生活中的优化问题
1.4 生活中的优化问题举例

4
高为
由题意知 x>0,x+0.5>0,且 3.2-2x>0,
∴0<x<1.6.
设容器的容积为 V m3,
则有 V=x(x+0.5)(3.2-2x)
=-2x3+2.2x2+1.6x(0<x<1.6).
∴V'=-6x2+4.4x+1.6.
目录
退出
令 V'=0,有 15x2-11x-4=0,
解得
4
x1=1,x2=-15(舍去).
∴当 x∈(0,1)时,V'(x)>0,V(x)为增函数,
x∈(1,1.6)时,V'(x)<0,V(x)为减函数.
∴V 在 x∈(0,1.6)时取极大值 V(1)=1.8,这个极大值就是 V 在
x∈(0,1.6)时的最大值,即 Vmax=1.8.这时容器的高为 1.2 m.
此时 Smax=42=16(m2).
答案:16 m2
目录
退出
2.用总长为 14.8 m 的钢条制作一个长方体容器的框架,如果所
制作容器的底面的一边比另一边长 0.5 m,那么高为多少时容器的容
积最大?并求出它的最大容积.
解:设容器底面短边的边长为 x m,则另一边长为(x+0.5) m,
14.8-4x-4(x+0.5)
思路分析:表示面积时,首先要建立适当的平面直角坐标系,借助
椭圆的方程,可表示出等腰梯形的高.
目录
退出
解:(1)依题意,以 AB 的中点 O 为原点建立平面直角坐标系(如
图所示),则点 C 的横坐标为 x,点 C 的纵坐标为
了解生活中的优化问题及解决方案

详细描述
线性规划模型的核心是确定一个 最优解,该解满足给定的线性约 束条件并最大化或最小化一个线 性目标函数。线性规划在各种领 域都有广泛应用,如资源分配、 生产计划、物流管理等。
应用场景
例如,在物流管理中,线性规划 可以用于确定最佳的车辆路径或 货物配载方案,以实现运输成本 最低、时间最短等目标。
应用场景
动态规划广泛应用于各种优化问题,如背包问题、旅行商 问题、排序问题等。例如,在背包问题中,动态规划可以 用于标。
遗传算法
总结词
遗传算法是一种模拟生物进化过程的优化算法,用于解决一些难以用传统数学方法解决的优化问题。
详细描述
遗传算法通过模拟生物进化过程中的基因选择、交叉和变异等过程,来寻找最优解。它采用随机搜索的方法,不断迭 代搜索空间,直到找到满足要求的解或达到预设的终止条件。
应用场景
模拟退火算法广泛应用于各种优化问 题,如函数优化、组合优化、机器学 习等。例如,在组合优化中,模拟退 火算法可以用于解决旅行商问题、背 包问题等难解的问题。
03
解决方案:人工智能技术
机器学习
总结词
机器学习是一种人工智能技术,通过算 法使计算机系统具备学习和改进的能力 ,从而完成特定的任务。
详细描述
专家系统通常用于高度专业化的领域 ,如医学、法律、金融等,它们可以 通过推理和解析来提供准确的决策支 持,帮助用户解决问题和做出决策。
04
解决方案:优化软件工具
MATLAB
要点一
总结词
MATLAB是一种高效的数值计算软件,广泛应用于算法开 发、数据分析、数据可视化以及数值计算等。
要点二
详细描述
MATLAB提供了友好的用户界面和丰富的功能,使得用户 可以轻松地进行矩阵运算、绘制图形、实现算法等。此外 ,MATLAB还提供了丰富的工具箱,包括统计、优化、机 器学习等,可以满足不同领域的需求。
生活中的优化问题举例

生活中的优化问题举例引言生活中,我们经常面临各种各样的问题和挑战。
为了提高效率、提升生活质量,我们需要不断寻找解决问题的方法和策略。
在这篇文章中,我们将探讨生活中的优化问题,并给出一些实际的例子来说明如何应对这些问题。
什么是优化问题?优化问题是指在给定的限制条件下,寻找一个最优解的问题。
通过优化,我们可以最大限度地提高效率、降低成本、提升满意度等。
