有理数 知识点总结和常见题型
有理数知识点归纳及典型例题

一、【正负数】 有理数的分类:★☆▲_____________统称整数,试举例说明。
_____________统称分数,试举例说明。
____________统称有理数。
[基础练习] 1☆把下列各数填在相应额大括号内: 1,-,-789,25,0,-20,,-590,6/7 ·正整数集{ …};·正有理数集{ …};·负有理数集{ …} ·负整数集{ …};·自然数集{ …};·正分数集{ …} ·负分数集{ …}2☆ 某种食用油的价格随着市场经济的变化涨落,规定上涨记为正,则元的意义 是 ;如果这种油的原价是76元,那么现在的卖价是 。
二、【数轴】 规定了 、 、 的直线,叫数轴[基础练习]1☆如图所示的图形为四位同学画的数轴,其中正确的是( )2☆在数轴上画出表示下列各数的点,并按从大到小的顺序排列,用“>”号连接起来。
4,-|-2|, , 1, 03下列语句中正确的是( )A数轴上的点只能表示整数 B数轴上的点只能表示分数C数轴上的点只能表示有理数 D所有有理数都可以用数轴上的点表示出来4、★ ①比-3大的负整数是_______; ②已知m是整数且-4<m<3,则m为_______________。
③有理数中,最大的负整数是 ,最小的正整数是 。
最大的非正数是 。
④与原点的距离为三个单位的点有_ _个,他们分别表示的有理数是 _和_ _。
5、★★在数轴上点A 表示-4,如果把原点O 向负方向移动1个单位,那么在新数轴上点A 表示的数是( ) ,三、【相反数】的概念像2和-2、-5和5、和这样,只有 不同的两个数叫做互为相反数。
0的相反数是 。
一般地:若a 为任一有理数,则a 的相反数为-a 相反数的相关性质: 1、相反数的几何意义:表示互为相反数的两个点(除0外)分别在原点O 的两边,并且到原点的距离相等。
初一有理数 题型总结

初一有理数题型总结
初一有理数的题型总结主要包括以下几种:
1.数的认识:包括正数、负数、0、有理数、无理数的概念和性质,
以及它们在数轴上的表示方法。
2.数的运算:包括加减乘除、乘方、开方等基本运算,以及运算律
(如交换律、结合律、分配律等)的应用。
3.绝对值与相反数:了解绝对值与相反数的概念,能够熟练地求一
个数的绝对值和相反数。
4.有理数的混合运算:包括有理数的加减乘除、乘方、开方等基本
运算的综合应用,以及解决与有理数运算有关的实际问题。
5.应用题:包括行程问题、工程问题、利润问题等与有理数相关的
问题,能够运用有理数的知识解决实际问题。
6.实数:了解无理数的概念和性质,能够进行实数的运算,并解决
与实数运算有关的实际问题。
7.代数式:了解代数式的基本概念,能够进行简单的代数式运算和
变形,并解决与代数式相关的实际问题。
8.方程与不等式:了解方程和不等式的概念和性质,能够解一元一
次方程和一元一次不等式,并解决与方程和不等式相关的实际问题。
9.图形与几何:了解图形的概念和性质,能够进行简单的几何计算
和证明,并解决与图形和几何相关的实际问题。
在初一有理数的题型总结中,以上内容是较为常见的题型和知识点,但具体题型可能因教材版本和学校教学要求而有所不同。
因此,在学习的过程中,要全面掌握知识点,灵活运用知识解决实际问题。
有理数知识点及经典题型

有理数知识点及经典题型规定了原点,正方向,单位长度的直线叫做数轴。
注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。
2.数轴上的点与有理数的关系⑴所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。
⑵所有的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就是说,有理数与数轴上的点不是一一对应关系。
(如,数轴上的点π不是有理数)3.利用数轴表示两数大小⑴在数轴上数的大小比较,右边的数总比左边的数大;⑵正数都大于0,负数都小于0,正数大于负数;⑶两个负数比较,距离原点远的数比距离原点近的数小。
4.数轴上特殊的最大(小)数⑴最小的自然数是0,无最大的自然数;⑵最小的正整数是1,无最大的正整数;⑶最大的负整数是-1,无最小的负整数5.a可以表示什么数⑴a>0表示a是正数;反之,a是正数,则a>0;⑵a<0表示a是负数;反之,a是负数,则a<0⑶a=0表示a是0;反之,a是0,,则a=06.数轴上点的移动规律根据点的移动,向左移动几个单位长度则减去几,向右移动几个单位长度则加上几,从而得到所需的点的位置。
相反数⒈相反数只有符号不同的两个数叫做互为相反数,其中一个是另一个的相反数,0的相反数是0。
注意:⑴相反数是成对出现的;⑵相反数只有符号不同,若一个为正,则另一个为负;⑶0的相反数是它本身;相反数为本身的数是0。
2.相反数的性质与判定⑴任何数都有相反数,且只有一个;⑵0的相反数是0;⑶互为相反数的两数和为0,和为0的两数互为相反数,即a,b互为相反数,则a+b=03.相反数的几何意义在数轴上与原点距离相等的两点表示的两个数,是互为相反数;互为相反数的两个数,在数轴上的对应点(0除外)在原点两旁,并且与原点的距离相等。
专题2 有理数的计算(9大知识点 11大题型 3大易错)-七年级数学上学期期中考点(浙教版2024)

D.1 万(精确到万位)
【变式 10-1】一个整数精确到万位是 30 万,这个数精确前可能是( B )
A.294999
B.295786
C.305997
D.309111
【变式 10-2】2023 年杭州亚运会的志愿者,被亲切地称为“小青荷”,总人数约为 37600 人.如
果将这个人数转换为以“万”为单位的数,并保留一位小数,那么志愿者人数大约是 3.8
加即a×﹙b+c﹚=a×b+a×c。
考点透视
考点五:除法法则
(1)除以一个(不等于0)的数,等于乘这个数的倒数。 (2)两个数相除,同号得正,异号得负,并把绝对值相除。 (3)0除以任何一个不等于0的数,都得0。
考点透视
考点六:乘方的定义与运算
定义:求相同因数的积的运算叫作乘方,乘方的结果叫作幂。在an中,a叫作底数, n叫作指数 运算规则 (1)正数的任何次幂都是正数 (2)负数的奇次幂是负数,负数的偶次幂是正数 (3)0的任何正整数次幂都是0
题型剖析
题型一:有理数加减法运算
【例 1】计算:
(1) −3.5 + +2.8
(2)
−2
7
+
−2 1
3
(3)
−5 3
4
+7 2
5
(4)
−3 5
6
+
+3 5
6
((11))-02..747 ((22))--32161231 (3(3))-1212130.9 (4)0
题型剖析
题型二:有理数加法运算率
【例 2】利用加法运算律简便运算.
