云南省昆明市盘龙区2020-2021学年八年级(下)期末数学试卷
云南省昆明市盘龙区2023-2024学年八年级下学期期末考试数学试题

云南省昆明市盘龙区2023-2024学年八年级下学期期末考试数学试题一、单选题1.下列各式中,一定是二次根式的是( )A B C D 2.下列各组数中,勾股数是( )A .13,14,15B .1,1C .0.3,0.4,0.5D .8,15,173.下列选项中,最简二次根式是( )A B C D 4.某校开展以“发现生活中的数学美”为主题的摄影比赛,共83名同学参加初赛,取前42名进入复赛.小云同学想知道自己的成绩能否进入复赛,只需要知道这83名同学成绩的( )A .平均数B .众数C .方差D .中位数 5.下列图象中,不能表示y 是x 的函数的是( )A .B .C .D .6.如图,在四边形ABCD 中,对角线AC 与BD 相交于点O .不能判定四边形ABCD 是平行四边形的是( )A .AD BC ∥,AB CD = B .BAD BCD ∠=∠,ABC ADC ∠=∠C .OA OC =,OB OD = D .AB CD ∥,AD BC ∥7.如图,在ABC V 中,90ABC ∠=︒,D 为AC 中点,若4AC =,则BD 的长为( )A .1B .2C .3D .48.下列计算正确的是( )A BC .D 3=9.如图,在一次数学实践活动中,同学们为测量校园内被花坛隔开的A B ,两点间距离,在AB 外取一点C ,测得AC BC ,两边中点的距离DE 为6m ,则A B ,两点间的距离是( )A .3mB .4mC .12mD .18m10.小彩参加“新时代好少年”主题演讲比赛,形象、表达、内容三项得分分别是8分、8分、9分(每项满分为10分).若将三项得分依次按1:5:4的比例确定最终成绩,则小彩的最终比赛成绩为( )A .8.3分B .8.4分C .8.5分D .8.6分11.一艘轮船先从甲地航行到乙地,在乙地停留一段时间后,又从乙地航行返回到甲地.如图,横坐标表示航行的时间(h)t ,纵坐标表示轮船与甲地的距离(km)s ,则下列说法错误的是( )A .甲、乙两地相距300kmB .轮船从甲地到乙地的平均速度为40km/hC .轮船在乙地停留了3.5hD .轮船从乙地返回到甲地的平均速度为14km/h12.如图,在数轴上点A 所对应的实数是3,过点A 作AB OA ⊥于A ,2AB =,以O 为圆心,OB 长为半径作弧交数轴正半轴于点C ,则点C 对应的实数为( )A .3.57B .3.6CD .13.如图,已知函数y ax b =+和y kx =的图象交于点P ,根据图象可得,关于x ,y 的二元一次方程组y ax b y kx =+⎧⎨=⎩的解是( )A .31x y =⎧⎨=⎩B .31x y =-⎧⎨=⎩C .13x y =⎧⎨=-⎩D .03x y =⎧⎨=⎩ 14.如图,一竖直的木杆高8米,折断后木杆顶端落在离其底端4米处.折断处离地面的高度是( )A .3米B .C .4米D .5米15.关于函数31y x =-,下列结论正确的是( )A .图象与直线21y x =--平行B .图象经过第一、二、三象限C .图象一定经过点()0,1D .若点()13,y -和点()25,y 在直线上,则12y y <二、填空题16x 的取值范围是.17.已知一次函数y kx b =+的图象如图所示,则关于x 的不等式0kx b +>的解集是.18.如图,一只蚂蚁要从A 处沿圆柱体的侧面爬到B 处,已知圆柱体的高是12,底面圆周长是10,则蚂蚁爬行的最短路径为.19.如图,菱形ABCD 的对角线AC ,BD 相交于点O .若6AC =,8BD =,则AD 与BC 间的距离为.三、解答题20.计算:1)21.如图,平行四边形ABCD 的对角线AC BD ,相交于点O ,点E F ,在对角线BD 上,且BE EF FD ==,连接AE EC CF FA ,,,.求证:四边形AECF 是平行四边形.22.某校利用课后服务时间开设创意编程、3D模型设计打印、无人机等课程延伸科学教育,鼓励学生参与跨学科融合的项目式实践体验活动,现有一个模型设计的任务需要完成.如图所示,四边形DABC是模型零件平面图.通过相应仪器扫描测量:已知BC23.2024年6月是全国第23个“安全生产月”,某校组织七、八年级学生开展了一次应急避险逃生知识的竞赛,成绩分别为A、B、C、D四个等级,相应等级的得分依次记为10分、9分、8分、7分.学校分别从七、八年级各随机抽取了25名学生的竞赛成绩整理并绘制成如下统计图表,请根据提供的信息解答下列问题:(1)根据以上信息可以求出:=a ________,八年级绝大多数学生的竞赛成绩为________分,两个年级学生竞赛成绩更稳定的是________年级(填“七”或“八”);(2)该校七年级有学生750人,八年级有学生1000人参加本次知识竞赛,且规定9分及以上的成绩为优秀,请估计该校七、八年级参加本次知识竞赛的学生中成绩为优秀的学生共有多少人?24.某校为营造书香校园,计划购进甲,乙两种规格的书柜用于放置新购买的图书.调查发现,若购买甲种书柜1个,乙种书柜3个,共需要资金430元;若购买甲种书柜2个,乙种书柜1个,共需资金260元.(1)甲,乙两种书柜的单价分别是多少元?(2)若该校计划购进甲,乙两种书柜共24个,其中乙种书柜的数量不少于甲种书柜数量的3倍,学校应如何购买才能使资金花费最少,最少资金是多少元?25.如图,在ABCD Y 中,点E ,F 分别在AB ,CD 上,且AE CF =,DB 平分EDF ∠.(1)求证:四边形BEDF 是菱形;(2)若8AB =,4BC =,3CF =,求证:ABCD Y 是矩形.26.在平面直角坐标系xOy 中,一次函数(0)y kx b k =+≠的图象经过(4,)1-,(2,2)-两点.(1)求一次函数的解析式;(2)若一次函数的图象与x 轴,y 轴分别交于A ,B 两点,点P 为直线AB 上一动点,3AOP AOB S S =△△,求点P 的坐标.27.如图①,在正方形ABCD中,点E是对角线AC上任意一点(点E不与A,C重合),连接DE,BE.(1)求证:DE BE=;(2)若ABEAB=,求AE的长;V是等腰三角形,4(3)如图②,过点E作EF DE⊥交=时,若AB AF的长.。
云南省昆明市八下数学期末期末模拟试卷2020-2021学年数学八下期末综合测试试题含解析

云南省昆明市八下数学期末期末模拟试卷2020-2021学年数学八下期末综合测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题4分,共48分)1.要使分式1(1)(2)xx x++-有意义,则x应满足( )A.x≠﹣1 B.x≠2C.x≠±1D.x≠﹣1且x≠22.如图,两个边长相等的正方形ABCD和EFGH,正方形EFGH的顶点E固定在正方形ABCD的对称中心位置,正方形EFGH绕点E顺时针方向旋转,设它们重叠部分的面积为S,旋转的角度为θ,S与θ的函数关系的大致图象是()A.B.C.D.3.在中,平分,,则的周长为( )A.B.C.D.4.某校篮球队队员的年龄分布情况如下表,则该校篮球队队员的平均年龄为()A.13岁B.13.5岁C.13.7岁D.14岁5. 如果解关于x 的方程+1=(m 为常数)时产生增根,那么m 的值为( )A .﹣1B .1C .2D .﹣26.若直角三角形一条直角边长为6,斜边长为10,则斜边上的高是( )A .125B .245C .5D .10 7.把一根长7m 的钢管截成2m 长和1m 长两种规格的钢管,如果保证没有余料,那么截取的方法有( ) A .2种 B .3种 C .4种 D .5种8.若直线y=x+1与y=-2x+a 的交点在第一象限,则a 的取值可以是A .-1B .0C .1D .29.如图,菱形ABCD 的周长为16,面积为12,P 是对角线BD 上一点,分别作P 点到直线AB ,AD 的垂线段PE ,PF ,则PE +PF 等于( )A .6B .3C .1.5D .0.75 10.若分式1x x -有意义,则x 的取值范围是( ) A .x ≠1B .x ≠﹣1C .x =1D .x =﹣1 11.在式子1x 1-,1x 2-,x 1-,x 2-中,x 可以取1和2的是( ) A .1x 1- B .1x 2- C .x 1- D .x 2- 12.已知正比例函数m y n=的图象如图所示,则一次函数y =mx +n 图象大致是( )A .B .C.D.二、填空题(每题4分,共24分)13.某研究性学习小组进行了探究活动.如图,已知一架竹梯AB斜靠在墙角MON处,竹梯顶端距离地面AO=12,梯子底端离墙角的距离BO=5m.亮亮在活动中发现无论梯子怎么滑动,在滑动的过程中梯子上总有一个定点到墙角O 的距离始终是不变的定值,请问这个定值是_______.14.化简:2221·(1)a aa a--=_______________.15.如图,直线y=x+2与直线y=ax+c相交于点P(m,3),则关于x的不等式x+2≤ax+c的解为__________.16.如图,A是反比例函数图象上一点,过点A作AB⊥y轴于点B,点P在x轴上,若△ABP的面积为2,则k的值为______________.17.一轮船以16海里/时的速度从A港向东北方向航行,另一艘船同时以12海里/时的速度从A港向西北方向航行,经过1小时后,它们相距______________海里.18.如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行,从内到外,它们的边长依此为2,4,6,8,...,顶点依此用A1,A2,A3,A4......表示,则顶点A55的坐标是___.三、解答题(共78分)19.(8分)有一块田地的形状和尺寸如图所示,求它的面积.20.(8分)一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.(1)求y关于x的函数关系式;(不需要写定义域)(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?21.(8分)甲乙两个工程队分别同时开挖两条600米长的管道,所挖管道长度y(米)与挖掘时间x(天)之间的关系如图所示,则下列说法中:x 时,甲乙两队①甲队每天挖100米;②乙队开挖两天后,每天挖50米;③甲队比乙队提前1天完成任务;④当4所挖管道长度相同,不正确...的个数有()A .4个B .3个C .2个D .1个22.(10分)俄罗斯足球世界杯点燃了同学们对足球运动的热情,某学校划购买甲、乙两种品牌的足球供学生使用.已知用1000 元购买甲种足球的数量和用1600元购买乙种足球的数量相同,甲种足球的单价比乙种足球的单价少30元. (1)求甲、乙两种品牌的足球的单价各是多少元?(2)学枝准备一次性购买甲、乙两种品牌的足球共25个,但总费用不超过1610元,那么这所学校最多购买多少个乙种品牌的足球?23.(10分)如图,直线2y x m =+与x 轴交于点()2,0A -,直线y x n =-+与x 轴、y 轴分别交于B 、C 两点,并与直线2y x m =+相交于点D ,若4AB =.()1求点D 的坐标;()2求出四边形AOCD 的面积;()3若E 为x 轴上一点,且ACE 为等腰三角形,写出点E 的坐标(直接写出答案).24.(10分)如图,在四边形ABCD 中,AD ⊥BD ,BC =4,CD =3,AB =13,AD =12,求证:∠C =90°.25.