在生活中,我们可以将优化问题应用于各个领域,如时间管理、健康管理、金融规划等。
生活中的优化问题举例1. 时间管理时间管理是一个常见的生活优化问题。
我们每天都面临着有限的时间资源,如何合理分配时间成为了一个重要的课题。
以下是一些可以帮助我们优化时间管理的方法和技巧:1.制定优先级:将任务按照重要性和紧急性进行排序,优先处理重要且紧急的任务,避免因琐碎的事务耗费过多时间。
2.打破大目标:学会将大目标分解成小目标,逐步推进。
这样可以减少任务的压力,并更好地管理时间。
3.制定时间表:制定一个明确的时间表,为每项任务规定固定的时间段。
这样可以提高效率,并避免时间的浪费。
4.利用时间碎片:充分利用日常生活中的碎片化时间,比如排队等待、交通工具上的时间,可以用来读书、听课等。
2. 健康管理健康是幸福生活的基石,因此健康管理也成为了一个重要的优化问题。
以下是一些可以帮助我们优化健康管理的方法和策略:1.合理饮食:均衡饮食是健康的基础。
合理控制饮食,摄入适量的营养物质,避免过量或偏食,有助于维持身体的健康状态。
2.积极运动:适量的运动可以帮助我们保持身体健康和心理平衡。
根据个人情况选择合适的运动方式和时间,如慢跑、游泳、瑜伽等。
3.规律作息:良好的作息习惯对于身体和心理健康至关重要。
合理安排睡眠时间,确保充足的休息,有助于保持精力充沛和情绪稳定。
4.健康检查:定期进行身体检查,及时发现和处理潜在的健康问题,有助于预防和治疗疾病。
3. 金融规划金融规划是一个经济优化的问题。
生活中的优化问题举例图文

安排休息时间
总结词
合理安排休息时间是优化健康管理的重要环节,有助于 恢复身体机能和缓解压力。
详细描述
保证充足的睡眠时间,合理安排工作和休息时间,采用 适当的放松方式,如冥想、瑜伽等,有助于恢复身体机 能和缓解压力。
总结词
创造良好的睡眠环境,保持规律的睡眠习惯,有助于提 高睡眠质量。
详细描述
保持安静、黑暗、舒适的睡眠环境,避免睡前过度兴奋 或刺激,保持规律的睡眠习惯,有助于提高睡眠质量。
自身能力范围。
制定工作计划
01
分解任务
将工作目标分解为具体的任务, 明确任务的责任人、完成时间和 所需资源。
安排时间
02
Байду номын сангаас
03
调整计划
根据任务的紧急性和重要性,合 理安排工作时间,确保任务按时 完成。
在执行过程中,根据实际情况及 时调整工作计划,以适应变化和 应对突发情况。
安排工作时间
避免过度劳累
总结词
结合日常生活和工作,灵活安排运动时间和场地,有助于 提高运动计划的可行性和持久性。
详细描述
根据个人生活和工作情况,灵活安排运动时间和场地,将 运动融入日常生活和工作中,有助于提高运动计划的可行 性和持久性。
总结词
注意运动安全,遵循正确的运动姿势和技巧,预防运动损 伤。
详细描述
在运动前进行适当的热身活动,遵循正确的运动姿势和技 巧,避免过度运动和损伤,注意运动安全。
总结词
学会放松自己,缓解压力和焦虑情绪。
详细描述
通过冥想、瑜伽、深呼吸等放松技巧来缓解压力和焦虑 情绪,学会放松自己。
THANKS
感谢观看
生活中的优化问题举例
contents
1.4生活中的优化问题举例

练习1、 一条长为l的铁丝截成两段,分别弯成两个 正方形,要使两个正方形的面积和最小, 两段铁丝的长度分别是多少?
解:设两段铁丝的长度分别为x,l-x,
其中0<x<l 则两个正方形面积和为
S
=
s1
+ s2
=( x)2 4
+( l
- x)2 4
=
1 (2x2 16
-
2lx
+
l2
)
S 1 (4x 2l) 1 (2x l)
生活中经常遇到求利润最大、用料 最省、效率最高等问题,这些问题称 为优化问题,优化问题有时也称为最 值问题.解决这些问题具有非常重要 的现实意义.