考点透视
考点七:有理数的混合运算规则
(1)先乘方,再乘除,最后加减。 (2)同级运算,从左到右的顺序进行。 (3)如有括号,先算括号内的运算,按小括号,中括号,大括号依次进行。在进行 有理数的运算时,要分两步走:先确定符号,再求值。
初一有理数的重点题型

初一有理数的重点题型(实用版)目录一、有理数的概念与分类二、有理数的运算1.加法2.减法3.乘法4.除法三、有理数的性质与规律1.有理数的符号规律2.有理数的绝对值3.有理数的倒数四、有理数的应用题1.算术题2.代数题3.几何题正文一、有理数的概念与分类有理数是指可以表示为两个整数之比的数,其中分母不为零。
有理数可以分为正有理数、负有理数和零,根据它们的符号和绝对值的大小可以进一步细分。
二、有理数的运算1.加法:两个有理数相加,将它们的分子相加,分母保持不变。
如果相加后的结果可以约分,需要将结果约分为最简有理数。
2.减法:两个有理数相减,将它们的分子相减,分母保持不变。
如果相减后的结果可以约分,需要将结果约分为最简有理数。
3.乘法:两个有理数相乘,将它们的分子相乘,分母相乘。
如果乘积后的结果可以约分,需要将结果约分为最简有理数。
4.除法:两个有理数相除,将被除数的分子除以除数的分子,分母保持不变。
如果除法后的结果可以约分,需要将结果约分为最简有理数。
三、有理数的性质与规律1.有理数的符号规律:同号相加,取相同符号,并把绝对值相加;异号相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。
2.有理数的绝对值:有理数的绝对值是它到零点的距离,无论正负,绝对值都是非负数。
3.有理数的倒数:一个有理数的倒数是它的分子和分母交换位置后得到的新有理数,注意零没有倒数。
四、有理数的应用题1.算术题:涉及有理数的加减乘除等基本运算,需要熟练掌握有理数的运算法则。
2.代数题:涉及有理数的符号规律、绝对值、倒数等性质,需要灵活运用有理数的性质解决问题。
3.几何题:涉及有理数与几何图形的关系,如计算线段长度、角度等,需要将几何问题转化为有理数问题,再运用有理数的知识求解。
有理数-2023年新七年级数学核心知识点与常见题型(人教版)(解析版)

有理数【知识梳理】1、有理数的概念:整数和分数统称为有理数.2、有理数的分类:①按整数、分数的关系分类:有理数;②按正数、负数与0的关系分类:有理数.注意:如果一个数是小数,它是否属于有理数,就看它是否能化成分数的形式,所有的有限小数和无限循环小数都可以化成分数的形式,因而属于有理数,而无限不循环小数,不能化成分数形式,因而不属于有理数.【考点剖析】一、有理数的意义一、单选题1.(2022秋·广东河源·七年级校考期末)下列结论正确的是()A.有理数包括正数和负数B.有理数包括整数和分数C.0是最小的整数D.两个有理数的绝对值相等,则这两个有理数也相等【答案】B【分析】根据有理数的相关联的知识点分析判断即可.【详解】∵有理数包括正有理数,零和负有理数,∴A错误,不符合题意;∵有理数包括整数和分数,∴B正确,符合题意;∵没有最小的整数,∴C错误,不符合题意;∵两个有理数的绝对值相等,则这两个有理数相等或互为相反数,∴D错误,不符合题意;故选B.【点睛】本题考查了有理数的相关概念,正确理解相关概念是解题的关键.【答案】C【分析】根据整数和分数统称为有理数,判断即可.【详解】解:A、1.21是有理数,故此选项不符合题意;B、2−是有理数,故此选项不符合题意;C、2π不是有理数,故此选项符合题意;D、12是有理数,故此选项不符合题意,故选:C.【点睛】本题考查了有理数的概念,解题的关键是掌握整数和分数统称为有理数,注意有限小数或无限循环小数是有理数.【答案】C【分析】根据有理数的概念进行判别即可.【详解】解:5,32−,103003,211,0,0.12−,是有理数,共6个,2π−是无理数,故选:C.【点睛】本题主要考查了有理数的概念,熟练掌握有理数的概念是解题的关键.0.35,有理数有【答案】5【分析】根据有理数的概念进行判断即可.【详解】解:有理数包括整数和分数,∴是有理数的有221.2,020%0.357−,,,,共5个 故答案为:5【点睛】本题主要考查有理数的概念,熟练掌握有理数的概念是解决本题的关键. 0.13,117−,0.1010010001(相邻两个【答案】3【分析】根据有理数的概念解答即可.有理数的概念:整数和分数统称为有理数.【详解】解:在 3.5+,0.13,117−,2π,0.1010010001(相邻两个1之间依次增加1个0)中,有理数有 3.5+,0.13,117−,共3个. 故答案为:3.【点睛】本题考查了有理数,掌握有理数的概念是解题的关键.6.(2022秋·河北邯郸·七年级统考期中)一个九位数,最高位上是最大的一位数,千万位上是5,十万位上是最小的合数,百位上是最小的质数,其余各位都是0,这个数写作_______.【答案】950400200【分析】根据最大的一位数是9,千万位上是5,最小的合数是4,最小的质数是2,其余各位都是0即可解答.【详解】解:∵最大的一位数是9,千万位上是5,最小的合数是4,最小的质数是2,其余各位都是0, ∴这个数是950400200.故答案为:950400200.【点睛】本题考查的是有理数,熟知最小的合数是4,最小的质数是2是解题的关键.一、单选题 1.(2023秋·广西河池·七年级统考期末)下列说法错误的是( )A .0既不是正数,也不是负数B .零上4摄氏度可以写成4C +︒,也可以写成4C ︒C .若盈利100元记作100+元,则20−元表示亏损20元D .向正北走一定用正数表示,向正南走一定用负数表示【答案】D【分析】根据0的特征、正负数的意义和相反意义的量进行判断即可.【详解】解:A .0既不是正数,也不是负数,故选项正确,不符合题意;B .