体离开手的瞬间,手的加速度大于重力加速度5.(2011·上海卷)如图,在水平面上的箱子内,带异种电荷的小球a 、b 用绝缘细线分别系于上、下两边,处于静止状态。

地面受到的压力为N ,球b 所受细线的拉力为F 。

剪断连接球b 的细线后,在球b上升过程中地面受到的压力A.小于NB.等于NC.等于N+FD.大于N+F6.(2016·上海卷)如图,顶端固定着小球的直杆固定在小车上,当小车向右做匀加速运动时,球所受合外力的方向沿图中的A.OA方向B.OB方向C.OC方向D.OD方向7.(2012·新课标全国卷)伽利略根据小球在斜面上运动的实验和理想实验,提出了惯性的概念,从而奠定了牛顿力学的基础。

10年高考真题-西方文明的源头—— 古代希腊、罗马

10年高考真题-西方文明的源头—— 古代希腊、罗马

第十三单元西方文明的源头——古代希腊、罗马考点一雅典民主政治1.(2019浙江4月选考,30,2分)右图是古希腊陶器上描绘重装步兵赛跑的画面。

它反映了( )①奋发上进的城邦精神②重视公民素质的培养③追求健美的心理和审美观念④尊重基本公德原则为基础的生活方式A.①②③B.①②④C.①③④D.②③④答案 A 图片是古希腊陶器上描绘的重装步兵赛跑的画面,体育运动给人带来积极向上的奋发精神,有利于提高古希腊公民的身体素质,这也体现了一种追求健美的心理。

故①②③正确,A项符合题意。

体育运动并不能体现以基本公德原则为基础的生活方式,故④错误。

2.(2019浙江4月选考,17,2分)论及雅典城邦制度,有学者认为,雅典“无法扩张自己……如果它扩张,其公民就无法集合参加公民大会,但如果不扩张,当强大的君主政体联合起来,它就会成为受害者”。

这说明雅典城邦制度存在明显缺陷。

下列项中能够反映这一认识的是( )A.城邦制度仅适用于小国寡民B.抽签选举和轮流坐庄C.公民权建立在对奴隶专政的基础之上D.“五百人会议”享有很大的权力答案 A 材料认为雅典城邦的缺陷在于,“如果它扩张,其公民就无法集合参加公民大会,但如果不扩张,当强大的君主政体联合起来,它就会成为受害者”,这体现出城邦的空间有限,扩张则不利于民主政治的实行,如果不扩张,由于自身力量的弱小,会受到强大的君主专制政体国家的威胁。

由此可知,城邦制度的缺陷在于只适用于小国寡民,故A 项正确。

B、C、D三项与材料内容不相符合,故错误。

3.(2018浙江4月选考,16,2分)卓尔不群的雅典,对人类文明的发展影响深远。

限于特定的历史条件,其民主制的“得”与“失”表现明显。

下列项中属于其“失”的是( )①公职选举②众多妇女和外邦人不享有公民权③民众组成陪审法庭④城邦建立在对广大奴隶专政的基础上A.①③B.①④C.②③D.②④答案 D 本题考查雅典民主制的得与失。

雅典民主制的“失”,就其范围而言,指雅典公民权利是建立在对广大奴隶专政的基础之上,众多的妇女和外邦人也被排除在民主殿堂之外。

10年(2013-2022)全国语文高考真题汇编专题08 补写语句 解析版

10年(2013-2022)全国语文高考真题汇编专题08 补写语句 解析版

专题08 补写语句【2022年】一、(2022·全国甲卷)阅读下面的文字,完成下面小题。

又是一年槐花儿飘香的季节,小伙伴们有没有想起儿时那些带有妈妈专属味道的槐花美食?不过,槐花①______。

常见的槐花有三种:淡黄色的国槐花,夏末开花,可以入药②______;白色的刺槐花(也叫洋槐花),夏初开花,花香味甜,可食用但不可入药;红色的槐花(变种)仅供观赏,既不能食用,③______。

也就是说,我们吃的槐花美食来自白色刺槐。

白色刺槐是我国重要的蜜源、食花和景观植物,原产北美。

而我国土生土长的树种,是国槐。

国槐在我国不只是一种常见的良木,而且作为一种文化元素融入传统文化之中。

比如被奉为“神树”,种植在敬神祭祖的社坛周围;作为吉祥的象征,种在庭前屋后。

古代社会,槐树还是三公(太师、太傅、太保)宰辅之位的象征,并出现了一些由“槐”字构成的具有政治寓意的词,如槐岳(朝廷高官)、槐蝉..(高官显责)、槐第(三公的宅第)等,槐树因此也受到读书人的喜爱。