通过前面的学习,我们知道,导数是求函 数最大(小)值的有力工具,本节我们运 用导数,解决一些生活中的优化问题。
类型一:求面积、容积的最大问题
例1、海报版面尺寸的设计: 学校或班级举行活动,通常需要张贴海报进行宣传,
解:设版心的高为xdm,则版心的
1dm
m
宽 128 dm,此时四周空白面积为 2dm x
S( x) ( x 4)(128 2) 128 x
2x 512 8 ( x 0) x
S
'(
x
)
2
512 x2
2dm
S(
x)
2
x
512 x
8,S
'(
x)
2
512 x2
令S '(x) 0可解得x 1(6 x -16舍去)
V(x)=x2h=(60x2-x3)/2(0<x<60).
令
V(x)= 60x - 3 x2 = 0 2
,解得x=0(舍去),x=40.且
1.4生活中的优化问题(带答案)

1。
4生活中的优化问题举例1.要制做一个圆锥形的漏斗,其母线长为20cm,要使其体积最大,则高为() A。
错误!cm B.错误!cm C.错误!cm D.错误!cm [答案] D2.用总长为6m的钢条制作一个长方体容器的框架,如果所制作容器的底面的相邻两边长之比为3:4,那么容器容积最大时,高为()A.0.5m B.1m C.0。
8m D.1.5m[答案] A[解析]设容器底面相邻两边长分别为3x m、4x m,则高为错误!=错误!(m),容积V=3x·4x·错误!=18x2-84x3错误!,V′=36x-252x2,由V′=0得x=1或x=0(舍去).x∈错误!时,V′〉0,x∈错误!时,V′<0,7所以在x=错误!处,V有最大值,此时高为0。
5m。
3.内接于半径为R的球且体积最大的圆锥的高为()A.R B.2R C.错误!R D.错误!R[答案] C[解析]设圆锥高为h,底面半径为r,则R2=(h-R)2+r2,∴r2=2Rh-h2, ∴V=错误!πr2h=错误!h(2Rh-h2)=错误!πRh2-错误!h3,V′=错误!πRh-πh2。
令V′=0得h=错误!R.当0<h〈错误!R时,V′〉0;当错误!<h〈2R时,V′〈0。
因此当h=错误!R时,圆锥体积最大.4.福建炼油厂某分厂将原油精炼为汽油,需对原油进行冷却和加热,如果第x 小时时,原油温度(单位:℃)为f(x)=错误!x3-x2+8(0≤x≤5),那么,原油温度的瞬时变化率的最小值是()A.8 B.错误!C.-1 D.-8[答案] C[解析]瞬时变化率即为f′(x)=x2-2x为二次函数,且f′(x)=(x-1)2-1,又x∈[0,5],故x=1时,f′(x)min=-1.5.某厂生产某种产品x件的总成本:C(x)=1 200+错误!x3,又产品单价的平方与产品件数x成反比,生产100件这样的产品的单价为50元,总利润最大时,产量应定为__________件.[答案]25[解析]设产品单价为a元,又产品单价的平方与产品件数x成反比,即a2x=k,由题知a=错误!。
生活中的优化问题举例

生活中的优化问题举例
以下是一些生活中常见的优化问题举例:
1. 路线规划:对于一次旅行或者日常通勤,如何选择最短或最快的路线,以节省时间和资源。
2. 日程安排:如何合理分配时间,使得工作效率最大化,同时留出时间进行休息和娱乐。
3. 购物决策:在购买商品时,如何选择最佳的品牌、型号或价格,以满足需求并节约开支。
4. 饮食计划:如何合理安排饮食,以保证营养均衡,同时避免浪费和过量摄入。
5. 能源使用:如何优化能源的使用,例如合理设置空调温度、减少电器待机时间等,以节约能源成本并保护环境。
6. 个人理财:如何合理规划个人财务,包括投资、储蓄和债务,以实现财务增长并达到目标。
7. 旅游安排:在进行旅游计划时,如何选择最佳的目的地、交通方式、住宿和活动,以满足旅行的需求。
8. 学习方法:如何优化学习方法,例如选择适合个人的学习时间、学习环境和学习资源,以提高学习效率。
9. 生活习惯:如何培养健康的生活习惯,例如规律作息、科学饮食和适度运动,以改善身体健康。
10. 时间管理:如何合理分配时间,设置优先级和避免拖延,以提高工作和生活的效率。
1.4生活中的优化问题举例课件人教新课标

重难聚焦
名师点拨1.在求实际问题的最大(小)值时,一定要考虑实际问题的 意义,不符合实际意义的值应舍去. 2.在实际问题中,有时会遇到函数在区间内只有一个点使f'(x)=0的 情形,如果函数在这点有极大(小)值,那么不与端点值比较,也可以知 道这就是最大(小)值. 3.在解决实际优化问题时,不仅要注意将问题中涉及的变量关系用 函数关系表示,还应确定出函数关系中自变量的定义区间.