零上4摄氏度可以写成4C +︒,也可以写成4C ︒,故选项正确,不符合题意;C .若盈利100元记作100+元,则20−元表示亏损20元,故选项正确,不符合题意;D .规定向正北走用正数表示,向正南走才用负数表示,故选项错误,符合题意.故选:D .【点睛】此题考查了0的特征、正负数的意义和相反意义的量,熟练掌握相关基础知识是解题的关键.2.(2022秋·河北秦皇岛·七年级校联考阶段练习)下列语句正确的是( )①一个数前面加上“−”号,这个数就是负数;②如果a 是正数,那么a −一定是负数;③一个有理数不是正的就是负的;④0︒表示没有温度;A .0个B .1个C .2个D .3个 【答案】B【分析】根据正负数的定义和0的意义进行逐一判断即可.【详解】解:①一个正数前面加上“−”号,这个数就是负数,说法错误;②如果a 是正数,那么a −一定是负数,说法正确;③0是有理数,但是0既不是正数也不是负数,说法错误;④0︒表示有温度,说法错误;故选B .【点睛】本题主要考查了正负数的定义和0的意义,熟知相关知识是解题的关键.3.(2022秋·全国·七年级专题练习)下面关于0的说法:(1)0是最小的正数;(2)0是最小的非负数;(3)0既不是正数也不是负数;(4)0既不是奇数也不是偶数;(5)0是最小的自然数;(6)海拔0m就是没有海拔.其中正确说法的个数是()A.0B.1C.2D.3【答案】D【分析】0既不是正数也不是负数,是最小的非负数,最小的自然数,是偶数,判断即可得到结果.【详解】解:(1)0是最小的正数,错误,0不是正数也不是负数;(2)0是最小的非负数,正确,非负数即为正数与0;(3)0既不是正数也不是负数,正确;(4)0既不是奇数也不是偶数,错误,0是偶数;(5)0是最小的自然数,正确;(6)海拔0m就是没有海拔,错误,海拔0m就是与海平面高度相同;则正确的说法有3个.故选:D.【点睛】此题考查了有理数的分类和意义,掌握有理数的分类和0的意义是解本题的关键.4.(2022秋·河北保定·七年级统考期中)下面关于0的说法,正确的是()A.0既不是正数也不是负数B.0既不是整数也不是分数C.0不是有理数D.0的倒数是0【答案】A【分析】依据倒数,有理数相关概念以及有理数分类判断即可.【详解】A.0既不是正数,也不是负数,故此选项正确,符合题意;B.0是整数,不是分数,故此选项错误,不符合题意;C.0是有理数,故此选项错误,不符合题意;D.0不存在倒数,故此选项错误,不符合题意.故选A.【点睛】本题考查了有理数,0是重要的数字,掌握有理数的相关概念和分类是解题的关键.5.(2022秋·天津北辰·七年级统考期中)下列说法正确的是()A.1是最小的正数B.﹣1是最大的负数C.绝对值等于本身的数是0D.0既不是正数也不是负数【答案】D【分析】根据正数、负数的概念,绝对值的意义分析判断即可.【详解】解:A、0是正数和负数的分界点,大于0的数都是正数,故1不是最小的正数,本选项不符合题意;B、0是正数和负数的分界点,小于0的数都是负数,故﹣1不是最大的负数,本选项不符合题意;C、0和正数的绝对值都等于本身,故本选项不符合题意;D、0既不是正数,也不是负数,故本选项符合题意.故选:D.【点睛】本题考查了正数和负数以及0的意义,解题的关键是掌握0是正数和负数的分界点,0既不是正数也不是负数,正数大于0,负数小于0.6.(2023秋·江苏宿迁·七年级统考期末)既不是正数也不是负数的数是()A.2−B.1−C.0D.1【答案】C【分析】根据有理数的分类,即可求解.【详解】解:A、2−是负数,故本选项不符合题意;B、1−是负数,故本选项不符合题意;C、0既不是正数也不是负数,故本选项符合题意;D、1是正数,故本选项不符合题意;故选:C【点睛】本题主要考查了有理数的分类,熟练掌握0既不是正数也不是负数是解题的关键.7.(2022秋·山西临汾·七年级统考阶段练习)有下列两个判断:①正整数和负整数统称为整数;②整数和分数统称为有理数.其中正确的是()A.①对,②错B.①错,②对C.①②都对D.①②都错【答案】B【分析】根据整数的分类和有理数的定义进行判断即可.【详解】解:①整数包括正整数、负整数和零,故①错误;②整数和分数统称为有理数,故②正确;综上分析可知,①错,②对,故B正确.故选:B.【点睛】本题主要考查了整数的分类和有理数的定义,熟练掌握整数包括正整数、负整数和零,是解题的关键.8.(2022秋·吉林长春·七年级统考期中)课堂上老师要求就数“”发表自己的意见,四位同学共说了下列四句话:①是整数,但不是自然数;②既不是正数,也不是负数;③不是整数,是自然数;④没有实际意义.其中正确的个数是()A.4B.3C.2D.1【答案】D【分析】分别依据整数的定义、0的性质、和0的意义进行判断即可.【详解】解:自然数中包括0,当然0也是整数,所以①③都不正确;0既不是正数也不是负数,所以②正确;而在实际生活中0具有实际的意义,如0℃,所以④不正确;故正确的只有②,故选:D.【点睛】本题主要考查对0的理解,解题的关键是知道0是整数,也是自然数;0既不是正数也不是负数;0具有实际的意义.二、填空题9.(2023秋·全国·七年级专题练习)正数:比____大的数;负数:在正数前面加上_______的数,______既不是正数,也不是负数.【答案】0 负号0【分析】根据有理数的有关概念判断即可.【详解】解:根据题意,正数:比0大的数;负数:在正数前面加上负号的数,0既不是正数,也不是负数.故答案为:0,负号,0【点睛】本题考查了有理数,解题的关键是掌握有理数的定义进行判断.10.(2022秋·全国·七年级专题练习)下列关于零的说法中,正确的是________①零是正数②零是负数③零既不是正数,也不是负数④零仅表示没有【答案】③【分析】根据零既不是正数也不是负数以及不同情形下零表示的意义不同进行逐一判断即可.