20.请在文中横线处补写恰当的语句,使整段文字语意完整连贯,内容贴切,逻辑严密,每处不超过8个字。

21.下列选项中,加点的词语和文中“槐蝉”所用修辞手法不同的一项是()A.主人下马客在船,举酒欲饮无管弦..。

B.埋骨何须桑梓..地,人生无处不青山。

C.六军不发无奈何,宛转娥眉..马前死。

D.心非木石..岂无感,吞声踯躅不敢言。

【答案】20.①并不都是能吃的②但不可食用③也不能入药21.D【解析】20.本题考查学生语言表达之情境补写的能力。

第一处,前面是说儿时对槐花美食的记忆,“不过”表转折,结合后面三类槐花的特点来看,有的可以食用,有的可以药用,而有的仅供观赏,所以此处填写“并非都能食用”这样的内容。

第二处,此处是说淡黄色国槐花的特点,“可以入药……”和后面洋槐花“可食用但不可入药”内容相对应,所以此处填写“但不可食用”。

第三处,此处是说红色槐花的特点,前面国槐花和洋槐花的特点是“可以入药但不可食用”“可食用但不可入药”,而此处的红色槐花“仅供观赏,既不能食用”,可见后面应是说“也不能入药”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

历年高考试题汇编Ⅰ——集合与函数考试内容:集合.子集、交集、并集、补集. 映射.函数(函数的记号、定义域、值域). 幂函数.函数的单调性.函数的奇偶性. 反函数.互为反函数的函数图象间的关系.指数函数.对数函数.换底公式.简单的指数方程和对数方程. 二次函数.考试要求:(1)理解集合、子集、交集、并集、补集的概念.了解空集和全集的意义,了解属于、包含、相等关系的意义,能掌握有关的术语和符号,能正确地表示一些较简单的集合.(2)了解映射的概念,在此基础上理解函数及其有关的概念掌握互为反函数的函数图象间的关系. (3)理解函数的单调性和奇偶性的概念,并能判断一些简单函数的单调性和奇偶性,能利用函数的奇偶性与图象的对称性的关系描绘函数图象.(4)掌握幂函数、指数函数、对数函数及二次函数的概念及其图象和性质,并会解简单的指数方程和对数方程. 一、选择题1. 在下面给出的函数中,哪一个既是区间(0,π2)上的增函数,又是以π为周期的偶函数(85(3)3分)=x 2=|sinx | =cos 2x =e sin 2x 2. 函数y =-x +1的反函数是(86(2)3分) =log 5x +1 =log x 5+1 =log 5(x -1) =log 5x -1 3. 在下列各图中,y =ax 2+bx 与y =ax +b 的图象只可能是(86(9)3分)A .B .C .D .4. 设S ,T 是两个非空集合,且S ?T ,T?S ,令X =S ∩T ,那么S ∪X =(87(1)3分)C .Φ5. 在区间(-∞,0)上为增函数的是(87(5)3分)=-(-x ) =x 1-x=-(x +1)2 =1+x 26. 集合{1,2,3}的子集总共有(88(3)3分) 个 个 个 个7. 如果全集I ={a ,b ,c ,d ,e },M ={a ,c ,d },N ={b ,d ,e },则M -∩N -=(89(1)3分) A .φ B .{d } C .{a ,c } D .{b ,e }8. 与函数y =x 有相同图象的一个函数是(89(2)3分) =x =x 2x=axlog a (a >0且a ≠1) =log a a x (a >0且a ≠1)9. 已知f (x )=8+2x -x 2,如果g (x )=f (2-x 2),那么g (x )(89(11)3分) A .在区间(-1,0)上是减函数 B .在区间(0,1)上是减函数 C .在区间(-2,0)上是增函数 D .在区间(0,2)上是增函数10. 方程2413log x 的解是(90(1)3分)=19 =33= 3 =911. 设全集I ={(x ,y )|x ,y ∈R },M ={(x ,y )|y -3x -2=1},N ={(x ,y )|y ≠x +1},则M —∪N —=(90(9)3分)A .φB .{(2,3)}C .(2,3)D .{(x ,y )|y =x +1}12. 如果实数x ,y 满足等式(x -2)2+y 2=3,那么yx 的最大值是(90(10)3分)A .12B .33C .32D . 313. 函数f (x )和g (x )的定义域为R ,“f (x )和g (x )均为奇函数”是“f (x )与g (x )的积为偶函数”的(90上海) A .必要条件但非充分条件 B .充分条件但非必要条件 C .充分必要条件D .非充分条件也非必要条件<a <b <b <a <a <b <1 <b <a <1 15. 函数y =(x +4)2在某区间上是减函数,这区间可以是(90年广东)A .(-∞,-4]B .[-4,+∞)C .[4,+∞)D .(-∞,4]16. 如果奇函数f (x )在区间[3,7]上是增函数且最小值为5,那么f (x )在区间[-7,-3]上是(91(13)3分) A .增函数且最小值为-5 B .增函数且最大值为-5 C .减函数且最小值为-5 D .减函数且最大值为-517. 设全集为R ,f (x )=sinx ,g (x )=cosx ,M ={x |f (x )≠0},N ={x |g (x )≠0},那么集合{x |f (x )g (x )=0}等于(91年⒂3分) A .M -∩N -B .M -∪NC .M -∪ND .M -∪N -18. log 89log 23等于(92(1)3分) A .23C .3219. 