(12分)如图,AD 是△ABC 的边BC 上的高,∠B =60°,∠C =45°,AC =6.求: (1)AD 的长;(2)△ABC 的面积.26.在“3.15”植树节活动后,对栽下的甲、乙、丙、丁四个品种的树苗进行成活率观测,以下是根据观测数据制成的统计图表的一部分: 栽下的各品种树苗棵数统计表植树品种甲种 乙种 丙种 丁种 植树棵数 150 125 125若经观测计算得出丙种树苗的成活率为89.6%,请你根据以上信息解答下列问题:(1)这次栽下的四个品种的树苗共 棵,乙品种树苗 棵;(2)图1中,甲 %、乙 %,并将图2补充完整;(3)求这次植树活动的树苗成活率.参考答案一、选择题(每题4分,共48分)1、D【解析】试题分析:当(x+1)(x-2)0≠时分式1(1)(2)x x x ++-有意义,所以x≠-1且x≠2,故选D . 考点:分式有意义的条件.2、B【解析】如图,过点E作EM⊥BC于点M,EN⊥AB于点N,∵点E是正方形的对称中心,∴EN=EM,EMBN是正方形.由旋转的性质可得∠NEK=∠MEL,在Rt△ENK和Rt△EML中,∠NEK=∠MEL,EN=EM,∠ENK=∠EML,∴△ENK≌△ENL(ASA).∴阴影部分的面积始终等于正方形面积的14,即它们重叠部分的面积S不因旋转的角度θ的改变而改变.故选B.3、C【解析】【分析】首先证得△ADC≌△ABC,由全等三角形的性质易得AD=AB,由菱形的判定定理得▱ABCD为菱形,由菱形的性质得其周长.【详解】解:如图:∵AC平分∠DAB,∴∠DAC=∠BAC.∵四边形ABCD为平行四边形,∴∠B=∠D.在△ADC和△ABC中,,∴△ADC≌△ABC,∴AD=AB,∴四边形ABCD为菱形,∴AD=AB=BC=CD=3,∴▱ABCD的周长为:3×4=1.故选:C【点睛】本题主要考查了全等三角形的判定及菱形的判定及性质,找出判定菱形的条件是解答此题的关键.4、C【解析】【分析】根据加权平均数的计算公式计算可得.【详解】解:该校篮球队队员的平均年龄为:12113314415213.71342⨯+⨯+⨯+⨯=+++(岁)故答案为:C.【点睛】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义和计算公式.5、A【解析】【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x﹣5=0,求出x的值,代入整式方程计算即可求出m的值.【详解】方程两边都乘以x﹣5,得:x﹣6+x﹣5=m.∵方程有增根,∴x=5,将x=5代入x﹣6+x﹣5=m,得:m=﹣1.故选A.【点睛】本题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.6、B【解析】【分析】根据勾股定理求出直角三角形另一条直角边长,根据三角形面积公式计算即可.【详解】解:设斜边上的高为h ,=8, 则11681022⨯⨯=⨯⨯h , 解得,h =245 故选B .【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 1+b 1=c 1.7、B【解析】【分析】可设截得的2米长的钢管x 根,截得的1米长的钢管y 根,根据题意得27x y +=,于是问题转化为求二元一次方程27x y +=的整数解的问题,再进行讨论即可.【详解】解:设截得的2米长的钢管x 根,截得的1米长的钢管y 根,根据题意得27x y +=,因为x 、y 都是正整数,所以当x =1时,y =5;当x =2时,y =3;当x =3时,y =1;综上共3种方法,故选B.【点睛】本题考查了二元一次方程的应用和二元一次方程的整数解,正确列出方程并逐一讨论求解是解题的关键.8、D【分析】联立两直线解析式,解关于x、y的二元一次方程组,然后根据交点在第一象限,横坐标是正数,纵坐标是正数,列出不等式组求解即可.【详解】解:联立y12xy x a=+⎧⎨=-+⎩,解得:1x323aay-⎧=⎪⎪⎨+⎪=⎪⎩,∵交点在第一象限,∴1323aa-⎧⎪⎪⎨+⎪⎪⎩>>,解得:a>1.故选D.【点睛】本题考查了两直线相交的问题,第一象限内点的横坐标是正数,纵坐标是正数,以及一元一次不等式组的解法,把a 看作常数表示出x、y是解题的关键.9、B【解析】菱形ABCD的周长为16,4,菱形面积为12,BC边上的高为3,∠ABD=∠CBD,P到BC距离等于h=PE,PE+PF=h+PF=3.所以选B.点睛:菱形的面积公式有两个:( 1)知道底和高,按照平行四边形的面积公式计算:S=ah.(2)知道两条对角线的长a和b,面积S=.【解析】【分析】根据分母不能为零,可得答案.【详解】解:由题意,得x﹣1≠0,解得x≠1,故选:A.【点睛】本题考查了分式有意义的条件,利用分母不为零得出不等式是解题的关键11、C【解析】【分析】根据分式和二次根式成立的条件逐个式子分析即可.【详解】A.11x-有意义时x≠1,不能取1,故不符合题意;B.1x2-有意义时x≠2,不能取2,故不符合题意;x≥1,以取1和2,故符合题意;x≥2,不能取1,故不符合题意;故选C.【点睛】本题考查了分式和二次根式有意义的条件,分式有意义的条件是分母不等于零,二次根式有意义的条件是被开方式大于且等于零.12、C【解析】【分析】利用正比例函数的性质得出mn>0,根据m、n同正,同负进行判断即可.【详解】.解:由正比例函数图象可得:mn>0,mn同正时,y=mx+n经过一、二、三象限;mn同负时,过二、三、四象限,故选C.【点睛】本题考查了正比例函数的性质,熟练掌握正比例函数的性质是解题的关键.二、填空题(每题4分,共24分)13、13 2【解析】【分析】根据勾股定理求出AB的长度,然后由直角三角形斜边上的中线的性质回答问题.【详解】解:在Rt△ABO中,AO=12,BO=5,∴13AB==,∵直角三角形斜边上的中线等于斜边的一半,∴AB上的中点到墙角O的距离总是定值,此定值为13 2.故答案为:13 2.【点睛】本题考查了勾股定理的应用,以及斜边上的中线等于斜边的一半,解题的关键是在直角三角形中弄清直角边和斜边.14、(1)1 a aa+-【解析】分析:首先将分式的分子和分母进行因式分解,然后进行约分化简得出答案.详解:原式=()()()()22a1a1a1a11aaa a+-+=--.点睛:本题主要考查的是分式的化简问题,属于基础题型.学会因式分解是解决这个问题的关键.15、x≤1.【解析】【分析】将点P(m,3)代入y=x+2,求出点P的坐标;结合函数图象可知当x≤1时x+2≤ax+c,即可求解;【详解】解:点P(m,3)代入y=x+2,∴m=1,∴P(1,3),结合图象可知x+2≤ax+c的解为x≤1,故答案为:x≤1.【点睛】本题考查一次函数的交点坐标与一元一次不等式的关系;运用数形结合思想把一元一次不等式的解转化为一次函数图象的关系是解题的关键.16、1【解析】【分析】设反比例函数的解析式是:y=kx,设A的点的坐标是(m,n),则AB=m,OB=n,mn=k.根据三角形的面积公式即可求得mn的值,即可求得k的值.【详解】设反比例函数的解析式是:y=kx,设A的点的坐标是(m,n).则AB=m,OB=n,mn=k.∵△ABP的面积为2,∴12AB•OB=2,即12mn=2∴mn=1,则k=mn=1.故答案是:1.【点睛】此题考查反比例函数系数k的几何意义,解题关键在于掌握过双曲线上的任意一点分别一条坐标轴作垂线,连接点与原点,与坐标轴围成三角形的面积是12|k|.17、20【解析】【分析】根据题意画出图形,根据题目中AB、AC的夹角可知它为直角三角形,然后根据勾股定理解答.【详解】如图,∵由图可知AC=16×1=16(海里),AB=12×1=12(海里),AC AB=20(海里).在Rt△ABC中,22221612故它们相距20海里.故答案为:20【点睛】本题考查的是勾股定理,正确的掌握方位角的概念,从题意中得出△ABC为直角三角形是关键.18、(14,14)【解析】【分析】观察图象,每四个点一圈进行循环,每一圈第一个点在第三象限,根据点的脚标与坐标寻找规律【详解】∵55=4⨯13+3,A55与A3在同一象限,即都在第一象限,根据题中图形中的规律可得3=4⨯0+3,A3的坐标为(0+1,0+1),即A3(1,1),7=4⨯1+3,A7的坐标为(1+1,1+1), A7(2,2),11=4⨯2+3,A11的坐标为(2+1,2+1), A11(3,3);…55=4⨯13+3,A55(14,14),A55的坐标为(13+1, 13+1)故答案为(14,14)【点睛】此题考查点的坐标,解题关键在于发现坐标的规律三、解答题(共78分)19、面积为1.【解析】【分析】在直角△ACD中,已知AD,CD,根据勾股定理可以求得AC,根据AC,BC,AB的关系可以判定△ABC为直角三角形,根据直角三角形面积计算公式即可计算四边形ABCD的面积.【详解】解:连接AC,在Rt△ACD中,AC为斜边,已知AD=4,CD=3,则AC=22AD CD=5,∵AC2+BC2=AB2,∴△ABC为直角三角形,∴S四边形ABCD=S△ABC﹣S△ACD=12AC•CB﹣12AD•DC=1,答:面积为1.【点睛】本题考查了勾股定理及其逆定理在实际生活中的运用,考查了直角三角形面积的计算,本题中正确的判定△ABC为直角三角形是解题的关键.20、(1)该一次函数解析式为y=﹣x+1.(2)在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.【解析】【分析】(1)根据函数图象中点的坐标利用待定系数法求出一次函数解析式;(2)根据一次函数图象上点的坐标特征即可求出剩余油量为8升时行驶的路程,即可求得答案.【详解】(1)设该一次函数解析式为y=kx+b,将(150,45)、(0,1)代入y=kx+b中,得,解得:,∴该一次函数解析式为y=﹣x+1;(2)当y=﹣x+1=8时,解得x=520,即行驶520千米时,油箱中的剩余油量为8升.530﹣520=10千米,油箱中的剩余油量为8升时,距离加油站10千米,∴在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.【点睛】本题考查了一次函数的应用,熟练掌握待定系数法,弄清题意是解题的关键.21、D【解析】【分析】根据函数图像中数据一次计算出各小题,从而可以解答本题.【详解】①项,根据图象可得,甲队6天挖了600米,故甲队每天挖:600÷6=100(米),故①项正确.②项,根据图象可知,乙队前两天共挖了300米,到第6天挖了500米,所以在6-2=4天内一共挖了:200(米),故开挖两天后每天挖:200÷4=50(米),故②项正确.③项,根据图象可得,甲队完成任务时间是6天,乙队完成任务时间是:2+300÷50=8(天),故甲队比乙队提前8-6=2(天)完成任务,故③项错误;④项,根据①,当x=4时,甲队挖了:400(米),根据②,乙队挖了:300+2×50=400(米),所以甲、乙两队所挖管道长度相同,故④项正确.综上所述,不正确的有③,共1个.故本题正确答案为D.【点睛】本题考查的是函数图像,熟练掌握函数图像是解题的关键.22、(1)甲种品牌的足球的单价为50元/个,乙种品牌的足球的单价为1元/个;(2)这所学校最多购买2个乙种品牌的足球.【解析】【分析】(1)设甲种品牌的足球的单价为x元/个,则乙种品牌的足球的单价为(x+30)元/个,根据数量=总价÷单价结合用1000元购买甲种足球的数量和用1600元购买乙种足球的数量相同,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设这所学校购买m 个乙种品牌的足球,则购买(25-m )个甲种品牌的足球,根据总价=单价×数量结合总费用不超过1610元,即可得出关于m 的一元一次不等式,解之取其中的最大值即可得出结论.