【详解】解:①零不是正数,说法错误;②零不是负数,说法错误;③零既不是正数,也不是负数,说法正确;④零不仅仅表示没有,不同情形下,零表示的意义不同,说法错误;故答案为:③.【点睛】本题主要考查了有理数的分类,熟知零表示的意义是解题的关键.三、解答题11.(2022秋·山西太原·七年级太原市第十八中学校校考阶段练习)请写四句话,说明数“零”(0)的数学特性.(例:0是绝对值最小的数.例句除外)【答案】见解析【分析】根据题意可以写出零的数学特性,本题得以解决.【详解】解:①零既不是正数也不是负数;②零小于正数,大于负数;③零不能做分母;④零是最小的非负数;⑤零的相反数是零;⑥任何不为零的数的零次幂为1;⑦零乘以任何数都是零等.【点睛】本题考查有理数,解题的关键是明确题意,可以仿照例句写出关于零的别的数学特性.三、有理数的分类一、单选题 1.(2022秋·贵州贵阳·七年级校考阶段练习)下列说法正确的是( )A .0既不是正数,也不是负数B .非负数就是正数C .一个数前面加上“−”号这个数就是负数D .正数和负数统称为有理数【答案】A【分析】根据有理数的有关概念判断即可.【详解】解:A 、0既不是正数,也不是负数,故符合题意;B 、非负数就是0和正数,故不符合题意;C 、一个数前面加上“−”号,这个数不一定是负数,如2−,故不符合题意;D 、零和正数和负数统称为有理数,故不符合题意;故选:A .【点睛】此题考查有理数,关键是根据有理数的有关概念判断.【答案】C【分析】根据整数的定义,即可得到答案.【详解】解:根据题意可得:11405+−−,,,属于整数, ∴整数一共有4个,故选:C .【点睛】本题主要考查了有理数,利用整数的定义是解题的关键.【答案】C 【分析】根据负分数的定义可以得到答案,要注意负小数也可以化为负分数.【详解】解:在数3570.5405156569−−−,,,,,中,负分数有370.54659−−−,,,共有3个, 故选:C .【点睛】本题考查了有理数的分类,解题的关键是掌握负分数的定义,要注意很容易将负小数漏掉,出现错误.二、填空题【答案】0.618,30%,7;7,0,1006+;132−【分析】根据有理数的分类即可解答.【详解】解:正分数集合:(0.618,30%,227);非负整数集合:(7,0,1006+);负分数集合:(132−). 故答案为:0.618,30%,227;7,0,1006+;132−. 【点睛】本题考查了有理数的分类,熟练掌握有理数的分类是解决本题的关键.【答案】 62.49,, 60, 630−,, 3.144−−,【分析】根据分母为1的数是整数,可得整数集合;根据小于零的数是负数,可得负数集合;根据大或等于零的整数是非负整数,可得非负整数集合,根据小于零的分数是负分数,可得负分数集合,根据有理数是有限小数或无限循环小数,可得有理数集合.【详解】解:正数:{6,2.4,29…}非负整数:{6,0…} 整数:{6,3−,0…} 负分数:{3 3.144−−,…}故答案为:6,2.4,29;6,0;6,3−,0;34−, 3.14−.【点睛】此题考查了有理数,熟练掌握有理数的分类是解本题的关键.三、解答题【答案】(1)2,3,7(2) 3.14−,5−,0.1212212221−⋯ (3)2,5− (4) 3.14−,227【分析】根据有理数的分类方法求解即可. 【详解】(1)解:正数有:2,3π,227,故答案为:2,3π,227;(2)解:负数有: 3.14−,5−,0.1212212221−⋯; 故答案为: 3.14−,5−,0.1212212221−⋯; (3)解:整数有:2,5−; 故答案为:2,5−;(4)解:分数有: 3.14−,227;故答案为: 3.14−,227.【点睛】本题主要考查了有理数的分类,熟知有理数的分类方法是解题的关键.【答案】正数:3.14,72+,0.618;负数: 2.5−,2−,0.6−,0.101−;分数: 2.5−,3.14,0.6−,0.618,0.101−;非负数:3.14,72+,0.618,0.【分析】根据有理数的分类方法进行求解即可. 【详解】解: 2.5−是负数,是分数; 3.14是正数,是分数,是非负数;2−是负数;72+是正数,是非负数; 0.6−是负数,是分数;0.618是正数,是分数,是非负数;0是非负数;0.101−是负数,是分数;∴正数:3.14,72+,0.618; 负数: 2.5−,2−,0.6−,0.101−;分数: 2.5−,3.14,0.6−,0.618,0.101−; 非负数:3.14,72+,0.618,0.【点睛】本题主要考查了有理数的分类,熟知有理数的分类方法是解题的关键.四、带“非”字的有理数一、单选题【答案】B【分析】根据有理数的分类进行分析解答即可.【详解】解:没有最小的整数,故①错误,0既不是正数也不是负数,但是有理数,故②错误,非负数是正数和0,故③错误,237是有限小数,故④错误,正数中没有最小的数,负数中没有最大的数,故⑤正确,综上可知,错误的说法为①②③④,故选:B【点睛】此题考查了有理数,熟练掌握有理数的分类是解题的关键.【答案】A【分析】根据有理数的分类方法进行逐一判断即可.【详解】解:A.113,0.3,43−都是分数,故此选项符合题意;B.1, 2.5−−都是负数,故此选项不符合题意;C.0不是正数,故此选项不符合题意;D.132是分数,不是整数,故此选项不符合题意.故选:A.【点睛】本题主要考查了有理数的分类,熟知有理数的分类方法是解题的关键.3.(2022秋·山东日照·七年级校考期末)下列说法中:①0是最小的整数;②有理数不是正数就是负数;③非负数就是正数和0;④整数和分数统称有理数,其中正确的个数是()A.0B.1C.2D.3【答案】C【分析】根据有理数定义及其分类解答即可.