图中曲线是幂函数y =x n 在第一象限的图象,已知n 取±2,±12四个值,则相应于曲线c 1,c 2,c 3,c 4的n 依次是(92(6)3分) A .-2,-12,12,2,12,-12,-2 C .-12,-2,2,12D .12,2,-2,-1220. 函数y =e x -e -x2的反函数(92(16)3分)A .是奇函数,它在(0,+∞)上是减函数B .是偶函数,它在(0,+∞)上是减函数C .是奇函数,它在(0,+∞)上是增函数D .是偶函数,它在(0,+∞)上是增函数 21. 如果函数f (x )=x 2+bx +c 对任意实数t 都有f (2+t )=f (2-t ),那么(92(17)3分)(2)<f (1)<f (4) (1)<f (2)<f (4) (2)<f (4)<f (1) (4)<f (2)<f (1) 22. 当0<a <1时,函数y =a x 和y =(a -1)x 2的图象只可能是(92年上海)ABC .D23. 设全集I =R ,集合M ={x |x 2>2},N =|log x 7>log 37},那么M ∩N -=(92年三南)34A .{x |x <-2=B .{x |x <-2或x ≥3=C .{x |x ≥3}D .{x |-2≤x <324. 对于定义域为R 的任何奇函数f (x )都有(92年三南) (x )-f (-x )>0(x ∈R ) (x )-f (-x )≤0(x ∈R ) (x )f (-x )≤0(x ∈R ) (x )f (-x )>0(x ∈R )25. F (x )=[1+22x-1]f (x ),(x ≠0)是偶函数,且f (x )不恒等于0,则f (x )(93(8)3分) A .是奇函数 B .是偶函数C .可能是奇函数也可能是偶函数D .不是奇函数也不是偶函数26. 设a ,b ,c 都是正数,且3a =4b =6c ,那么(93(16)3分) A .1c =1a +1b B .2c =2a +1b C .1c =2a +2b D .2c =1a +2b27. 函数y =x +a 与y =log a x 的图象可能是(93年上海) A ..28. 集合M ={x |x =k π2+π4,k ∈Z },N ={x |x =k π4+π2,k ∈Z },则(93年三南)=N ?M ?N ∩N =φ29. 设全集I ={0,1,2,3,4},集合A ={0,1,2,3},集合B ={2,3,4},则A ∪B - -=(94(1)4分) A .{0} B .{0,1} C .{0,1,4}D .{0,1,2,3,4} 30. 设函数f (x )=1-1-x 2(-1≤x ≤0),则函数y =f -1(x )的图象是(94(12)5分)B . -1x ∈R ,那么(94(15)5分) (x )=x ,h (x )=lg (10x +10-x+1) (x )=lg (10x +1)+x 2,h (x )=lg (10x +1)-x 2(x )=x 2,h (x )=lg (10x +1)-x 2(x )=-x2,h (x )=lg (10x +1)+x 232. y =A C . D .33. 设I 是全集,集合P ,Q 满足P ?Q ,则下面结论中错误的是(94年上海) ∪Q =Q B .P -∪Q =I ∩Q -=φ D .P ∩Q =P - - -34. 如果0<a <1,那么下列不等式中正确的是(94上海) A .(1-a )31>(1-a )21 (1-a )(1+a )>0 C .(1-a )3>(1+a )2 D .(1-a )1+a >135. 已知I 为全集,集合M ,N ?I ,若M ∩N =N ,则(95(1)4分) A .M ?N - -B .M -?NC .M ?N - -D .M -?N36. 函数y =-1x +1的图象是(95(2)4分)B .137. 已知y =log a (2-ax )在[0,1]上是x 的减函数,则a 的取值范围是(95(11)5分) A .(0,1) B .(1,2) C .(0,2) D .[2,+∞) 38. 如果P ={x |(x -1)(2x -5)<0},Q ={x |0<x <10},那么(95年上海)∩Q =φ?Q?P∪Q =R39. 已知全集I =N ,集合A ={x |x =2n ,n ∈N },B ={x |x =4n ,n ∈N },则(96(1)4分) =A ∪B=A -∪B=A ∪B -=A ∪B - -40.当a>1时,同一直角坐标系中,函数y=a-xO41.设f(x)是(-∞,+∞)上的奇函数,f(x+2)=-f(x),当0≤x≤1,f(x)=x,则f=(96(15)5分)B.-D.-42.如果log a3>log b3>0,那么a、b间的关系为(96上海)<a<b<1 <a<b<b<a<1 <b<a43.在下列图像中,二次函数y=ax2+bx与指数函数y=(ba)x的图像只可能是(96上海)B. C. D.44.设集合M={x|0≤x<2},集合N={x|x2-2x-3<0},集合M∩N=(97(1)4分)A.{x|0≤x<1}B.{x|0≤x<2}C.{x|0≤x≤1}D.{x|0≤x≤2}45.将y=2x的图象A.先向左平行移动1个单位B.