【详解】(1)设甲种品牌的足球的单价为x 元/个,则乙种品牌的足球的单价为(x +30)元/个, 根据题意得:1000160030x x =+, 解得:x =50,经检验,x =50是所列分式方程的解,且符合题意,∴x +30=1.答:甲种品牌的足球的单价为50元/个,乙种品牌的足球的单价为1元/个.(2)设这所学校购买m 个乙种品牌的足球,则购买(25–m )个甲种品牌的足球,根据题意得:1m +50(25–m )≤1610,解得:m ≤2.答:这所学校最多购买2个乙种品牌的足球.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.23、(1)D 点坐标为28,33⎛⎫- ⎪⎝⎭;(2)103;(3)点E 的坐标为()2,0、()2,0-、()2,0、()0,0,()2-+、()2--、()8,0. 【解析】【分析】先确定直线AD 的解析式,进而求出点B 的坐标,再分两种情况:Ⅰ、当点B 在点A 右侧时,Ⅱ、当点B 在点A 左侧时,同Ⅰ的方法即可得出结论.(1)把B 点坐标代入y x n =-+可得到2n =,则2y x =-+,然后根据两直线相交的问题,通过解方程组224y x y x =-+⎧⎨=+⎩得到D 点坐标;(2)先确定C 点坐标为()0,2然后利用四边形AOCD 的面积DAB COB S S =-进行计算即可;(3)设出点E 的坐标,进而表示出AC AE CE 、、,再利用等腰三角形的两腰相等建立方程,即可得出结论;【详解】解:把()2,0A -代入2y x m =+得40m -+=,解得4m =,24y x ∴=-+,设(),0B c ,4AB =,()2,0A -,24c ∴+=,2c ∴=或6c =-,B ∴点坐标为()2,0或()6,0-,Ⅰ、当()2,0B 时,把()2,0B 代入y x n =-+得20n -+=,解得2n =,2y x ∴=-+,解方程组224y x y x ⎧=-+⎪⎨=+⎪⎩得2383x y ⎧=-⎪⎪⎨⎪=⎪⎩, D ∴点坐标为28,33⎛⎫- ⎪⎝⎭; ()2当0x =时,22y x =-+=,C ∴点坐标为()0,2,∴四边形AOCD 的面积DAB COB S S =-181422232=⨯⨯-⨯⨯ 103=; ()3设(),0E a ,()2,0A -,()0,2C ,AC ∴=,2AE a =+,CE =, ACE 是等腰三角形,①当AE AC =时,2a ∴+=,2a ∴=-+2a =--()2E ∴-+或()2--②当CE CA =时,=2a ∴=或2(a =-舍)()2,0E ∴,③当EA EC =时,2a ∴+=0a ∴=,()0,0E ∴,Ⅱ、当点()6,0B-时, 把()6,0B -代入y x n =-+得60n +=,解得6n =-,6y x ∴=--,解方程组624y x y x ⎧=--⎪⎨=+⎪⎩,得51x y ⎧=-⎪⎨=-⎪⎩, D ∴点坐标为()5,1--;()2当0x =时,66y x =--=-,C ∴点坐标为()0,6-,∴四边形AOCD 的面积BOC ABD S S =-11664122=⨯⨯-⨯⨯ 16=;()3设(),0E b()2,0A -,()0,6C -,AC ∴=2AE b =+,CE =①当AE AC =时,2b ∴+=,2b ∴=-+2b =--,()2E ∴-+或()2--②当CE CA =时,=,2b ∴=或2(a =-舍)()2,0E ∴,③当EA EC =时,2b ∴+=,8b ∴=,()8,0E ∴,综上所述,点E 的坐标为()2,0、()2,0-、()2,0、()0,0,()2-+、()2--、()8,0. 【点睛】此题是一次函数综合题,主要考查了待定系数法,坐标轴上点的坐标特征,两直线的交点坐标的确定,等腰三角形的性质,分类讨论的思想解决问题是解本题的关键.24、证明见解析.【解析】【分析】先根据勾股定理求出BD 的长度,然后根据勾股定理的逆定理,即可证明CD ⊥BC .【详解】证明:∵AD ⊥BD ,AB =13,AD =12,∴BD =1.又∵BC =4,CD =3,∴CD 2+BC 2=BD 2.∴∠C =90°【点睛】本题考查了勾股定理及其逆定理,注意:要判断一个角是不是直角,先要构造出三角形,然后知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.25、(1)AD =;(2)S △ABC =9+.【解析】【详解】试题分析:(1)根据三角形内角和可得∠DAC =45°,根据等角对等边可得AD =CD ,然后再根据勾股定理可计算出AD 的长;(2)根据三角形内角和可得∠BAD =30°,再根据直角三角形的性质可得AB =2BD ,然后利用勾股定理计算出BD 的长,进而可得BC 的长,然后利用三角形的面积公式计算即可.解:(1)∵∠C =45°,AD 是△ABC 的边BC 上的高,∴∠DAC =45°,∴AD =CD.∵AC 2=AD 2+CD 2,∴62=2AD 2,∴AD =(2)在Rt △ADB 中,∵∠B =60°,∴∠BAD =30°,∴AB =2BD.∵AB 2=BD 2+AD 2,∴(2BD)2=BD 2+AD 2,BD .∴S △ABC =12BC·AD =12 (BD +DC)·AD =12×+)×=9+26、(1)500,100;(2)30,20,补图见解析;(3)这次植树活动的树苗成活率为89.8%.【解析】【分析】(1)根据丙种植树125棵,占总数的25%,即可求得总棵树,然后求得乙种的棵树;(2)利用百分比的意义即可求得甲和乙所占的百分比,以及成活率;(3)求得成活的总棵树,然后根据成活率的定义求解.【详解】(1)这次栽下的四个品种的树苗总棵树是:125÷25%=500(棵),则乙品种树苗的棵树是:500−150−125−125=100(棵),故答案为:500,100;(2)甲所占的百分比是:150500×100%=30%,乙所占的百分比是:100500×100%=20%,丙种成活的棵树:125×89.6%=112(棵).故答案为:30,20.(3)成活的总棵树是:135+85+112+117=449(棵),所以这次植树活动的树苗成活率为449500=89.8%.【点睛】本题考查统计表、扇形统计图和条形统计图,解题的关键是读懂统计表、扇形统计图和条形统计图中的信息.。
2020-2021学年云南省昆明市八年级下学期期末数学试卷及答案-精品试卷

最新云南省昆明市八年级(下)期末考试数学试卷一、填空题(每小题3分,共24分)1.当x 时,在实数范围内有意义.2.在▱ABCD中,∠A=70°,则∠C= 度.3.正比例函数y=kx(k≠0)的图象经过点A(﹣1,5),则k= .4.如图,分别以Rt△ABC的三边为边长,在三角形外作三个正方形,若正方形P的面积等于89,Q的面积等于25,则正方形R的边长是.5.如图,在平行四边形ABCD中,点E、F分别在边BC、AD上,请添加一个条件,使四边形AECF是平行四边形(只填一个即可).6.有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是.7.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则△AEF的周长= cm.8.一次函数y1=kx+b与y2=x+a的图象如图所示,则不等式kx+b<x+a的解集为.二、选择题(每小题3分,共24分)9.下列二次根式中,最简二次根式是( ) A .B .C .D .10.下列计算正确的是( ) A .2B .C .D .=﹣311.如图,在Rt △ABC 中,∠ACB=90°,AC=8,BC=6,CD 是AB 边上的中线,则CD 的长是( )A .20B .10C .5D .12.一次函数y=kx+b 的图象如图所示,则k 、b 的符号( )A .k <0,b >0B .k >0,b >0C .k <0,b <0D .k >0,b <0 13.下列命题中,为真命题的是( ) A .有一组邻边相等的四边形是菱形 B .有一个角是直角的平行四边形是矩形 C .有一组对边平行的四边形是平行四边形 D .对角线互相垂直平分的四边形是正方形14.为了调查某小区居民的用水情况,随机抽查了若干户家庭的月用水量,结果如下表: 月用水量(吨) 3458户 数2341则关于这若干户家庭的月用水量,下列说法错误的是( ) A .平均数是4.6吨 B .中位数是4.5吨C.众数是4吨D.调查了10户家庭的月用水量15.一根蜡烛长30cm,点燃后每小时燃烧5cm,燃烧时蜡烛剩余的长度为h(cm),燃烧时间为t(小时),则下列图象能反映h与t的函数关系的是()A. B. C. D.16.如图,菱形ABCD的周长为40cm,对角线AC、BD相交于点O,DE⊥AB,垂足为E,DE:AB=4:5,则下列结论:①DE=8cm;②BE=4cm;③BD=4cm;④AC=8cm;⑤S菱形ABCD=80cm,正确的有()A.①②④⑤B.①②③④C.①③④⑤D.①②③④⑤三、解答题(共72分)17.(12分)计算:(1)2(2)÷﹣2×+(3)﹣(+2)(﹣2)18.(6分)如图所示,沿海城市B的正南方向A处有一台风中心,沿AC的方向以30km/h的速度移动,已知AC所在的方向与正北成30°的夹角,B市距台风中心最短的距离BD为120km,求台风中心从A处到达D处需要多少小时?(,结果精确到0.1)19.(6分)已知水银体温计的读数y(℃)与水银柱的长度x(cm)之间是一次函数关系,现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.(1)求y关于x的函数关系式(不需要写出函数自变量x的取值范围);(2)用该体温计测体温时,水银柱的长度为6.0cm,求此时体温计的读数.20.(6分)已知:如图,在▱ABCD中,E、F是对角线BD上的两点,BE=DF,求证:AE=CF.21.(6分)某中学为了丰富学生的体育活动,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用,学校随机抽取了部分同学调查他们的兴趣爱好,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)设学校这次调查共抽取了n名学生,n= ;(2)请你补全条形统计图;(3)设该校共有学生1200名,请你估计该校有多少名学生喜欢跳绳?22.(9分)在昆明市“创文”工作的带动下,某班学生开展了“文明在行动”的志愿者活动,准备购买一些书包送到希望学校,已知A品牌的书包每个40元,B品牌的书包每个42元,经协商:购买A品牌书包按原价的九折销售;购买B品牌的书包10个以内(包括10个)按原价销售,10个以上超出的部分按原价的八折销售.(1)设购买x个A品牌书包需要y1元,求出y1关于x的函数关系式;(2)购买x个B品牌书包需要y2元,求出y2关于x的函数关系式;(3)若购买书包的数量超过10个,问购买哪种品牌的书包更合算?说明理由.23.(8分)如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形.(2)DF⊥AC,若∠ADF:∠FDC=3:2,则∠BDF的度数是多少?24.