【详解】没有最小的整数,故①错误;有理数包括正数、0、负数,故②错误;非负数就是正数和0,故③正确;整数和分数统称有理数,故④正确;故选:C【点睛】本题侧重考查的是有理数,掌握有理数定义及其分类是解决此题的关键.【答案】C【分析】根据非负整数的概念求解即可.【详解】解:()33−−=,∴在3.67,0,1,23−,()3−−,157,6−中,非负整数有:0,1,()3−−,共3个,故选:C.【点睛】此题考查了非负整数的概念,解题的关键是掌握非负整数的概念.非负整数包括正整数和零.5.(2022秋·贵州遵义·七年级校考阶段练习)下列说法正确的是()A.正整数和负整数统称整数B.a−一定是负数C.21n+(n为整数)表示一个奇数D.非负数包括零和负数【答案】C【分析】根据有理数的分类进行判断即可.【详解】解:A.正整数、0和负整数统称整数,说法错误,不符合题意;B.a−不一定是负数,说法错误,不符合题意;C.21n+(n为整数)表示一个奇数,说法正确,符合题意;D .非负数包括零和正数,说法错误,不符合题意; 故选:C .【点睛】本题考查了有理数的分类,熟练掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点是解题的关键.二、填空题【答案】6【分析】根据非负数包括正数和判断即可.【详解】解:在11+,,37−,45+,12,5−,0.26,1.38中,非负数有11+,,45+,12,0.26,1.38,共6个. 故答案为:6.【点睛】本题考查有理数的分类.正确掌握有理数的分类标准是解题的关键.三、解答题【答案】(1) 6.5+,0.5,52;(2)0,13,9−,1−;(3) 6.5+,0.5,0,13,152,3π.【分析】(1)根据正分数的定义:比0大的分数叫正分数,正数前面常有一个符号“+”,通常可以省略不写,据此逐一进行判断即可得到答案;(2)根据整数的定义:整数是正整数、零、负整数的集合,据此逐一进行判断即可得到答案; (3)根据非负数的定义:正数和零总称为非负数,据此逐一进行判断即可得到答案 【详解】(1)解:根据正分数的定义,正分数有: 6.5+,0.5,152,故答案为: 6.5+,0.5,152;(2)解:根据整数的定义,整数有:0,13,9−,1−, 故答案为:0,13,9−,1−;(3)解:根据非负数的定义,非负数有: 6.5+,0.5,0,13,152,3π,故答案为: 6.5+,0.5,0,13,152,3π.【点睛】本题考查了有理数的分类,解题关键是理解正分数,整数,非负数的定义,并正确区别.【答案】(1)13−, 2.23−,0,15%−,132−(2)0.1,27+,0,227(3)13−,0 (4)27+,0【分析】(1)根据“负数和0统称为非正数”即可进行解答; (2)根据“正数和0统称为非负数”即可进行解答; (3)根据“0和负整数统称为非正整数”即可进行解答; (4)根据“0和正整数统称为非负整数”即可进行解答.【详解】(1)解:非正数:{13−, 2.23−,0,15%−,132−,…};故答案为:13−, 2.23−,0,15%−,132−;(2)解:非负数:{0.1,27+,0,227,…};故答案为:0.1,27+,0,227;(3)解:非正整数:{13−,0,…}; 故答案为:13−,0;(4)解:非负整数:{27+,0,…}. 故答案为:27+,0.【点睛】本题主要考查了有理数的分类,熟练掌握有理数的各个分类依据是解题的关键.【答案】(1)0,2021,101− (2)23.01,2021,13−−−(3)22,15%,3.14,0.6187+ (4)22,15%,101,3.14,0.6187+(5)0,2021−(6)22,0,15%,101,3.14,0.6187+【分析】根据有理数的分类即可解答.【详解】(1)解:整数:0,2021,101−(2)解:负数:23.01,2021,13−−−(3)解:正分数:22,15%,3.14,0.6187+ (4)解:正有理数:22,15%,101,3.14,0.6187+(5)解:非正整数:0,2021−(6)解:非负数:22,0,15%,101,3.14,0.6187+【点睛】本题考查的是有理数的分类,熟练掌握有理数的分类是解题的关键.【答案】5、0.75−、310+;3−、2021−;5、0、3+、310+.【分析】直接根据有理数的分类进行解答即可.【详解】分数集合:{15、0.75−、310+…};负整数集合:{3−、2021−…};非负数集合:{15、0、3+、310+…}.故答案为:15、0.75−、310+;3−、2021−;15、0、3+、310+.【点睛】此题考查的是有理数,掌握分数、负整数、非负数的概念是解决此题关键.【过关检测】一.选择题(共10小题)1.(2022秋•东港区校级期末)下列说法中:①0是最小的整数;②有理数不是正数就是负数;③非负数就是正数和0;④整数和分数统称有理数,其中正确的个数是( ) A .0B .1C .2D .3【分析】根据有理数定义及其分类解答即可.【解答】解:①没有最小的整数,故①错误,不符合题意;②有理数包括正有理数、0、负有理数,故②错误,不符合题意;③非负数就是正数和0,故③正确,符合题意;④整数和分数统称有理数,故④正确,符合题意;故选:C.【点评】本题侧重考查的是有理数,掌握有理数定义及其分类是解决此题的关键.2.(2022秋•朝阳区期末)下面的说法中,正确的是()A.正有理数和负有理数统称有理数B.整数和小数统称有理数C.整数和分数统称有理数D.整数、零和分数统称有理数【分析】根据有理数的分类进行判断即可.【解答】解:A.正有理数、0和负有理数统称为有理数,故不符合题意;B.无限不循环小数是无理数,故不符合题意;C.整数和分数统称为有理数,故符合题意;D.