先向右平行移动1个单位C.先向上平行移动1个单位D.先向下平行移动1个单位再作关于直线y=x对称的图象,可得到函数y=log2(x+1)的图象.(97(7)4分)46.定义在区间(-∞,+∞)的奇函数f(x)为增函数;偶函数g(x)在区间[0,+∞)的图象与f(x)重合.设a>b>0,给出下列不等式:①f(b)-f(-a)>g(a)-g(-b) ②f(b)-f(-a)<g(a)-g(-b)③f(a)-f(-b)>g(b)-g(-a) ④f(a)-f(-b)<g(b)-g(-a)其中成立的是(97(13)5分)A.①与④B.②与③C.①与③D.②与④47.三个数,,的大小关系为(97上海)48.函数y=a|x|(a>1)的图像是(98(2)4分)1o o49.函数f(x)=1x(x≠0)的反函数f-1(x)=(98(5)4分)(x≠0) B.1x(x≠0) C.-x(x≠0) D.-1x(x≠0)50.如果实数x,y满足x2+y2=1,那么(1-xy)(1+xy)有(98年广东)A.最小值12和最大值1 B.最大值1和最小值34C.最小值34而没有最大值D.最大值1而没有最小值51.如图,I是全集,M、P、S是I的3个子集,则阴影部分所表示的集合是A.(M∩P)∩SB.(M∩P)∪SC.(M∩P)∩S-D.(M∩P)∪S-(99(1)4分)52.已知映射f:A?B,其中集合A={-3,-2,-1,1,2,3,4},集合B中的元素都是A中的元素在映射f下的象,且对任意的a∈A,在B中和它对应的元素是|a|,则集合B中的元素的个数是(99(2)4分)53.若函数y=f(x)的反函数是y=g(x),f(a)=b,ab≠0,则g(b)=(99(3)4分)-1 -154.设集合A和B都是自然数集合N,映射f:A→B把集合A中的元素n映射到集合B中的元素2n+n,则在映射f下,象20的原象是(2000⑴5分)55.《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过800元的部分不必纳税,超过800元的部分为全月应纳税所得额,此项税款按下表分别累进计算.某人一月份应交纳此项税款元,则他的当月工资、薪金所得介于(2000⑹5分)~900元 ~1200元~1500元~2800元56. 设全集I ={a ,b ,c ,d ,e },集合M ={a ,c ,d },N ={b ,d ,e },那么M ∩N - -是(2000春京、皖(2)4分) A .Φ B .{d }C .{a ,c }D .{b ,e }57. 已知f (x 6)=log 2x ,那么f (8)等于(2000春京、皖) A .43 D .1258. 函数y =lg |x |(2000春京、皖(7)4分) A .是偶函数,在区间(-∞,0)上单调递增 B .是偶函数,在区间(-∞,0)上单调递减 C .是奇函数,在区间(0,+∞)上单调递增 D .是奇函数,在区间(0,+∞)上单调递减59. 已知函数f (x )=ax 3+bx 2+cx +d 的图象如右图,则(2000春京、皖(14)5分) ∈(-∞,0) ∈(0,1)∈(1,2)∈(2,+∞)60. 若集合S ={y |y =3x ,x ∈R },T ={y |y =x 2-1,x ∈R },则S ∩T 是(2000上海(15)4分) C .ΦD .有限集61. 已知集合A ={1,2,3,4},那么A 的真子集的个数是(2000广东)62. 设集合A 和B 都是坐标平面上的点集{(x ,y )|x ∈R ,y ∈R },映射f :A →B 把集合A 中的元素(x ,y )映射成集合B中的元素(x +y ,x -y ),则在映射f 下,象(2,1)的原象是(2000年江西、天津(1)5分) A .(3,1) B .(32,12) C .(32,-12) D .(1,3)63. 集合M ={1,2,3,4,5}的子集个数是(2001年春京、皖、蒙(1)5分)64. 函数f (x )=a x (a >0且a ≠1)对于任意的实数x 、y 都有(2001春京、皖、蒙(2)5分) (xy )=f (x )f (y ) (xy )=f (x )+f (y ) (x +y )=f (x )f (y )(x +y )=f (x )+f (y )65. 函数y =-1-x 的反函数是(2001春京、皖、蒙(4)5分)=x 2-1(-1≤x ≤0) =x 2-1(0≤x ≤1) =1-x 2(x ≤0)=1-x 2(0≤x ≤1) 66. 已知f (x 6)=log 2x ,那么f (8)等于(2001春京、皖、蒙(7)5分) A .43D .1267. 若定义在区间(-1, 0) 内的函数f (x )=log 2a (x +1) 满足f (x )>0, 则a 的取值范围是(2001年(4)5分) A .(12,+∞) B .(0,12]C .(0,12)D .(0,+∞)68. 设f (x )、g (x )都是单调函数,有如下四个命题:(2001年(10)5分) ①若f (x )单调递增,g (x )单调递增,则f (x )-g (x )单调递增; ②若f (x )单调递增,g (x )单调递减,则f (x )-g (x )单调递增; ③若f (x )单调递减,g (x )单调递增,则f (x )-g (x )单调递减; ④若f (x )单调递减,g (x )单调递减,则f (x )-g (x )单调递减; 其中,正确的命题是 A .