(9分)如图,在平面直角坐标系xOy中,直线y=﹣2x+a与y轴交于点C (0,6),与x 轴交于点B.(1)求这条直线的解析式;(2)直线AD与(1)中所求的直线相交于点D(﹣1,n),点A的坐标为(﹣3,0).①求n的值及直线AD的解析式;②求△ABD的面积;③点M是直线y=﹣2x+a上的一点(不与点B重合),且点M的横坐标为m,求△ABM的面积S与m之间的关系式.25.(10分)如图,正方形ABCD中,AC是对角线,今有较大的直角三角板,一边始终经过点B,直角顶点P在射线AC上移动,另一边交DC于Q.(1)如图1,当点Q在DC边上时,探究PB与PQ所满足的数量关系;小明同学探究此问题的方法是:过P点作PE⊥DC于E点,PF⊥BC于F点,根据正方形的性质和角平分线的性质,得出PE=PF,再证明△PEQ≌△PFB,可得出结论,他的结论应是;(2)如图2,当点Q落在DC的延长线上时,猜想并写出PB与PQ满足的数量关系,并证明你的猜想.八年级数学参考答案一、填空题(每小题3分,共24分) 1.3≥x 2. 70º3. -54. 85. AF=CE 或DF=BE 或AE ∥CF 或∠AEB=∠FCB 或∠DFC=∠DAE 或∠AEC=∠CFA 或∠EAF=∠FCE 或∠AEB=∠CFD6. 小林7. 98. x>317.计算:(每小题4分,共12分) (1)483316122+- 解: 原式=3123234+- …………………………3分 =314= …………………………4分 (2)810512-327+⨯÷ 解: 原式=22223+- …………………………3分 =3 …………………………4分 (3)()()()2525232-+-+解: 原式= 12623-++ …………………………3分 =624+ …………………………4分18. 解:在Rt △ADB 中,∠ADB=90º∵∠BAD=30º,BD=120km∴ AB=240km …………………………2分又∵ 222AB BD AD =+∴312012024022=-=AD km …………………………4分∵73.13≈∴从A 处到达D 处需要34303120=9.6≈小时 …………………………5分答:求台风中心从A 处到达D 处大约6.9小时 …………………………6分19. 解:设函数的解析式为:b kx y +=(k ≠0) 依题意得:⎩⎨⎧=+=+408354b k b k …………………………2分…………………………3分∴ 3045+=x y …………………………4分 (2)当 x=6.0cm 时,y=7.5+30=37.5 …………………………5分 答:此时体温计的读数为37.5ºC . …………………………6分20.证明:∵四边形ABCD 是平行四边形,∴AB=CD ,AB ∥CD . …………………………1分 ∴∠ABE=∠CDF . …………………………2分 在△ABE 和△CDF 中⎪⎩⎪⎨⎧==∠=DF BE CDF ABE CD AB ∴△ABE ≌△CDF (SAS ). …………………………5分 ∴AE=CF …………………………6分 (其它做法参照给分)21. 解:(1)n=100;…………………………1分(2)∵喜欢羽毛球的人数=100×20%=20人,…………………………2分∴条形统计图如图;…………………………3分(3)由已知得,1200×20%=240(人). …………………………5分答;该校约有240人喜欢跳绳. …………………………6分22. 解:(1)由题意得:x y 361= ………1分(2)⎩⎨⎧+≤≤=)>10(846.33)100(422x x x x y …………………………4分(分开书写:当0≤x ≤10时,x y 422=,当x >10时;()846.33108.04210422+=-⋅⨯+⨯=x x y ,得满分) (列对一个解析式得一分,取值范围共一分)(3)若x >10则:846.332+=x y①当21y y =时,846.3336+=x x ,解得35=x ;………5分 ②当1y >2y 时,846.3336+x x >,解得35>x ;………6分 ③当21y y <时,846.3336+x x <,解得35<x ,………7分 ∵x >10∴3510<<x ………8分答:若购买35个书包,选A 、B 品牌都一样;若购买35个以上书包,选B 品牌划算;若购买书包个数超过10个但小于35个,选A 品牌划算. ………9分23. 证明:(1)证明:∵A0=C0,B0=D0∴四边形ABCD 是平行四边形 …………………………2分 ∴∠ABC=∠ADC∵∠ABC+∠ADC=180°∴∠ABC=∠ADC=90° …………………………3分∴平行四边形ABCD 是矩形 …………………………4分 (2)解:∵∠ADC=90°,∠ADF :∠FDC=3:2∴∠FDC=36° …………………………5分 ∵DF ⊥AC ,∴∠DCO=90°-36°=54°, …………………………6分 ∵四边形ABCD 是矩形,∴OC=OD ,∴∠DCO =∠ODC=54° …………………………7分 ∴∠BDF=∠ODC-∠FDC=18° …………………………8分24. 解:(1)∵直线y=-2x+a 与y 轴交于点C (0,6),∴a=6,…………………………1分 ∴y=-2x+6,…………………………2分(2) ①∵点D (-1,n )在y=-2x+6上,∴n=8,…………………………3分设直线AD 的解析式为y=kx+b(K ≠0)⎩⎨⎧=+-=+83-b k b k 解得:k=4,b=12 …………………………4分 ∴直线AD 的解析式为y=4x+12;…………………………5分 ②令y=0,则-2x+6=0,解得:x=3,∴B (3,0),…………………………6分 ∴AB=6,∵点M 在直线y=-2x+6上,设M (m ,-2m+6),7分 ∴①当m <3时,S=3(-2m+6),即S=-6m+18;…………………………8分9分25..(1)答:PB=PQ ………………………2分(2)证明:过P 作PE ⊥BC 的延长线于E 点,PF ⊥CQ 于F 点, ………………………3分 ∵AC 是正方形的对角线∴ PA 平分∠DCB ,∴∠DCA=∠ACB ………………………4分∵ ∠ACB=∠PCE , ∠DCA=∠FCP∴∠PCE=∠FCP∴ PC 平分∠FCE ,又∵PE ⊥BC ,PF ⊥CQ∴ PF=PE , ………………………5分∵PE ⊥BC ,PF ⊥CQ ,BC ⊥DC∴∠ECF=∠CEP=∠CFP = 90°=∠QFP∴ 四边形CEPF 是矩形………………………6分∴∠EPF=90°∴∠BPF+∠BPE=90°,∵∠BPF+∠QPF=90°,∴∠BPE=∠QPF , ………………………7分 在△PEB 和△PFQ 中⎪⎩⎪⎨⎧∠=∠=∠=∠BPE QPF PFPE QFP BEP ∴△PEB ≌△PFQ (ASA ) ………………………9分∴PB=PQ . ………………………10分(其它做法参照给分)。
2020-2021学年云南省昆明市盘龙区八年级数学第二学期期末学业水平测试模拟试题含解析

2020-2021学年云南省昆明市盘龙区八年级数学第二学期期末学业水平测试模拟试题注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每题4分,共48分) 1.反比例函数 y =(2m -1)22m x -,当 x >0 时,y 随 x 的增大而增大,则 m 的值是( )A .m =±1B .小于12的实数 C .-1D .12.将方程x 2+4x +1=0配方后,原方程变形为( ) A .(x +2)2=3B .(x +4)2=3C .(x +2)2=﹣3D .(x +2)2=﹣53.下列数据中不能作为直角三角形的三边长的是( )A .1BC .5、12、13D .1、2、34.下列因式分解错误的是( )A .2x (x ﹣2)+(2﹣x )=(x ﹣2)(2x+1)B .x 2+2x+1=(x+1)2C .x 2y ﹣xy 2=xy (x ﹣y )D .x 2﹣y 2=(x+y )(x ﹣y )5.为了了解中学课堂教学质量,我市教体局去年对全市中学教学质量进行调查.方法是通过考试(参加考试的为全市八年级学生),从中随机抽取600名学生的英语成绩进行分析.对于这次调查,以下说法不正确的是( ) A .调查方法是抽样调查B .全市八年级学生是总体C .参加考试的每个学生的英语成绩是个体D .被抽到的600名学生的英语成绩是样本 6.下列长度的三根木棒首尾顺次连接,能组成直角三角形的是( ) A .1,2,3B .4,6,8C .6,8,10D .13,14,157.如图,抛物线21043y ax x =-+与直线43=+y x b 经过点()2,0A ,且相交于另一点B ,抛物线与y 轴交于点C ,与x 轴交于另一点E ,过点N 的直线交抛物线于点M ,且MN y 轴,连接,,,AM BM BC AC ,当点N 在线段AB上移动时(不与A 、B 重合),下列结论正确的是( )A .MN BN AB +< B .BAC BAE ∠=∠C .12ACB ANM ABC ∠-∠=∠ D .四边形ACBM 的最大面积为138.如果35a +有意义,那么( ) A .a≥53B .a≤53C .a≥﹣53D .a 53≤-9.1x +在实数范围内有意义,则x 应满足的条件是( ) A .1x >B .1x ≥C .1x >-D .1x ≥-10.方程x 2+x ﹣1=0的一个根是( ) A .1﹣B .C .﹣1+D .11.2013年,某市发生了严重干旱,该市政府号召居民节约用水,为了解居民用水情况,在某小区随机抽查了10户家庭的月用水量,结果统计如图,则关于这10户家庭的月用水量,下列说法错误的是( )A .众数是6B .极差是2C .平均数是6D .方差是412.若正比例函数的图像经过点()1,2-,则这个图像必经过点( ) A .()1,2B .()1,2-C .()1,2--D .()2,1--二、填空题(每题4分,共24分)13.在大课间活动中,体育老师对甲、乙两名同学每人进行10次立定跳远测试,他们的平均成绩相同,方差分别是22s 0.20s 0.16==甲乙,,则甲、乙两名同学成绩更稳定的是 .14.现有四根长30cm ,40cm ,70cm ,90cm 的木棒,任取其中的三根,首尾顺次相连后,能组成三角形的概率为______.15.如图,某小区有一块直角三角形绿地,量得直角边AC=4m ,BC=3m ,考虑到这块绿地周围还有足够多的空余部分,于是打算将这块绿地扩充成等腰三角形,且扩充部分是以AC为一条直角边的直角三角形,则扩充的方案共有_____种.16.把直线y=x-1向下平移后过点(3,-2),则平移后所得直线的解析式为________.17.如图,在平面直角坐标系xOy中,若菱形ABCD的顶点A,B的坐标分别为(﹣3,0),(2,0),点D在y轴上,则点C的坐标是_______.18.我国古代数学领域有些研究成果曾位居世界前列,其中“杨辉三角”就是一例.南宋数学家杨辉(约13世纪)所著的《详解九章算术》(1261年)一书中,用图中的三角形解释二项和的乘方规律.杨辉三角两腰上的数都是1,其余每个数都为它的上方(左右)两数之和,这个三角形给出了(a+b)n(n=1,2,3,4,5)的展开式(按a的次数由大到小的顺序)的系数规律.例如,此三角形中第3行的3个数1,2,1,恰好对应着(a+b)2=a2+2ab+b2展开式中各项的系数:第4行的4个数1,3,3,1,恰好对应着(a+b)3=a3+3a2b+3ab2+b2展开式中各项的系数,等等.