整数包括零,故不符合题意.故选:C.【点评】本题考查有理数的分类,熟练掌握有理数的分类方法是解题的关键.3.(2022秋•河池期末)下列数中,是正整数的是()A.﹣1B.0C.1D.【分析】根据正整数的定义进行逐一判断即可.【解答】解:∵这四个数中,只有1是正整数,∴只有选项C符合题意,故选:C.【点评】本题主要考查了正整数的定义,熟知定义是解题的关键.4.(2022秋•巴南区期末)在﹣2022,﹣1,0,1这四个有理数中,最小的有理数是()A.﹣2022B.﹣1C.0D.1【分析】根据有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.依此即可求解.【解答】解:∵﹣2022<﹣1<0<1,所以最小的有理数是﹣2022.故选:A.【点评】本题考查了有理数大小比较,关键是熟练掌握有理数大小比较的方法.5.(2022秋•隆回县期末)在,,0,﹣1,0.12,14,﹣2,﹣1.5这些数中,正有理数有m个,非负整数有n个,分数有k个,则m﹣n+k的值为()A.3B.4C.6D.5【分析】先求出m,n,k的值,再进行计算即可.【解答】解:∵,0.12,14是正有理数,共3个;0,14是非负整数,共2个;,,0.12,﹣1.5是分数,共4个,∴m=3,n=2,k=4,∴m﹣n+k=3﹣2+4=5.故选:D.【点评】本题考查的是有理数,熟知有理数的分类是解题的关键.6.(2022秋•竞秀区期末)在下列选项中,所填的数正确的是()A.分数{﹣3,0.3,,…}B.非负数{0,﹣1,﹣2.5,…}C.正数{2,1,5,0,…}D.整数{3,﹣5,…}【分析】根据有理数的分类方法进行逐一判断即可.【解答】解:A.都是分数,故此选项符合题意;B.﹣1,﹣2.5都是负数,故此选项不符合题意;C.0不是正数,故此选项不符合题意;D.是分数,不是整数,故此选项不符合题意.故选:A.【点评】本题主要考查了有理数的分类,熟知有理数的分类方法是解题的关键.7.(2022秋•宛城区校级期末)下列说法错误的是()A.0既不是正数,也不是负数B.零上6摄氏度可以写成+6℃,也可以写成6℃C.向东走一定用正数表示,向西走一定用负数表示D.没有最小的有理数【分析】根据有理数的概念和性质判断即可.【解答】A.0既不是正数,也不是负数,正确,故该选项不符合题意;B.零上6摄氏度可以写成+6℃,也可以写成6℃,正确,故该选项不符合题意;C.向东走可以用正数表示,也可以用负数表示,根据相反意义的关系,即可表示另一个方向,故该选项不正确,符合题意;D.没有最小的有理数,正确,故该选项不符合题意.故选:C.【点评】本题考查了有理数的基本概念,熟练掌握有理数的基本概念是解题的关键.8.(2022秋•荆门期末)数0.1不属于()A.正数B.整数C.分数D.有理数【分析】根据有理数的分类解得即可.【解答】解:数0.1是正数,是分数(小数可以化成分数),是有理数,但不是整数.故选:B.【点评】本题考查了有理数,解题的关键是熟练掌握有理数的分类.9.(2022秋•广阳区校级期末)下列各数:,1.010010001,,0,﹣π,﹣2.626626662…,0.,其中有理数的个数是()A.2B.3C.4D.5【分析】直接利用有理数的概念分析得出答案.【解答】解:﹣,1.010010001,,0,﹣π,﹣2.626626662…,0.,其中有理数为:﹣,1.010010001,,0,0.,共5个.故选:D.【点评】此题主要考查了有理数的相关概念,正确把握相关定义是解题关键.10.(2022秋•南宫市期末)若有理数的分类表示为:,则“”表示的是()A.正有理数B.负有理数C.0D.非负数【分析】根据有理数及整数的分类方法判断即可.【解答】解:有理数包括:整数与分数,整数包括:正整数,0和负整数,则“”表示的是0.故选:C.【点评】此题考查了有理数,熟练掌握有理数的分类方法是解本题的关键.二.填空题(共8小题)11.(2022秋•枣阳市期末)在数﹣1,﹣9,﹣2.23,0,+3,,﹣π,,﹣0.01001中,是负分数.【分析】根据有理数的分类逐一判断即可得到答案.【解答】解:负整数:﹣1,﹣9;正整数:+3;正分数:;负分数:﹣2.23,,﹣0.01001;无理数:﹣π,故答案为:﹣2.23,,﹣0.01001.【点评】本题考查了有理数的分类,熟练掌握负分数的概念是解题关键,注意所有的有限小数和无限循环小数都可以化成分数的形式,而无限不循环小数,不能化成分数的形式.12.(2022秋•福清市期末)写一个比﹣1小的有理数.(答案不唯一)(只需写出一个即可)【分析】根据负数的大小比较,绝对值大的反而小,只要绝对值大于1的负数都可以.【解答】解:根据题意,绝对值大于1的负数均可,例如﹣2(答案不唯一).【点评】只要是负数并且绝对值大于1的数就可以,也可以利用数轴根据右边的总比左边的大,选择﹣1左边的数.13.(2022秋•魏县期中)一个九位数,最高位上是最大的一位数,千万位上是5,十万位上是最小的合数,百位上是最小的质数,其余各位都是0,这个数写作.【分析】根据最大的一位数是9,千万位上是5,最小的合数是4,最小的质数是2,其余各位都是0即可解答.【解答】解:∵最大的一位数是9,千万位上是5,最小的合数是4,最小的质数是2,其余各位都是0,∴这个数是950400200.故答案为:950400200.【点评】本题考查的是有理数,熟知最小的合数是4,最小的质数是2是解题的关键.14.(2022秋•新城区校级期中)月考成绩出来后,组长记录了她们组6名同学的数学成绩,她以80分作为计分标准,超过的部分计为正数,不足的部分计为负数,若她们组6名同学的成绩为+16,﹣10,0,+18,﹣4,﹣8,则这6名同学的实际成绩最高分数是分.【分析】这列数字中的最大数加上80就是实际的最高分.【解答】解:80+18=98(分),故答案为:98.【点评】本题考查了有理数,有理数的比较是解题的关键.15.(2022秋•西峰区校级期末)在“﹣1,﹣0.3,+1,0,﹣2.7”这五个数中,负有理数是.【分析】根据小于零的有理数是负有理数,可得答案.【解答】解:负有理数是﹣1,﹣0.3,﹣2.7.故答案为:﹣1,﹣0.3,﹣2.7.【点评】本题考查了有理数,掌握小于零的有理数是负有理数是关键.16.(2022秋•新市区校级期末)在﹣15,,﹣0.23,0.51,0,7.6,2,﹣,314%中,非负数有个.【分析】利用有理数的定义判断.【解答】解:在﹣15,,﹣0.23,0.51,0,7.6,2,﹣,314%中,。