题型一
题型二
题型三
题型四
典例透析
利润最大问题 【例3】 某分公司经销某品牌产品,每件产品的成本为3元,并且每 件产品需向总公司交a(3≤a≤5)元的管理费,估计当每件产品的售 价为x(9≤x≤11)元时,一年的销售量为(12-x)2万件. (1)求分公司一年的利润L(单位:万元)与每件产品的售价x的函数关 系式; (2)当每件产品的售价为多少元时,分公司一年的利润L最大?并求出 L的最大值Q(a). 分析:(1)利用题中等量关系找出L与x的函数关系式;(2)求出(1)中函 数关系式的导函数,再利用导数求最值.
当x=140时,y=175,即当x=140,y=175时,S取得最小值24 500. 故当广告的高为140 cm,宽为175 cm时,可使矩形广告的面积最小.
题型一
题型二
题型三
题型四
典例透析
典例透析
题型一
题型二
题型三
题型四
解:(1)隔热层厚度为 x cm,
由题意知每年能源消耗费用为 C(x)= 3xk+5, 再由 C(0)=8,得 k=40,因此 C(x)= 3x4+05. 而建造费用为 C1(x)=6x.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
另解:利润L ??pq C ??(25 1 q)q ? (100 ? 4q) 8
?? 1 q2 ? 21q ? 100 8
当q ? ? b ? 21 ? 84时,L的值最大
2a
1 4
房价应订为多少
3.某宾馆有50个房间供游客居住,当每 个房间每天的定价为180元时,房间会全 部住满;房间的单价每增加10元,就会有 一个房间空闲.如果游客居住房间,宾馆每 天每间需花费20元的各种维修费.房间定 价多少时,宾馆的利润最大? 解:设宾馆定价为 (180+10x) 元时,宾馆的利润W最大
求产量 q 为何值时,利润 L 最大?
解:利润L ??pq C ? (25 ? 1 q)q ? (100 ? 4q) 8
?? 1 q2 ? 21q ? 100 8
? L ' ? ? 1 q ? 21, 令L ' ? 0, 求得q ? 84
4
当L ' ? 0时,q ? 84, 当L ' ? 0时,q ? 84,
上、下两边各空 2dm .左、右两边各空 1dm .如何设计海报的尺寸,才能使四周 空白的面积最小?
?
0 .8
?
r
3
(
?
3
r 2 ),
2
则有 xy=128,(1)
另设四周空白面积为S,
y
则 ? 0.8
? (r3 ?
3
r 2 ),
? 4x ? 2y ? 8 (2)
由(1)式得: y ? 128
x
1
x
三.小结
解决优化问题的方法之一:通过搜集大量的统计数据, 建立与其相应的数学模型,再通过研究相应函数的性质, 提出优化方案,使问题得到解决.在这个过程中,导数 往往是一个有利的工具,其基本思路如以下流程图所示
建立数学模型
优化问题
用函数表示数学问题
解决数学模型
优化问题的答案
作答 用导数解决数学问题
作业:P40 习题1.4 A组 1,2题
代入(2)式中得 : Sx( ) ? 4x ? 256 ? 8(x ? 0).
x
令S'(x)=0,即4-
256 x2
?