利用上面呈现的规律填空:(a+b)6=a6+6a5b+________ +20a3b3+15a2b4+ ________+b6三、解答题(共78分)19.(8分)如图,在△ABC中,BD、CE分别为AC、AB边上的中线,BD、CE交于点H,点G、F分别为HC、HB 的中点,连接AH、DE、EF、FG、GD,其中HA=BC.(1)证明:四边形DEFG为菱形;(2)猜想当AC、AB满足怎样的数量关系时,四边形DEFG为正方形,并说明理由.20.(8分)如图,一架2.5m 长的梯子AB 斜靠在一竖直的墙AO 上,90AOB ∠=︒,这时 2.4m AO =.如果梯子的顶端A 沿墙下滑0.4m ,那么梯子底端B 也外移0.4m 吗?21.(8分)如图,在△ABC 中,AD 是角平分钱,点E 在AC 上,且∠EAD=∠ADE .(1)求证:△DCE ∽△BCA ; (2)若AB=3,AC=1.求DE 的长.22.(10分)问题:探究函数y =|x |﹣2的图象与性质.小华根据学习函数的经验,对函数y =|x |﹣2的图象与性质进行了探究. 下面是小华的探究过程,请补充完整:(1)在函数y =|x |﹣2中,自变量x 可以是任意实数; (2)如表是y 与x 的几组对应值 x … ﹣3 ﹣2 ﹣1 0 1 2 3 … y…1﹣1﹣2﹣1m…①m 等于多少;②若A (n ,2018),B (2020,2018)为该函数图象上不同的两点,则n 等于多少;(3)如图,在平面直角坐标系xOy 中,描出以上表中各对对应值为坐标的点,并根据描出的点画出该函数的图象;根据函数图象可得:该函数的最小值为多少;该函数图象与x轴围成的几何图形的面积等于多少;(4)已知直线y1=12x﹣12与函数y=|x|﹣2的图象交于C,D两点,当y1≥y时,试确定x的取值范围.23.(10分)甲、乙两名学生练习计算机打字,甲打一篇1000字的文章与乙打一篇900字的文章所用的时间相同.已知甲每分钟比乙每分钟多打5个字,则乙每分钟打______个字.24.(10分)某中学九年级1班同学积极响应“阳光体育工程”的号召,利用课外活动时间积极参加体育锻炼,每位同学从长跑、篮球、铅球、立定跳远中选一项进行训练,训练前后都进行了测试. 现将项目选择情况及训练后篮球定时定点投篮测试成绩整理后作出如下统计图表.项目选择统计图训练后篮球定时定点投篮测试进球统计表进球数(个)8 7 6 5 4 3人数 2 1 4 7 8 2请你根据图表中的信息回答下列问题:(1)选择长跑训练的人数占全班人数的百分比是___________,该班共有同学___________人;(2)求训练后篮球定时定点投篮人均进球数;(3)根据测试资料,训练后篮球定时定点投篮的人均进球数比训练之前人均进球数增加25%. 请求出参加训练之前的人均进球数.∠FCA=90°,∠CBF=∠DCB,(1)求证:四边形DBFC是平行四边形;(2)如果BC平分∠DBF,∠CDB=45°,BD=2,求AC的长.26.小聪与小明在一张矩形台球桌ABCD边打台球,该球桌长AB=4m,宽AD=2m,点O、E分别为AB、CD的中点,以AB、OE所在的直线建立平面直角坐标系。
2024届云南省昆明盘龙区联考数学八年级第二学期期末教学质量检测模拟试题含解析

2024届云南省昆明盘龙区联考数学八年级第二学期期末教学质量检测模拟试题 注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)1.下列调查中,适合采用全面调查(普查)方式的是( )A .对巢湖水质情况的调查B .对端午节期间市场上粽子质量情况的调查C .节能灯厂家对一批节能灯管使用寿命的调查D .对某班50名学生视力情况的调查2.如图,双曲线6(0)y x x =>的图象经过正方形OCDF 对角线交点A ,则这条双曲线与正方形CD 边交点B 的坐标为( )A .(6,1)B .126,62⎛⎫ ⎪⎝⎭ C .136,63⎛⎫ ⎪⎝⎭ D .146,64⎛⎫ ⎪⎝⎭3.若分式211x x -+的值为 0,则 x 的取值为( ) A .x = 1 B .x = -1 C .x = ±1 D .无法确定4.如图,在矩形ABCD 中,3AB =,4BC =,点E 是边AD 上一点,点F 是矩形内一点,30BCF ∠=,则12EF CF +的最小值是( )A .3B .4C .5D .23 5.已知一次函数4y kx =-(k 0<)的图像与两坐标轴所围成的三角形的面积等于4,则该一次函数表达式为( ) A .4y x =-- B .24y x =--C .34y x =--D .44y x =-- 6.关于x 的方程2(6)860a x x --+=有实数根,则整数a 的最大值是( )A .6B .7C .8D .97.在数学活动课上,老师让同学们判定一个四边形门框是否为矩形,下面是某合作小组的四位同学的拟订方案,其中正确的是( )A .测量对角线是否互相平分B .测量两组对边是否分别相等C .测量一组对角是否为直角D .测量两组对边是否相等,再测量对角线是否相等8.式子12x -在实数范围内有意义,则x 的取值范围( ) A .x≤2 B .x <2 C .x >2 D .x≥29.如图,点A ,B 在反比例函数1(0)y x x=>的图象上,点C ,D 在反比例函数(0)k y k x =>的图象上,AC//BD//y 轴,已知点A ,B 的横坐标分别为1,2,△OAC 与△ABD 的面积之和为32,则k 的值为( )A .4B .3C .2D .3210.小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a ﹣b ,x ﹣y ,x +y ,a +b ,x 2﹣y 2,a 2﹣b 2分别对应下列六个字:华、爱、我、中、游、美,现将(x 2﹣y 2)a 2﹣(x 2﹣y 2)b 2因式分解,结果呈现的密码信息可能是( )A .我爱美B .中华游C .爱我中华D .美我中华二、填空题(每小题3分,共24分)11.无论x 取何值,分式212x x x m+++总有意义,则m 的取值范围是______.12.小聪让你写一个含有字母a 的二次根式.具体要求是:不论a 取何实数,该二次根式都有意义,且二次根式的值为正.你所写的符合要求的一个二次根式是______.13.一件商品的进价是500元,标价为600元,打折销售后要保证获利不低于8%,则此商品最少打___折.14.一次函数y kx b =+(k ,b 为常数,0k ≠)的图象如图所示,根据图象信息可得到关于x 的方程4kx b +=的解为__________.15.将正比例函数y=﹣2x 的图象向上平移3个单位,则平移后所得图象的解析式是_____.16.直线y 1=k 1x +b 1(k 1>0)与y 2=k 2x +b 2(k 2<0)相交于点(-2,0),且两直线与y 轴围成的三角形面积为4,那么b 1-b 2等于________.17.如图,在矩形ABCD 中,16AB =,18BC =,点E 在边AB 上,点F 是边BC 上不与点B 、C 重合的一个动点,把EBF △沿EF 折叠,点B 落在点B '处.若3AE =,当CDB '是以DB '为腰的等腰三角形时,线段DB '的长为__________.18.若y x y +=12.则x y=_____. 三、解答题(共66分)19.(10分)如图,在四边形纸片ABCD 中,∠B=∠D=90°,点E ,F 分别在边BC ,CD 上,将AB ,AD 分别沿AE ,AF折叠,点B ,D 恰好都和点G 重合,∠EAF=45°. (1)求证:四边形ABCD 是正方形;(2)求证:三角形ECF 的周长是四边形ABCD 周长的一半;(3)若EC=FC=1,求AB 的长度.20.(6分)如图,将□ABCD的对角线BD向两个方向延长至点E和点F,使BE=DF,证:四边形AECF是平行四边形.21.(6分)如图,四边形ABCD和四边形CDEF都是平行四边形.求证:四边形AEFB是平行四边形.22.(8分)某工厂准备购买A、B两种零件,已知A种零件的单价比B种零件的单价多20元,而用800元购买A种零件的数量和用600元购买B种零件的数量相等(1)求A、B两种零件的单价;(2)根据需要,工厂准备购买A、B两种零件共200件,工厂购买两种零件的总费用不超过14700元,求工厂最多购买A种零件多少件?23.(8分)某商店分两次购进A.B两种商品进行销售,两次购进同一种商品的进价相同,具体情况如下表所示:(1)求A、B两种商品每件的进价分别是多少元?(2)商场决定A种商品以每件30元出售,B种商品以每件100元出售.为满足市场需求,需购进A、B两种商品共1000件,且A种商品的数量不少于B种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.24.(8分)初中生的视力状况受到社会的广泛关注,某市有关部门对全市3万名初中生的视力状况进行了一次抽样调查,下图是利用所得数据绘制的频数分布直方图,根据图中所提供的信息回答下列问题:(1)本次调查共抽测了多少名学生?(2)在这个问题中的样本指什么?(3)如果视力在4.9-5.1(含4.9和5.1)均属正常,那么全市有多少名初中生视力正常?25.(10分)已知一次函数(21)2y a x a =-+-.(1)若这个函数的图象经过原点,求a 的值.(2)若这个函数的图象经过一、三、四象限,求a 的取值范围.26.(10分)这个图案是3世纪三国时期的赵爽在注解《周髀算经》时给出的,人们称它为赵爽弦图.赵爽根据此图指出:四个全等的直角三角形(直角边分别为a 、b ,斜边为c )可以如图围成一个大正方形,中间的部分是一个小正方形.请用此图证明222c a b =+.参考答案一、选择题(每小题3分,共30分)1、D【解题分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【题目详解】A 、对巢湖水质情况的调查适合抽样调查,故A 选项错误;B 、对端午节期间市场上粽子质量情况的调查适合抽样调查,故B 选项错误;C 、节能灯厂家对一批节能灯管使用寿命的调查适合抽样调查,故C 选项错误;D 、对某班50名学生视力情况的调查,适合全面调查,故D 选项正确.故选:D .【题目点拨】本题考查了抽样调查和全面调查的区别,选择普遍还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2、B【解题分析】 由于双曲线6y x=的一支经过这个正方形的对角线的交点A ,由正方形的性质求出A 的坐标,进而根据正方形的性质表示出点C 的坐标,又因B ,C 相同横坐标,再将点C 的横坐标代入反比例函数即可求得B 的坐标。
2020-2021学年云南省八年级下学期数学期末试卷有答案-精品试卷