②③ B .①④ C .①③ D .②④69. 满足条件M ∪{1}={1,2,3}的集合M 的个数是(2002年北京(1)5分)70. 下列四个函数中,以π为最小正周期,且在区间(π2,π)上为减函数的是(2002年北京(3)5分)=cos 2x=2|sinx |=(13)cosx =-cotx71. 如图所示,f i (x )(i =1,2,3,4)是定义在[0, 1]上的四个函数,其中满足性质:“对[0, 1]中任意的x 1和x 2,任意?∈[0, 1], f [?x 1+(1-?)x 2]≤?f (x 1)+(1-?)f (x 2)恒成立”的只有(2002年北京(12)5分)(x ),f 3(x )(x )72. 一般地,家庭30 25 20 140 120 100 80 气温与气温(℃)有一定的关系,用图(1)表示某年12个月中每月的平均气温,图(2)表示某家庭在这年12个月中每月的用电量,根据这些信息,以下关于该家庭用电量与气温间关系的叙述中,正确的是(2002年上海(16)4分)图(1) 图(2)A .气温最高时,用电量最多B .气温最低时,用电量最少C .当气温大于某一值时,用电量随气温增高而增加D .当气温小于某一值时,用电量随气温降低而增加73. 集合M ={x |x =k 2+14,k ∈Z },N ={x |x =k 4+12,k ∈Z },则(2002年全国(5)、广东(5)、天津(6)5分)=N ?N?M∩N =φ74. 函数f (x )=x |x +a |+b 是奇函数的充要条件是(2002年广东(7)5分) =0 +b =0=b+b 2=075. 函数y =1-1x -1(2002年广东(9)5分)A .在(-1,+∞)内单调递增B .在(-1,+∞)内单调递减C .在(1,+∞)内单调递增D .在(1,+∞)内单调递减76. 函数y =x 2+bx +c (x ∈[0,+∞))是单调函数的充要条件是(2002年全国(9)、天津(8)5分) ≥0 ≤0>0<077. 据2002年3月9日九届人大五次会议《政府工作报告》:“2001年国内生产总值达到95 933亿元,比到“十·五”末我国国内年生产总值约为(2002年全国(12)、广东(12)、天津(12)5分) 000亿元 000亿元 000亿元 000亿元78. 函数y =1-1x -1 的图像是(2002年全国(10)5分)A . B. C . D .79. 若集合M ={y |y =2-x },P ={y |y =x -1},则M ∩P =(2003年春北京(1)5分) A .{y |y >1} B .{y |y ≥1}C .{y |y >0}D .{y |y ≥0}80. 若f (x )=x -1x ,则方程f (4x )=x 的根是(2003年春北京(2)5分)A .12B .-12C .2D .-281. 关于函数f (x )=(sinx )2-(23)|x |+12,有下面四个结论:(1)f (x )是奇函数(2)当x >2003时, f (x )>12恒成立(3)f (x )的最大值是32(4)f (x )的最小值是-12其中正确结论的个数为(2003年春上海(16)4分) 个个个个83.设函数的取值范围是则若0021,1)(,.0,,0,12)(x x f x x x x f x >⎪⎩⎪⎨⎧>≤-=-(2003年全国(3)5分) A .(-1,1)B .(-1,+∞)C .),0()2,(+∞⋃--∞D .),1()1,(+∞⋃--∞二、填空题1. 设函数f (x )的定义域是[0,1],则函数f (x 2)的定义域为________.(85(10)4分)2. 已知圆的方程为x 2+(y -2)2=9,用平行于x 轴的直线把圆分成上下两个半圆,则以上半圆(包括端点)为图像的函数表达式为_____________(85广东)3. 方程40.5x x5252=-+的解是__________.(86(11)4分)4. 方程9-x -2·31-x =27的解是_________.(88(17)4分)5. 函数y =e x -1e x +1的反函数的定义域是__________.(89(15)4分)6. 函数y =x 2-49的值域为_______________(89广东)7. 函数y =x +4x +2的定义域是________________(90上海)8. 设函数y =f (x )的图象关于直线x =1对称,若当x ≤1时,y =x 2+1,则当x >1时,y =_________(91年上海)9. 设函数f (x )=x 2+x +12的定义域是[n ,n +1](n 是自然数),那么在f (x )的值域中共有_______个整数(91年三南)10. 方程1-3x1+3x=3的解是___________.(92(19)3分)11. 设含有10个元素的集合的全部子集数为S ,其中由3个元素组成的子集数为T ,则TS 的值为__________.(92(21)3分)12. 已知函数y =f (x )的反函数为f -1(x )=x -1(x ≥0),那么函数f (x )的定义域为_________(92上海)13. 设f (x )=4x -2x +1(x ≥0),f -1(0)=_________.(93(23)3分)注:原题中无条件x ≥0,此时f (x )不存在反函数. 14. 