初一数学有理数知识总结及练习
初一数学有理数知识总结及练习一、 知识点回顾1.相反意义的量在日常生活中,常会遇到这样一些量(事情): 例1:汽车向东行驶3千米和向西行驶2千米。
(向东——向西) 例2:温度是零上10℃和零下5℃。
(零上——零下) 例3:收入500元和支出237元。
(收入——支出) 例4:水位升高1.2米和下降0.7米。
(升高——下降) 例5:买进100辆自行车和卖出20辆自行车。
(买进——卖出) 例6:你看过电视或听过广播中的天气预报吗?记录温度计所示的气温25ºC ,10ºC ,零下10ºC ,零下30ºC 。
为书写方便,将测量气温写成25,10,―10,―30。
2.正数和负数定义:一般地,对于具有相反意义的量,我们可把其中一种意义的量规定为正的,用过去学过的数来表示;把与它意义相反的量规定为负的,用过去学过的数(零除外)前面放一个“-”(读作“负”)号来表示。
注意:零既不是正数,也不是负数。
巩固练习:①―10表示支出10元,那么+50表示 ;如果零上5度记作5°C ,那么零下2度记作 ;如果上升10m 记作10m ,那么―3m 表示 ;太平洋中的马里亚纳海沟深达11034米,可记作海拔 米(即低于海平面11034米)。
比海平面高50m 的地方,它的高度记作海拨 ;比海平面低30m 的地方,它的高度记作海拨 ;②下面说法正确的是( )A .正数都带有“+”号B .不带“+”号的数都是负数C .小学数学中学过的数都可以看作是正数D .0既不是正数也不是负数 3.有理数定义:1,2,3,4,…叫做正整数;―1,―2,―3,―4,…叫做负整数;正整数、负整数和零统称为整数;数32,41,854,+5.6,…叫做正分数;―97,―76,―3.5,…叫做负分数;正分数和负分数统称为分数;整数和分数统称为有理数。
分类:从两个角度按照不同的分类标准可以将有理数进行不同的分类 ①先将有理数按“整”和“分”的属性分,再按每类数的“正”、“负”分,即得如下分类表:{负分数正分数分数负整数正整数整数有理数0⎩⎨⎧⎩⎨⎧②先将有理数按“正”和“负”的属性分,再按每类数的“整”、“分”分,即得如下分类表:{{负分数负整数负有理数正分数正整数正有理数有理数0⎩⎨⎧注:①“0”也是自然数。
初一数学有理数知识点与经典例题
初一数学有理数知识点与经典例题一、有理数知识点。
(一)有理数的概念。
1. 有理数的定义。
- 整数和分数统称为有理数。
整数包括正整数、0、负整数;分数包括有限小数和无限循环小数。
例如:5是正整数,属于有理数; - 3是负整数,属于有理数;(1)/(2)是分数,属于有理数;0.25(有限小数,可化为(1)/(4))也是有理数。
2. 有理数的分类。
- 按定义分类:- 有理数整数正整数 0 负整数分数正分数负分数- 按性质符号分类:- 有理数正有理数正整数正分数 0 负有理数负整数负分数(二)数轴。
1. 数轴的定义。
- 规定了原点、正方向和单位长度的直线叫做数轴。
2. 数轴上的点与有理数的关系。
- 所有的有理数都可以用数轴上的点来表示,但数轴上的点不都表示有理数(例如√(2)等无理数也可以用数轴上的点表示)。
一般地,设a是一个正数,则数轴上表示数a的点在原点的右边,与原点的距离是a个单位长度;表示数 - a的点在原点的左边,与原点的距离是a个单位长度。
(三)相反数。
1. 相反数的定义。
- 只有符号不同的两个数叫做互为相反数。
特别地,0的相反数是0。
例如,3和 - 3互为相反数,-(1)/(2)和(1)/(2)互为相反数。
2. 相反数的性质。
- 互为相反数的两个数的和为0,即若a与b互为相反数,则a + b=0。
(四)绝对值。
1. 绝对值的定义。
- 一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作| a|。
2. 绝对值的性质。
- 当a>0时,| a|=a;当a = 0时,| a|=0;当a<0时,| a|=-a。
例如,|3| = 3,| - 3|=3,|0| = 0。
- 非负性:| a|≥s lant0。
(五)有理数的大小比较。
1. 法则。
- 正数大于0,0大于负数,正数大于负数。
- 两个负数,绝对值大的反而小。
例如,比较 - 2和 - 3,| - 2|=2,| - 3| = 3,因为2<3,所以 - 2>- 3。
有理数的相关概念与运算
1) = 1119-2+(-2)+2 ×(-1)= 1119-2 ×(-
1)=919×(-1)=-919.
题型三 有理数运算的实际应用
例 3 某个体儿童服装店老板以每件 32 元的价
格购进 30 件连衣裙,针对不同的顾客,30 件连衣裙
的售价不完全相同,若以 47 元为标准,超过的钱数
记为正,不足的钱数记为负,则记录的结果如下表
________.
解析:本题综合考查绝对值的非负性,偶次方
的非负性.几个非负数的和为 0,则每一个非负数都
等于 0,易因对知识的综合运用能力不强而无法求
解.由题意得 x-3=0,y+2=0,求出 x=3,y=-
2,所以 yx=(-2)3=-8.