最新下学期期末考试八年级数学 试卷1、要使式子有意义,则x 的取值范围是( )A.x>0B.x ≥-2C.x ≥ 2D.x ≤22、矩形具有而菱形不具有的性质是( )A.两组对边分别平行B.对角线相等C.对角线互相平分D.两组对角分别相等3、下列计算正确的是( )A.×=4B.+=C.÷=2D.=-154、如图,菱形ABCD 的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD 的周长是( )A.24B.16C.4D.25、适合下列条件的△ABC 中, 直角三角形的个数为( )①;51,41,31===c b a ②,6=a ∠A=450; ③∠A=320, ∠B=580; ④;25,24,7===c b a ⑤.4,2,2===c b aA. 2个B. 3个C. 4个D. 5个6、如图,长方形ABCD 中,AB=3cm ,AD=9cm , 将此长方形折叠,使点B 与点D 重合,折痕为EF , 则△ABE 的面积为( )A .6cmB .8cmC .10cmD 12cm7、 将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是( )A. 钝角三角形B. 锐角三角形C. 直角三角形D. 等腰三角形8、如图平行四边形ABCD 中,∠B=110°,延长AD 至F ,延长CD 至E ,连结EF ,则∠E +∠F =( )A .110°B .30°C .50°D .70°二、填空题(每题3分,共18分)9、当x__________时,式子31-x 有意义.10、若直角三角形两直角边分别为6和8,则斜边为 ___________ ;11、在平面直角坐标系中,点A 、B 、C 的坐标分别是A(-2,5),B(-3,-1),C(1,-1),在第一象限内找一点D ,使四边形ABCD 是平行四边形,那么点D 的坐标是 .12、如果边长分别为4cm 和5cm 的矩形与一个正方形的面积相等,那么这个正方形的边长为______cm .13、有两棵树,一棵高6米,另一棵高2米,两树相距3米,小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了 米.14.如图1, 平行四边形ABCD 中,60=∠C ,AB DE ⊥于E ,BC DF ⊥于F ,则=∠EDF ;三、解答题(共70分)15、计算:(每题5分,共10分)(1)(3+5)(3-5) (2)(3)2484554+-+AB C DE F16、(8分),四边形ABCD是菱形,对角线AC与BD相交于O,AB=5,AO=4,求BD的长.17、(8分),四边形ABCD是平行四边形,DE平分∠ADC交AB于点E,BF平分∠ABC,交CD于点F.(1)求证:DE=BF;(2)连接EF,写出图中所有的全等三角形.(不要求证明)18、如图,∠C=90°,AC=3,BC=4,AD=12,BD=13,试判断△ABD的形状,并说明理由。
2020-2021学年昆明市重点中学八年级数学第二学期期末学业质量监测试题含解析

2020-2021学年昆明市重点中学八年级数学第二学期期末学业质量监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)1.下列各式中,运算正确的是()A.235+=B.6556-=C.2(7)7-=-D.3155 5=2.函数y=2x-的自变量x的取值范围是()A.x≠2B.x<2 C.x≥2D.x>23.一个有进水管与出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分的进水量和出水量是两个常数.容器内的水量y(单位:L)与时间(单位:min)之间的关系如图所示.则每分的出水量是()L.A.5 B.3.75 C.4 D.2.54.下列根式中属于最简二次根式的是()A21a+B8C3D0.55.定义:在同一平面内画两条相交、有公共原点的数轴x轴和y轴,交角a≠90°,这样就在平面上建立了一个斜角坐标系,其中w叫做坐标角,对于坐标平面内任意一点P,过P作y轴和x轴的平行线,与x轴、y轴相交的点的坐标分别是a和b,则称点P的斜角坐标为(a,b).如图,w=60°,点P的斜角坐标是(1,2),过点P作x轴和y轴的垂线,垂足分别为M、N,则四边形OMPN的面积是( )A .B .C .D .36.关于一次函数31y x =-,下列结论正确的是( )A .y 随x 的增大而减小B .图象经过点(2,1)C .当x ﹥13时,y ﹥0D .图象不经过第四象限 7.已知ABCD 中,∠A+∠C=200°,则∠B 的度数是( ) A .100° B .160° C .80° D .60°8.某服装制造厂要在开学前赶制3000套校服,为了尽快完成任务,厂领导合理调配加强第一线人力,使每天完成的校服比原计划多20%,结果提前4天完成任务,问:原计划每天能完成多少套校服?设原来每天完成校服x 套,则可列出方程( )A .300030004(120%)x x+=+ B .30003000420%x x -=+ C .300030004(120%)x x =++ D .300030004(120%)x x -=+ 9.下列函数中,一定是一次函数的是( )A .8y x =-B .83y x -=+C .256y x =+D .1y kx =-+10.如图所示,在平行直角坐标系中,▱OMNP 的顶点P 坐标是(3,4),顶点M 坐标是(4,0)、则顶点N 的坐标是( )A .N (7,4)B .N (8,4)C .N (7,3)D .N (8,3)二、填空题(每小题3分,共24分)11.如图,在Rt △ABC 中,∠A=30°,斜边AB=12,CD ⊥AB 于D ,则AD=_____________.12.一组数据2,3,x ,5,7的平均数是4,则这组数据的众数是 .13.化简226xy x y=______. 14.1262⨯÷=_____.15.甲、乙两名射击手的50次测试的平均成绩都是8环,方差分别是22S 0.4S 1.2==甲乙,,则成绩比较稳定的是(填“甲”或“乙”)16.在Rt △ABC 中,∠C =90°,∠A =30°,BC =2,D ,E 分别是AC ,BC 的中点,则DE 的长等于_____.17.直线y=x+1与y=-x+7分别与x 轴交于A 、B 两点,两直线相交于点C ,则△ABC 的面积为___.18.如图,在菱形ABCD 中,1AB =,120ADC =∠︒,以AC 为边作菱形11ACC D ,且11120AD C ∠=︒;再以1AC 为边作菱形122AC C D ,且22120AD C ∠=︒;.……;按此规律,菱形201820192019AC C D 的面积为______.三、解答题(共66分)19.(10分)某校“六一”活动购买了一批A ,B 两种型号跳绳,其中A 型号跳绳的单价比B 型号跳绳的单价少9元,已知该校用2600元购买A 型号跳绳的条数与用3500元购买B 型号跳绳的条数相等.(1)求该校购买的A ,B 两种型号跳绳的单价各是多少元?(2)若两种跳绳共购买了200条,且购买的总费用不超过6300元,求A 型号跳绳至少购买多少条?20.(6分)如图,在△ABC 中,A 30∠=︒,3tan 4B =,AC 63=,求AB 的长.21.(6分)图(a )、图(b )、图(c )是三张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1.请在图图(a )、图(b )、图(c )中分别画出符合要求的图形,所画图形各顶点必须与方格纸中的小正方形顶点重合. (1)画一个底边长为4,面积为8的等腰三角形.(2)画一个面积为10的等腰直角三角形.(3)画一个一边长为22,面积为6的等腰三角形.22.(8分)下面是小丁设计的“利用直角三角形和它的斜边中点作矩形”的尺规作图过程. 已知:如图,在RtΔABC中,∠ABC=90°,0为AC的中点.求作:四边形ABCD,使得四边形ABCD为矩形.作法:①作射线BO,在线段BO的延长线上取点D,使得DO=BO;②连接AD,CD,则四边形ABCD为矩形.根据小丁设计的尺规作图过程.(1)使用直尺和圆规,在图中补全图形(保留作图痕迹);(2)完成下面的证明.证明:∴点O为AC的中点,∴AO=CO.又∵DO=BO,∵四边形ABCD为平行四边形(__________)(填推理的依据).∵∠ABC=90°,∴ABCD为矩形(_________)(填推理的依据).23.(8分)已知一角的两边与另一个角的两边平行,分别结合下图,试探索这两个角之间的关系,并证明你的结论. (1)如图(1)AB∥EF,BC∥DE,∠1与∠2的关系是:____________ .(2)如图(2)AB∥EF,BC∥DE,∠1与∠2的关系是:____________(3)经过上述证明,我们可以得到一个真命题:如果____ _____,那么____________.(4)若两个角的两边互相平行,且一个角比另一个角的2倍少30°,则这两个角分别是多少度?24.(8分)如图,在矩形ABCD中,AB=4,AD=10,点E在AD边上,已知B、E两点关于直线l对称,直线l分别交AD 、BC 边于点M 、N ,连接BM 、NE .(1)求证:四边形BMEN 是菱形;(2)若DE=2,求NC 的长.25.(10分)用适当的方法解下列方程:(2x-1)(x+3)=1.26.(10分)若x 、y 都是实数,且y 2x -x -22,求x 2y +xy 2的值.参考答案一、选择题(每小题3分,共30分)1、D【解析】【分析】根据二次根式的加减法对A 、B 进行判断;根据二次根式的性质对C 进行判断;利用分母有理化对D 进行判断.【详解】A 23A 选项错误;B 、原式5B 选项错误;C 、原式=7,所以C 选项错误;D 、原式15,所以D 选项正确, 故选D .【点睛】本题考查了二次根式的运算,涉及了二次根式的加减法,二次根式的化简,分母有理化,正确把握相关的运算法则是解题的关键.2、D【解析】【分析】根据被开放式的非负性和分母不等于零列出不等式即可解题.【详解】有意义,解:∵函数∴x-2>0,即x>2故选D【点睛】本题考查了根式有意义的条件,属于简单题,注意分母也不能等于零是解题关键.3、B【解析】【分析】观察函数图象找出数据,根据“每分钟进水量=总进水量÷放水时间”算出每分钟的进水量,再根据“每分钟的出水量=每分钟的进水量-每分钟增加的水量”即可算出结论.【详解】每分钟的进水量为:20÷4=5(升),每分钟的出水量为:5-(30-20)÷(12-4)=3.75(升).故选B.【点睛】本题考查了一次函数的应用,解题的关键是根据函数图象找出数据结合数量关系列式计算.4、A【解析】【分析】根据最简二次根式的定义选择即可.【详解】AB、822=不是最简二次根式,故本选项错误;C、33=不是最简二次根式,故本选项错误;D、20.5=不是最简二次根式,故本选项错误.故选:A.【点睛】本题考查了最简二次根式,掌握最简二次根式的定义是解题的关键.5、B【解析】【分析】添加辅助线,将四边形OMPN转化为直角三角形和平行四边形,因此过点P作PA∥y轴,交x轴于点A,过点P作PB∥x轴交y轴于点B,易证四边形OAPB是平行四边形,利用平行四边形的性质,可知OB=PA,OA=PB,由点P 的斜角坐标就可求出PB、PA的长,再利用解直角三角形分别求出PN,NB,PM,AM的长,然后根据S四边形OMPN=S△PAM+S△PBN+S平行四边形OAPB,利用三角形的面积公式和平行四边形的面积公式,就可求出结果.【详解】解:过点P作PA∥y轴,交x轴于点A,过点P作PB∥x轴交y轴于点B,∴四边形OAPB是平行四边形,∠NBP=w=∠PAM=60°,∴OB=PA,OA=PB∵点P的斜角坐标为(1,2),∴OA=1,OB=2,∴PB=1,PA=2,∵PM⊥x轴,PN⊥y轴,∴∠PMA=∠PNB=90°,在Rt△PAM中,∠PAM=60°,则∠APM=30°,∴PA=2AM=2,即AM=1PM=PAsin60°∴PM=∴S△PAM=在Rt△PBN中,∠PBN=60°,则∠BPN=30°,∴PB=2BN=1,即BN=PN=PBsin60°∴PN=∴S△PBN=,∵S四边形OMPN=S△PAM+S△PBN+S平行四边形OAPB故答案为:B【点睛】本题考查了新概念斜角坐标系、图形与坐标、含30°角直角三角形的性质、三角函数、平行四边形的判定与性质、三角形面积与平行四边形面积的计算等知识,熟练掌握新概念斜角坐标系与含30°角直角三角形的性质是解题的关键.6、C【解析】分析:根据k=3>0,图象经过第一、三、四象限,y随x增大而增大即可判断A,D选项的正误;把点(2,1)代入y=3x-1即可判断函数图象不过点(2,1)可判断B选项;当3x-1>0,即x>13时,y>0,可判断C选项正误.