函数y =x 2-2x +3的最小值是__________(93年上海)15. 在测量某物理量的过程中,因仪器和观察的误差,使得n 次测量分别得到a 1,a 2,…a n ,共n 个数据,我们规定所测物理量的“最佳近似值”a 是这样一个量:与其它近似值比较,a 与各数据的差的平方和最小,依此规定,从a 1,a 2,…a n 推出的a =_______. (94(20)4分)16. 函数y =lg 10x -2的定义域是________________(95上海)17. 1992年底世界人口达到亿,若人口的年平均增长率为x %,2000年底世界人口数为y (亿),那么y 与x 的关系式为___________(96上海)18. 方程log 2(9x -5)=log 2(3x -2)+2的解是x =________(96上海) 19. 函数y =12-x)的定义域为____________(96上海)20. lg 20+log 10025=________(98上海)21. 函数f (x )=a x (a >0,a ≠1)在区间[1,2]上的最大值比最小值大a2,则a =______(98上海)22. 函数y =⎩⎪⎨⎪⎧2x +3 (x ≤0)x +3 (0<x ≤1)-x +5 (x >1)的最大值是__________(98年上海)23. 函数y =log 22x -13-x 的定义域为____________(2000上海(2)4分)24. 已知f (x )=2x +b 的反函数为y =f -1(x ),若y =f -1(x )的图像经过点Q (5,2),则b =_______(2000上海(5)4分)25. 根据上海市人大十一届三次会议上的市政府工作报告,1999年上海市完成GDP (GDP 是值国内生产总值)4035亿元,2000年上海市GDP 预期增长9%,市委、市政府提出本市常住人口每年的自然增长率将控制在%,若GDP 与人口均按这样的速度增长,则要使本市人均GDP 达到或超过1999年的2倍,至少需要_________年(2000上海(6)4分)(按:1999年本市常住人口总数约1300万)26. 设函数y =f (x )是最小正周期为2的偶函数,它在区间[0,1]上的图像为如图所示的线段AB ,则在区间[1,2]上,f (x )=_____(2000上海(8)4分)27. 函数)0(1)(2≤+=x x x f 的反函数=-)(1x f ______.(2001年春上海(1)4分)28. 关于x 的函数f (x )=sin (x +φ)有以下命题:(2001年春上海(11)4分) (1)对任意的φ,f (x )都是非奇非偶函数; (2)不存在φ,使f (x )既是奇函数,又是偶函数; (3)存在φ,使f (x )是奇函数; (4)对任意的φ,f (x )都不是偶函数.其中一个假命题的序号是_______.因为当φ=_______时,该命题的结论不成立.29. 方程log 3(1-2·3x )=2x +1的解x =_____________.(2002年上海(3)4分)30. 已知函数y =f (x )(定义域为D ,值域为A )有反函数y =f -1(x ),则方程f (x )=0有解x =a ,且f (x )>x (x ∈D )的充要条件是y =f -1(x )满足___________(2002年上海(12)4分)31. 函数y =2x 1+x (x ∈(-1,+∞))图象与其反函数图象的交点坐标为________.(2002年天津(13)4分)32. 函数y =a x 在[0,1]上的最大值和最小值之和为3,则a =______(2002年全国(13)4分)33. 已知函数f (x )=x 21+x 2,那么f (1)+f (2)+f (12)+f (3)+f (13)+f (4)+f (14)=________(2002年全国(16)、广东(16)、天津(16)4分)34. 若存在常数p >0,使得函数f (x )满足f (px )=f (px -p2)(x ∈R ),则f (x )的一个正周期为_________.(2003年春北京(16)4分)35. 已知函数f (x )=x +1,则f -1(3)=___________.(2003年春上海(1)4分)36. 已知集合A ={x ||x |≤2,x ∈R },B ={x |x ≥a }且A ?B ,则实数a 的取值范围是____________.(2003年春上海(5)4分)37. 若函数y =x 2+(a +2)x +3,x ∈[a ,b ]的图象关于直线x =1对称,则b =__________.(2003年春上海(11)4分)38. 使1)(log 2+<-x x 成立的x 的取值范围是 .(2003年全国(14).4分)三、解答题1. 解方程 log 4(3-x )+(3+x )=log 4(1-x )+(2x +1).(85(11)7分)2. 设a ,b 是两个实数,A ={(x ,y )|x =n ,y =na +b ,n 是整数},B ={(x ,y )|x =m ,y =3m 2+15,m 是整数},C ={(x ,y )|x 2+y 2≤144}是xoy 平面内的集合,讨论是否存在a 和b 使得①A ∩B ≠φ,②(a ,b )∈C 同时成立.(85(17)12分)3. 已知集合A 和集合B 各含有12个元素,A ∩B 含有4个元素,试求同时满足下面两个条件的集合C 的个数:①C ?A ∪B ,且C 中含有3个元素,②C ∩A ≠φ(φ表示空集)(86(20)10分)4. 