0
?? x 8,? 最小面积S ? 4? 8 ? 256 ? 8 ? 7(2 dm2 )
8
此时y ? 128 ? 16(dm) 8
?? x 8dm
解法二 :由解法(一)得
S()x ? 4x ? 256 ??8 24 x ? 256 ? 8
W ? (180 ? 10x)(50 ? x) ? (50 ? x) ?2 ? ? 10x2 ? 340x ? 80
令W '(x) ? 0,求得x ? 17
当W '(x) ? 0时, x ? 17;当W '(x) ? 0时, x ? 17
? 当x ? 17,利润W最大 此时房价为:180 ? 10? 17 ? 350(元
?
0.8 ?
r3 (
3
? r 2 ),
0? r ? 6
3
令 f '()x ? 0.8(r2 ? 2r) ? 0
当 r ? 2时, f '()r ? 0
当r ? (0,2)时, f '(x) ? 0
当r ? (2,6)时, f '(x) ? 0
当半径r>2时,f '(r)>0 它表示 f(r) 单调递增, 即半径越大,利润越高; 当半径r<2时,f '(r)<0 它表示 f(r) 单调递减 , 即半径越大,利润越低 .
x
x
? 2 ? 32 ? 87? 2
当且仅当4x ? 256 ,即x ? 8(x ? 0)时S取最小值 x
此时y=
128 8
?
16
答:应使用版心宽为8dm,长为16dm,四周空白面积最小
2.已知 :某商品生产成本C与产量 q的函数关系式为
C ? 100 ? 4q , 价格p与产量q的函数关系式为
p ? 25 ? 1 q 8
1.半径为2cm 时,利润最小,这时 f (2) ? 0
表示此种瓶内饮料的利润还不够瓶子的成本, 此时利润是负值 2.半径为6 cm 时,利润最大
未命名.gsp
利用导数解决优化问题的基本思路:
优化问题 优化问题的答案
用函数表示的数学问题 用导数解决数学问题
练习:
1:学校或班级举行活动,通常需要张贴 海报进行宣传.现让你设计一张如图所示 的竖向张贴的海报,要求版心面积为 128 dm 2
例1. 用总长为 14.8m 的钢条制作一个长方体容器的框架, 如果所制作的容器的底面的一边比另一边长 0.5m, 那么高 为多少时容器的容积最大?并求出它的最大容积。
解:设容器底面短边长为x m,则另一边长为 (x+0.5)m,高为(14.8-4x-4(x+0.5))/4=(3.2-2x)m 则 3.2 – 2x > 0 , x>0 , 得 0<x<1.6. 设容器体积为y m3,则 y = x (x+0.5) (3.2 – 2x) = - 2x3+2.2x2+1.6x (0<x<1.6) y' = - 6x 2+4.4x+1.6, 令y' = 0 得 x = 1 或 x = - 4/15 (舍去), ∴当0<x<1时,y'>0 , 当1<x<1.6时,y'<0 ,
∴在 x = 1处,y有最大值,此时高为1.2m, 最大容积为1.8m3。
例2:
饮料瓶大小对饮料公司利润的 影响 (1)你是否注意过,市场上等量的小包装的物品一般
比大包装的要贵些? (2)是不是饮料瓶越大,饮料公司的利润越大?
背景知识:某制造商制造并出售球型瓶装的某种饮料。
瓶子的制造成本是 0.8? r2 分,其中 r 是瓶
子的半径,单位是厘米。已知每出售 1 ml 的饮料,制造商可获利 0.2 分,且制造商能 制作的瓶子的最大半径为 6cm
问题(1)瓶子的半径多大时,能使每瓶饮料的利润最大? (2)瓶子的半径多大时,每瓶的利润最小?
解:由于瓶子的半径为R,所以每瓶饮料的利润是
y ? f ()x ? 0.2? 4?r3 ? 0.8?r2