详解:当k=3>0,图象经过第一、三、四象限,y随x增大而增大即可判断A,D选项错误;当x=2时,y=2×2-1=3≠1,故选项B错误;当3x-1>0,即x>13时,y>0,,所以C选项正确;故选C.点睛:本题考查了一次函数y=kx+b(k≠0)的性质:当k>0,图象经过第一、三象限,y随x增大而增大;当k<0,图象经过第二、四象限,y随x增大而减小;当b>0,图象与y轴的交点在x的上方;当b=0,图象经过原点;当b<0,图象与y轴的交点在x的下方.7、C【解析】试题分析:∵四边形ABCD 是平行四边形,∴∠A=∠C ,AD ∥BC .∵∠A+∠C=200°,∴∠A=100°.∴∠B=180°﹣∠A=80°.故选C .8、C【解析】【分析】由实际每天完成的校服比原计划多20%得到实际每天完成校服x (1+20%)套,再根据提前4天完成任务即可列出方程.【详解】∵原来每天完成校服x 套,实际每天完成的校服比原计划多20%,∴实际每天完成校服x (1+20%)套, 由题意得300030004(120%)x x =++, 故选:C .【点睛】此题考查分式方程的实际应用,正确理解题意是解题的关键.9、A【解析】【分析】根据一次函数的定义,逐一分析四个选项,此题得解.【详解】解:A 、80-≠,8y x ∴=-是一次函数,A 符合题意;B 、自变量x 的次数为1-,83y x -∴=+不是一次函数,B 不符合题意;C 、自变量x 的次数为2,256y x ∴=+不是一次函数,C 不符合题意;D 、当0k =时,函数1y =为常数函数,不是一次函数,D 不符合题意.故选:A .【点睛】本题考查了一次函数的定义,牢记一次函数的定义是解题的关键.10、A【解析】【分析】此题可过P 作PE ⊥OM ,过点N 作NF ⊥OM ,根据勾股定理求出OP 的长度,则N 点坐标便不难求出.【详解】过P 作PE ⊥OM ,过点N 作NF ⊥OM ,∵顶点P 的坐标是(3,4),∴OE=3,PE=4,∵四边形ABCD 是平行四边形,∴OE=MF=3,∵4+3=7,∴点N 的坐标为(7,4).故选A .【点睛】此题考查了平行四边形的性质,根据平行四边形的性质和点P 的坐标,作出辅助线是解决本题的突破口.二、填空题(每小题3分,共24分)11、1【解析】【分析】根据30°角所对的直角边是斜边的一半,可得BC=6,然后利用勾股定理求出AC ,再次利用30°所对的直角边的性质得到CD=12AC ,最后用勾股定理求出AD . 【详解】 ∵在Rt △ABC 中,∠A=30°,斜边AB=12,∴BC=12AB=6∴∵在Rt △ACD 中,∠A=30°∴CD=12AC=∴ 故答案为:1.【点睛】 本题考查含30°角的直角三角形的性质与勾股定理,熟练掌握30°角所对的直角边是斜边的一半是解题的关键. 12、3【解析】试题分析:∵一组数据2,3,x ,5,7的平均数是4∴2+3+5+7+x=20,即x=3∴这组数据的众数是3考点:1.平均数;2.众数13、13x. 【解析】【分析】约去分子与分母的公因式即可.【详解】22216233xy xy x y xy x x==. 故答案为:13x. 【点睛】本题主要考查了分式的约分,主要是约去分式的分子与分母的公因式.14、1【解析】==进行计算即可. 【详解】=1,故答案为1.【点睛】本题考查了二次根式的乘除法,熟练运用二次根式的乘除法法则是解题的关键.15、甲【解析】试题分析:方差就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)在样本容量相同的情况下,方差越小,说明数据的波动越小,越稳定.因此,∵22S <S 甲乙,∴成绩比较稳定的是甲.16、1【解析】【分析】根据直角三角形的性质及三角形的中位线即可求解.【详解】解:∵∠C =90°,∠A =30°,∴AB =1BC =4,∵D ,E 分别是AC ,BC 的中点,∴DE =12AB =1, 故答案为:1.【点睛】此题主要考查三角形的中位线,解题的关键是熟知含30°的直角三角形的性质.17、16【详解】在y=x+1中,令y=0,得x+1=0,解得x=−1,∴点A的坐标为(−1,0),在y=−x+7中,令y=0,得−x+7=0,解得x=7,∴点B的坐标为(7,0),联立两直线解析式得17y xy x=+⎧⎨=-+⎩,解得34 xy=⎧⎨=⎩,∴点C的坐标为(3,4);即点C的纵坐标为4 ∵AB=7−(−1)=8,∴S△ABC =12×8×4=16.故答案为16.18、401922019 3.【解析】【分析】根据题意求出每个菱形的边长以及面积,从中找出规律.【详解】解:当菱形的边长为a,其中一个内角为120°时,2,当AB=1,易求得,此时菱形ABCD的面积为:×1,当AC1=3,此时菱形面积ACC1D12,当AC 1=3时,易求得AC 2AC 1C 2D 2的面积为:4, ……,由此规律可知:菱形AC 2018C 2019D 2019的面积为2×2×2019=201932.,故答案为:40192或201932. 【点睛】 本题考查规律型,解题的关键是正确找出菱形面积之间的规律,本题属于中等题型.三、解答题(共66分)19、(1)A 型跳绳的单价为1元/条,B 型跳绳的单价为35元/条;(2)A 型跳绳至少购买78条.【解析】【分析】(1)设B 型跳绳的单价为x 元/条,则A 型跳绳的单价为(x ﹣9)元/条,根据“用100元购买A 型号跳绳的条数与用3500元购买B 型号跳绳的条数相等”列出方程求解即可;(2)设购买a 条A 型跳绳,则购买(200﹣a )条B 型跳绳,根据题意列出不等式求解即可.【详解】(1)设B 型跳绳的单价为x 元/条,则A 型跳绳的单价为(x ﹣9)元/条, 根据题意得:260035009x x=-, 解得:x =35,经检验,x =35是原方程的解,且符合题意,∴x ﹣9=1.答:A 型跳绳的单价为1元/条,B 型跳绳的单价为35元/条.(2)设购买a 条A 型跳绳,则购买(200﹣a )条B 型跳绳,根据题意得:1a +35(200﹣a )≤6300,解得:a ≥7009. ∵这里的a 是整数∴a 的最小值为78答:A 型跳绳至少购买78条.【点睛】本题考查了分式方程的实际问题,以及不等式与方案选择问题,解题的关键是读懂题意,抓住等量关系,列出方程或不等式.20、AB =9+43.【解析】【分析】作CD ⊥AB 于D ,据含30度的直角三角形三边的关系得到CD=33,AD=9,再在Rt △BCD 中根据正切的定义可计算出BD ,然后把AD 与BD 相加即可.【详解】解:如图,过点C 作CD ⊥AB 于点D .∵在Rt △CDA 中,∠A=30°,∴3AD=AC×cos30°=9,∵在Rt △CDB 中,3tan 4B =∴BD=tan CD B =33343 ∴3【点睛】本题考查了解直角三角形.解题时,通过作CD ⊥AB 于D 构建Rt △ACD 、Rt △BCD 是解题关键.21、(1)见解析;(2)见解析;(3)见解析【解析】【分析】(1)利用三角形面积求法以及等腰三角形的性质画出底边长为4,高为4的等腰三角形即可;(2)利用三角形面积求法以及等腰三角形的性质画出直角边长为5(3)利用三角形面积求法以及等腰三角形的性质画出底边长为2,高为2的等腰三角形即可.【详解】解:(1)如图(a )所示:(2)如图(b)所示:(3)如图(c)所示:【点睛】本题考查了应用与设计作图,主要利用了三角形的面积公式、等腰三角形的定义、以及勾股定理,都是基本作图,难度不大.熟练掌握勾股定理是关键.22、(1)作图如图所示,见解析(2)对角线互相平分的四边形是平行四边形,有一个角是直角的平行四边形是矩形. 【解析】【分析】(1)根据要求画出图形即可.(2)根据有一个角是直角的平行四边形是矩形即可证明.【详解】(1)如图,矩形ABCD即为所求.(2)理由:∵点O为AC的中点,∴AO=CO又∵DO=BO,∴四边形ABCD为平行四边形(对角线互相平分的四边形是平行四边形)∵∠ABC=90°,∴▱ABCD为矩形(有一个角是直角的平行四边形是矩形).故答案为:对角线互相平分的四边形是平行四边形,有一个角是直角的平行四边形是矩形.【点睛】本题考查作图-复杂作图,矩形的判定等知识,解题的关键是熟练掌握基本知识.23、(1)∠1=∠1,证明见解析;(1)∠1+∠1=180°,证明见解析;(3)一个角的两边与另一个角的两边分别平行,这两个角相等或互补;(4)这两个角分别是30°,30°或70°,110°.【解析】【分析】(1)根据两直线平行,内错角相等,可求出∠1=∠1;(1)根据两直线平行,内错角相等及同旁内角互补可求出∠1+∠1=180°;(3)由(1)(1)可得出结论;(4)由(3)可列出方程,求出角的度数.【详解】解:(1)AB∥EF,BC∥DE,∠1与∠1的关系是:∠1=∠1证明:∵AB∥EF∴∠1=∠BCE∵BC∥DE∴∠1=∠BCE∴∠1=∠1.(1)AB∥EF,BC∥DE.∠1与∠1的关系是:∠1+∠1=180°.证明:∵AB∥EF∴∠1=∠BCE∵BC∥DE∴∠1+∠BCE=180°∴∠1+∠1=180°.(3)经过上述证明,我们可以得到一个真命题:如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.(4)解:设其中一个角为x°,列方程得x=1x-30或x+1x-30=180,故x=30或x=70,所以1x-30=30或110,答:这两个角分别是30°,30°或70°,110°.【点睛】本题考查平行线的性质,解题的关键是注意数形结合思想的应用,注意两直线平行,内错角相等与两直线平行,同旁内角互补定理的应用.24、(1)证明见解析; (2)NC=1.【解析】【分析】(1)根据B 、E 两点关于直线l 对称,可得BM=ME ,BN=NE ,再根据矩形的性质可得BM=BN ,从而得出BM=ME=BN=NE ,通过四边相等的四边形是菱形即可得出结论;(2) 菱形边长为x ,利用勾股定理计算即可.【详解】(1)∵ B 、E 两点关于直线l 对称∴ BM=ME ,BN=NE ,∠BMN=∠EMN 在矩形ABCD 中,AD ∥BC∴ ∠EMN=∠MNB∴ ∠BMN=∠MNB∴ BM=BN∴ BM=ME=BN=NE∴ 四边形ECBF 是菱形.(2)设菱形边长为x则 AM=8-x在Rt △ABM 中, 2224+-x =x (8)∴ x=1.∴NC=1.【点睛】本题考查了轴对称的性质及勾股定理的应用,解题的关键是熟记轴对称的性质.25、x2=-72,x2=2.【解析】【分析】先把方程化为一般式,然后利用因式分解法解方程.【详解】解:2x2+5x-7=0,(2x+7)(x-2)=0,2x+7=0或x-2=0,所以x2=72-,x2=2.【点睛】本题考查了解一元二次方程-因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).26、+1.【解析】【分析】根据二次根式有意义的条件可得x=2,进而可得y的值,然后代入求值即可.【详解】由题意得:20 20 xx-≥⎧⎨-≥⎩,解得:x=2,则yx2y+xy2=xy(x+y)=()=+1.【点睛】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.。