给定实数a ,a ≠0且a ≠1,设函数y =x -1ax -1(x ∈R 且x ≠1a ),证明:①经过这个函数图象上任意两个不同点的直线不平行于x ②这个函数的图象关于直线y =x 成轴对称图形.(88(24)12分)5. 已知a >0且a ≠1,试求使方程log a (x -ak )=log a (x 2-a 2)有解的k 的取值范围.(89(22)12分)6. 设f (x )是定义在R 上以2为周期的函数,对k ∈Z ,用I k 表示区间(2k -1,2k +1],已知当x ∈I 0时,f (x )=x 2.(89(24)10分)①求f (x )在I k 上的解析表达式;②对自然数k ,求集合M k ={a |使方程f (x )=ax 在I k 上有两个不相等的实根}7. 设f (x )=lg 1+2x +……+(n -1)x +n x an ,其中a 是实数,n 是任意给定的自然数,且n ≥2.①如果f (x )当x ∈(-∞,1]时有意义,求a 的取值范围; ②如果a ∈(0,1],证明2f (x )<f (2x )当x ≠0时成立.(90(24)10分)8. 已知f (x )=lg 1+2x +4x a3,其中a ∈R ,且0<a ≤1(90广东)①求证:当x ≠0时,有2f (x )<f (2x );②如果f (x )当x ∈(-∞,1]时有意义,求a 的取值范围9. 根据函数单调性的定义,证明函数f (x )=-x 3+1在R 上是减函数.(91(24)10分)10. 已知函数f (x )=2x -12x +1(91三南)⑴证明:f (x )在(-∞,+∞)上是增函数; ⑵证明:对不小于3的自然数n 都有f (n )>nn +111. 已知关于x 的方程2a 2x -2-7a x -1+3=0有一个根是2,求a 的值和方程其余的根.(92三南)12. 某地为促进淡水鱼养殖业的发展,将价格控制在适当范围内,决定对淡水鱼养殖提供政府补贴,设淡水鱼的市场价格为x 元/千克,政府补贴为t 元/千克,根据市场调查,当8≤x ≤14时,淡水鱼的市场日供应量P 千克与市场日需求量Q 千克近似地满足关系: P =1000(x +t -8) (x ≥8,t ≥0) Q =50040-(x -8)2 (8≤x ≤14) 当P =Q 时的市场价格称为市场平衡价格.①将市场平衡价格表示为政府补贴的函数,并求出函数的定义域;②为使市场平衡价格不高于每千克10元,政府补贴至少为每千克多少元(95(25)12分)13. 已知二次函数y =f (x )在x =2t +1处取得最小值-4t 2(t >0),f (1)=0(95上海)⑴求y =f (x )的表达式;⑵若任意实数x 都满足等式f (x )g (x )+a n x +b n =x n +1(其中g (x )为多项式,n ∈N ),试用t 表示a n 和b n ; ⑶设圆C n 的方程为:(x -a n )2+(y -b n )2=r n 2,圆C n 与圆C n +1外切(n =1,2,3…),{r n }是各项都为正数的等比数列,记S n 为前n 个圆的面积之和,求r n 和S n .14. 设二次函数f (x )=ax 2+bx +c (a >0),方程f (x )-x =0的两个根x 1,x 2满足0<x 1<x 2<1a .Ⅰ.当x ∈(0,x 1)时,证明x <f (x )<x 1;Ⅱ.设函数f (x )的图象关于直线x =x 0对称,证明:x 0<x 12.(97(24)12分)15. 解方程3lgx -2-3lgx +4=0(99年广东10分)16. 已知二次函数f (x )=(lga )x 2+2x +4lga 的最大值为3,求a 的值(2000春京、皖)17. 设函数f (x )=|lgx |,若0<a <b ,且f (a )>f (b ),证明:ab <1(2000春京、皖(21)12分)本小题主要考查函数的单调性、对数函数的性质、运算能力,考查分析问题解决问题的能力.满分12分.18. 已知函数f (x )=⎩⎨⎧f 1(x ) x ∈[0,12)f 2(x ) x ∈[12,1]其中f 1(x )=-2(x -12)2+1,f 2(x )=-2x +2.(2000春京、皖(24)14分) (I )在下面坐标系上画出y =f (x )的图象;(II )设y =f 2(x )(x ∈[12,1])的反函数为y =g (x ),a 1=1,a 2=g (a 1), ……,a n =g (a n-1),求数列{a n }的通项公式,并求lim n →∞a n ;(III )若x 0∈[0,12),x 1=f (x 0),f (x 1)=x 0,求x 0.19. 某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间的关系用图一的一条折线表示;西红柿的种植成本与上市时间的关系用图二的抛物线段表示. (2000(21)12分) ⑴写出图一表示的市场售价与时间的函数关系P=f (t );写出图二表示的种植成本与时间的函数关系式Q =g (t );⑵认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大 (注:市场售价和种植成本的单位:元/10kg ,时间单位:天)20. 