2020-2021学年云南省昆明市实验中学数学八年级第二学期期末学业质量监测试题含解析

2020-2021学年云南省昆明市实验中学数学八年级第二学期期末学业质量监测试题 考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)1.如图,一同学在湖边看到一棵树,他目测出自己与树的距离为20m ,树的顶端在水中的倒影距自己5m 远,该同学的身高为1.7m ,则树高为( ).A .3.4mB .4.7 mC .5.1mD .6.8m2.下列函数中,一定是一次函数的是( )A .8y x =-B .83y x -=+C .256y x =+D .1y kx =-+3.已知230a b a b --+++=,则22b a -的值是( )A .5-B .5C .6-D .64.如果a >b ,下列各式中正确的是( )A .ac >bcB .a ﹣3>b ﹣3C .﹣2a >﹣2bD .22a b < 5.以下列各组数为一个三角形的三边长,能构成直角三角形的是( ).A .2,3,4B .4,6,5C .14,13,12D .7,25,24 6.已知0234a b c ==≠,则a b c+的值为( ) A .45 B .54 C .2 D .127.如图,过点A (4,5)分别作x 轴、y 轴的平行线,交直线y=﹣x +6于B 、C 两点,若函数y=kx (x >0)的图象△ABC的边有公共点,则k 的取值范围是( )A .5≤k ≤20B .8≤k ≤20C .5≤k ≤8D .9≤k ≤208.式子32x ,4x y -,x y +,21x π+,53b a 中是分式的有( ) A .1个 B .2个 C .3个 D .4个9.如图,延长矩形 ABCD 的边 BC 至点 E ,使 CE = BD ,连接 AE ,若 ADB = 40︒ ,则 E 的度数是( )A .20︒B .25︒C .30︒D .35︒10.在Rt △ABC 中,斜边长AB =3,AB ²+AC ²+BC ²的值为( )A .18B .24C .15D .无法计算二、填空题(每小题3分,共24分)11.现用甲、乙两种汽车将46吨防洪物资运往灾区,甲种汽车载重5吨,乙种汽车载重4吨,若一共安排10辆汽车运送这些物资,则甲种汽车至少应安排 _________辆.12.如图,在ABC 中,AC BC =,点D E ,分别是边AB AC ,的中点,延长DE 到点F ,使DE EF =,得四边形ADCF .若使四边形ADCF 是正方形,则应在ABC 中再添加一个条件为__________.13.已知直线34y x b =-+与x 轴的交点在()1,0A -、(2,0)B 之间(包括A 、B 两点),则b 的取值范围是__________.14.如图,直线y =kx+b(k≠0)经过点A(﹣2,4),则不等式kx+b >4的解集为______.15.在实数范围内定义一种运算“﹡”,其规则为a﹡b=a2﹣b2,根据这个规则,方程(x+1)﹡3=0的解为_____.16.若反比例函数y=kx的图象经过A(﹣2,1)、B(1,m)两点,则m=________.17.已知0a>,11Sa=,211S S=--,321SS=,431S S=--,541SS=……(即当n为大于1的奇数时,11nnSS-=;当n为大于1的偶数时,11n nS S-=--),按此规律,2018S=____________.18.如图,在四边形ABCD中,AB CD∥,AB BC⊥于点B,动点P从点B出发,沿B C D A→→→的方向运动,到达点A停止,设点P运动的路程为x,ABP∆的面积为y,如果y与x的函数图象如图2所示,那么AB边的长度为______.三、解答题(共66分)19.(10分)如图,BD是▱ABCD的对角线,AE⊥BD于E,CF⊥BD于F,求证:四边形AECF为平行四边形.20.(6分)化简求值:(11a-﹣1)÷2441a aa-+-,其中a=22.21.(6分)已知:直线l:y=2kx-4k+3(k≠0)恒过某一定点P.(1)求该定点P的坐标;(2)已知点A、B坐标分别为(0,1)、(2,1),若直线l与线段AB相交,求k的取值范围;(3)在0≤x≤2范围内,任取3个自变量x1,x2、x3,它们对应的函数值分别为y1、y2、y3,若以y1、y2、y3为长度的3条线段能围成三角形,求k的取值范围.22.(8分)如图,点B、E分别在AC、DF上,AF分别交BD、CE于点M、N,A F∠=∠,C D∠=∠.(1)求证:四边形BCED 是平行四边形;(2)已知3DE =,连接BN ,若BN 平分DBC ∠,求CN 的长.23.(8分)如图,AB 是⊙O 的直径,AC ⊥AB ,E 为⊙O 上的一点,AC =EC ,延长CE 交AB 的延长线于点D .(1)求证:CE 为⊙O 的切线;(2)若OF ⊥AE ,OF =1,∠OAF =30°,求图中阴影部分的面积.(结果保留π)24.(8分)若点(2P -,1)与点()',1P a -关于x 轴对称,则a =__.25.(10分)如图,在ABC ∆中,2BC AC =,点D .E 分别是边AB 、BC 的中点,过点A 作AF BC 交ED 的延长线于点F ,连接BF 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)当点B在y轴上运动,能否使得平行四边形ABCD是菱形?若能,求出点B的坐标;若不能,说明理由.
参考答案
1.x≤2
【详解】
解:∵二次根式 有意义,
∴2-x≥0,
∴x≤2.
故答案为:x≤2.
时间段(h/周)
小明抽样人数
小华抽样人数
0~1
6
22
1~2
10
10
2~3
16
6
3~4
8
2
(每组可含最低值,不含最高值)
请根据上述信息,回答下列问题:
(1)你认为哪位学生抽取的样本具有代表性?_____.估计该校全体八年级学生平均每周上网时间为_____h;
(2)在具有代表性的样本中,中位数所在的时间段是_____h/周;
A.6B.12C.14D.15
三、解答题
15.计算: .
16.计算:
17.重庆出租车计费的方法如图所示,x(km)表示行驶里程,y(元)表示车费,请根据图象解答下列问题:
(1)该地出租车起步价是_____元;
(2)当x>2时,求y与x之间的关系式;
(3)若某乘客一次乘出租车的里程为18km,则这位乘客需付出租车车费多少元?
云南省昆明市盘龙区2020-2021学年八年级(下)期末数学试卷
学校:___________姓名:___________班级:___________考号:___________
一、填空题
1.若二次根式 有意义,则x的取值范围为__________.
2.在数轴上表示实数a的点如图所示,化简 +|a-2|的结果为____________.
(1)分别写出学校购买A、B两公司服装所付的总费用y1(元)和y2(元)与参演男生人数x之间的函数关系式;
(2)问:该学校购买哪家制衣公司的服装比较合算?请说明理由.
23.如图,在直角坐标系中,OA=3,OC=4,点B是y轴上一动点,以AC为对角线作平行四边形ABCD.
(1)求直线AC的函数解析式;
18.已知等腰三角形ABC的底边BC=20cm,D是腰AB上一点,且CD=16cm,BD=12cm.
,已知点E,C在线段BF上,BE=EC=CF,AB∥DE,∠ACB=∠F.
(1)求证:△ABC≌△DEF;
(2)求证:四边形ACFD为平行四边形.
A.1.5,2,3B.6,8,10C.5,12,13D.15,20,25
10.下列说法正确的是( )
A.为了解昆明市中学生的睡眠情况,应该采用普查的方式
B.数据2,1,0,3,4的平均数是3
C.一组数据1,5,3,2,3,4,8的众数是3
D.在连续5次数学周考测试中,两名同学的平均分相同,方差较大的同学数学成绩更稳定
20.学生小明、小华为了解本校八年级学生每周上网的时间,各自进行了抽样调查.小明调查了八年级信息技术兴趣小组中40名学生每周上网的时间,算得这些学生平均每周上网时间为2.5h;小华从全体320名八年级学生名单中随机抽取了40名学生,调查了他们每周上网的时间,算得这些学生平均每周上网时间为1.2h.小明与小华整理各自样本数据,如表所示.
(3)在(2)的条件下,当AC⊥BC时,求证:四边形ADCE是正方形.
22.学校需要采购一批演出服装,A、B两家制衣公司都愿成为这批服装的供应商.经了解:两家公司生产的这款演出服装的质量和单价都相同,即男装每套120元,女装每套100元.经洽谈协商:A公司给出的优惠条件是,全部服装按单价打七折,但校方需承担2200元的运费;B公司的优惠条件是男女装均按每套100元打八折,公司承担运费.另外根据大会组委会要求,参加演出的女生人数应是男生人数的2倍少100人,如果设参加演出的男生有x人.
11.如图,已知一次函数y=kx+b的图象经过点A(5,0)与B(0,﹣4),那么关于x的不等式kx+b<0的解集是( )
A.x<5B.x>5C.x<﹣4D.x>﹣4
12.对于一次函数y=﹣2x+4,下列结论错误的是( )
A.函数的图象不经过第三象限
B.函数的图象与x轴的交点坐标是(2,0)
C.函数的图象向下平移4个单位长度得y=﹣2x的图象
D.若两点A(x1,y1),B(x2,y2)在该函数图象上,且x1<x2,则y1<y2
13.如图,菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,AC=12,菱形ABCD的面积为96,则OH的长等于( )
A.6B.5C.4D.3
14.如图1反映的过程是:矩形ABCD中,动点P从点A出发,依次沿对角线AC、边CD、边DA运动至点A停止,设点P的运动路程为x,S△ABP=y.则矩形ABCD的周长是( )
(3)专家建议每周上网2h以上(含2h)的同学应适当减少上网的时间,根据具有代表性的样本估计,该校全体八年级学生中有多少名学生应适当减少上网的时间?
21.已知,如图,点D是△ABC的边AB的中点,四边形BCED是平行四边形.
(1)求证:四边形ADCE是平行四边形;
(2)在△ABC中,若AC=BC,则四边形ADCE是;(只写结论,不需证明)
2.3.
【解析】
试题分析:由数轴得知,a>2,且a<5,所以a-5<0,a-2>0,原式化简=5-a+a-2=3.故答案为3.
考点:绝对值意义与化简.
6.如图所示,四边形ABCD为矩形,点O为对角线的交点,∠BOC=120°,AE⊥BO交BO于点E,AB=4,则BE等于_____.
二、单选题
7.下列二次根式化简后,能与 合并的是( )
A. B. C. D.
8.下列计算错误的是( )
A. ÷ =3B. =5
C.2 + =2 D.2 • =2
9.下列各组数中,不能作为直角三角形的三边长的是( )
3.某中学随机抽查了50名学生,了解他们一周的课外阅读时间,结果如下表所示:
时间(时)
4
5
6
7
人数
10
20
15
5
则这50名学生一周的平均课外阅读时间是____小时.
4.如图,已知四边形ABCD是平行四边形,对角线AC、BD交于点O,E是BC的中点,若AB=6,则OE=_____.
5.如图,一只蚂蚁从棱长为1的正方体纸箱的A点沿纸箱表面爬到B点,那么它所爬行的最短路线的长是_____.