已知函数:f (x )=x 2+2x +a x ,x ∈[1,+∞)(2000上海(19)6+8=14分)⑴当a =12时,求函数f (x )的最小值;⑵若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围21. 设函数f (x )=x 2+1-ax ,其中a >0.(2000年广东(20)12分) (1)解不等式f (x )≤1;(2)证明:当a ≥1时,函数f (x )在区间[0,+∞)上是单调函数.22. 设函数f (x )=x +ax +b (a >b >0),求f (x )的单调区间,并证明f (x )在其单调区间上的单调性.(2001年春京、皖、蒙(17)12分)23. 某摩托车生产企业,上年度生产摩托车的投入成本为1万元/辆,出厂价为万元/辆,年销售量为1000辆.本年度为适应市场需求,计划提高产品档次,适度增加投入成本.若每辆车投入成本增加的比例为x (0<x <1),则出厂价相应提高的比例为,同时预计年销售量增加的比例为.已知年利润=(出厂价-投入成本)×年销售量.(2001年春京、皖、蒙(21)12分)(Ⅰ)写出本年度预计的年利润y 与投入成本增加的比例x 的关系式;(Ⅱ)为使本年度的年利润比上年有所增加,问投入成本增加的比例x 应在什么范围内24. 已知R 为全集,A ={x|(3-x)≥-2},B ={x|5x -2≥1},求A -∩B(2001年春上海(17)12分)25. 设f (x )是定义在R 上的偶函数,其图象关于直线x =1对称,对任意x 1、x 2?[0,12],都有f (x 1+x 2)=f (x 1)?f (x 2).(2001年(22)14分) (Ⅰ)设f (1)=2,求f (12),f (14);(Ⅱ)证明f (x )是周期函数.(Ⅲ)记a n =f (2n +12n ),求lim n →∞(lna n ).26. 在研究并行计算的基本算法时,有以下简单模型问题:(2002年北京(20)12分)用计算机求n 个不同的数v 1,v 2,…,v n 的和∑ni =1v i =v 1+v 2+v 3+……+v n .计算开始前,n 个数存贮在n台由网络连接的计算机中,每台机器存一个数.计算开始后,在一个单位时间内,每台机器至多到一台其他机器中读数据,并与自己原有数据相加得到新的数据,各台机器可同时完成上述工作.为了用尽可能少的单位时间.........,使各台机器都得到这n 个数的和,需要设计一种读和加的方法.比如n =2时,一个单位时间即可完成计算,方法可用下表表示:(I) 当n =4时,至少需要多少个单位时间可完成计算把你设计的方法填入下表(II )当n =128时,要使所有机器都得到∑ni =1v i ,至少需要多少个单位时间可完成计算(结论不要求证明)27. 已知f (x )是定义在R 上的不恒为零的函数,且对于任意的a , b ∈R 都满足: f (a ?b )=af (b )+bf (a )(2002年北京(22)13分) (I )求f (0), f (1)的值;(II )判断f (x )的奇偶性,并证明你的结论;(III )若f (2)=2,u n =f(2-n )n (n ∈N),求数列{u n }的前n 项的和S n .28. 已知函数f (x )=x 2+2x ·tan θ-1,x ∈[-1,3],其中θ∈(-π2,π2).(2002年上海(19)14分)(1)当θ=- π6时,求函数f (x )的最大值与最小值;(2)求θ的取值范围,使得y =f (x )在区间[-1,3]上是单调函数.29. 已知a >0,函数f (x )=ax -bx 2(2002年广东(22)14分) (1)当b >0时,若对任意x ∈R 都有f (x )≤1,证明:a ≤2b ;(2)当b >1时,证明:对任意x ∈[0,1],|f (x )|≤1的充要条件是b -1≤a ≤2b ; (3)当0<b ≤1时,讨论:对任意x ∈[0,1],|f (x )|≤1的充要条件.30. 设a 为实数,函数f (x )=x 2+|x -a |-1,x ∈R (2002年全国(21)12分) (1)讨论f (x )函数的奇偶性 (2)求函数f (x )的最小值.31. 某租赁公司拥有汽车100辆. 当每辆车的月租金为3000元时,可全部租出. 当每辆车的月租金每增加50元时,未租出的车将会增加一辆. 租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(2003年春北京(20)12分)(Ⅰ)当每辆车的月租金定为3600元时,能租出多少辆车(Ⅱ)当每辆车的月租金定为多少元时,租赁公司的月收益最大最大月收益是多少32. 已知函数.5)(,5)(31313131--+=-=x x x g x x x f (2003年春上海(20)7+7=14分)(1) 证明f (x )是奇函数;并求f (x )的单调区间;(2) 分别计算f (4)-5f (2)g (2)和f (9)-5f (3)g (3)的值,由此概括出涉及函数f (x )和g (x )的对所有不等于零的实数x 都成立的一个等式,并加以证明. 33.(2003年(19).12分)已知.0>c 设P :函数xc y =在R 上单调递减.Q :不等式1|2|>-+c x x 的解集为R ,如果P 和Q 有且仅有一个正确,求c 的取值范围.。

相关文档
最新文档