答案:-8
注意:在应用非负数的性质时,其条件可能变
化成以下形式:
所示:
售出的件数
7 6 354 5
与标准价的差值(单 +3 +2 +1 0 -1 -2
位:元)
问:该儿童服装店在售完这 30 件连衣裙后,赚
了多少钱?
解析:利润=售价-成本,通过列式求得服装
店利润.
解:该服装店卖出货物所得的钱数为:
47×30+[(+3)×7+(+2)×6+(+1)×3+0×5
+(-1)×4+(-2)×5]
(1+100)×100
2
2=50502=25502500.
注意:利用转化思想可把“陌生”问题转化为 “熟悉”问题解决.本题中把“立方”运算转化为 “平方”运算,把“求和”运算转化为“乘方”运 算.
(1)|a|+|b|=0;(2)|a|=-|b|;(3)a2+b2=0;(4)a2 =-b2;(5)|a|+b2=0;(6)|a|=-b2 等.
有理数的概念知识点归纳及练习题
有理数的概念知识梳理有理数的概念一、目标认知学习目标:了解正数、负数、有理数的概念,会用正数和负数表示相反意义的量。
掌握一个数的相反数的求法和性质,学习使用数轴,借助数轴理解相反数的几何意义,会借助数轴比较有理数的大小。
掌握一个数的绝对值的求法和性质,进一步学习使用数轴,借助数轴理解绝对值的几何意义。
重点:有理数的概念及其分类,相反数的概念及求法,绝对值的概念及求法,数轴的概念及应用;有理数比较大小难点:绝对值的概念及求法,尤其是用字母表示的时候的意义。
运用数轴理解绝对值的几何意义。
有理数比较大小的方法的掌握。
二、知识要点梳理知识点一:负数的引入要点诠释:正数和负数是根据实际需要而产生的,随着社会的发展,小学学过的自然数、分数和小数已不能满足实际的需要,比如一些有相反意义的量:收入200元和支出100元、零上6℃和零下6℃等等,它们不但意义相反,而且表示一定的数量,怎样表示它们呢?我们把一种意义的量规定为正的,把另一种和它意义相反的的量规定为负的,这样就产生了正数和负数。
用正数和负数表示具有相反意义的量时,哪种意义为正,是可以任意选择的,但习惯把“前进、上升、收入、零上温度”等规定为正,而把“后退、下降、支出、零下温度”等规定为负。
知识点二:正数和负数的概念要点诠释:(1)像3、1.5、、584等大于0的数,叫做正数,在小学学过的数,除0以外都是正数,正数比0大。
(2)像-3、-1.5、、-584等在正数前面加“-”(读作负)号的数,叫做负数。
负数比0小。
(3)零既不是正数也不是负数,零是正数和负数的分界。
注意:(1)为了强调,正数前面有时也可以加上“+”(读作正)号,例如:3、1.5、也可以写作+3、+1.5、+。
(2)对于正数和负数的概念,不能简单理解为:带“+”号的数是正数,带“-”号的数是负数。
例如:-a一定是负数吗?答案是不一定。
因为字母a可以表示任意的数,若a表示的是正数,则-a是负数;若a表示的是0,则-a仍是0;当a表示负数时,-a就不是负数了(此时-a是正数)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.(1)64的立方根是;
(2)下列说法中:① 都是27的立方根,② ,③ 的立方根是2,④ 。其中正确的有()
7.易混淆的三个数(自行分析它们)
(1) (2) (3)
基础练习题
一、填空题
1、(-0.7)2的平方根是2、若 =25, =3,则a+b=
A.1.06× B.10.6× C.1.06× D.1.06×
7、︱x- ︱+ ( 2y+1 ) =0 ,则 + 的值是()
A. B. C.- D.-
8、若( b+1 ) +3︱a-2︱=0,则a-2b的值是
A.-4 B.0 C.4 D.2
二、计算。
11、-10 + 8÷(-2 ) -(-4)×(-3)
12、-49 + 2×(-3 ) + (-6 )÷(- )
13、有一组数:(1,1,1),(2,4,8),(3,9,27),(4,16,64),…求第100组的三个数的和。
14、一杯饮料,第一次倒去一半,第二次倒去剩下的一半,……如此倒下去,第八次后剩下的饮料是原来的几分之几?
15、比较下列各对数的大小.
(3)无理数是无限不循环小数;(4)无理数都可以用数轴上的点来表示。
其中正确的说法的个数是()
A.1 B.2 C.3 D.4
2.如果一个实数的平方根与它的立方根相等,则这个数是()
A.0 B.正整数C.0和1 D.1
3.能与数轴上的点一一对应的是()
A整数B有理数C无理数D实数
4.下列各数中,不是无理数的是 ( )
C、 的算术平方根是 D、 的算术平方根是
9.下列说法:(1) 是9的平方根;(2)9的平方根是 ;(3)3是9的平方根;(4)9的平方根是3,其中正确的有()
A.3个B.2个C.1个D.4个
10.下列语句中正确的是()
A、任意算术平方根是正数B、只有正数才有算术平方根
C、∵3的平方是9,∴9的平方根是3D、 是1的平方根
数学练习(三)第3套
1、 中,3是________,2是_______,幂是_________.
1、- 的底数是______,指数是______,读作________________,计算结果是_______.
2、 - 表示___________________________.结果是________.
A、—21B、35C、—35D、—29
3、下列各数对中,数值相等的是()
A、+32与+23B、—23与(—2)3C、—32与(—3)2D、3×22与(3×2)2
4 、已知有理数a、b在数轴上的位置如图所示,下列结论正确的是()
A、a>bB、ab<0 C、b—a>0 D、a+b>0
5、下列等式成立的是()
联系:(1)被开方数必须都为数;
(2)正数的负平方根是它的算术平方根的数,根据它的算术平方根可以立即写出它的负平方根。
(3)0的算术平方根与平方根同为。
二、【立方根】
5.如果x3=a,则x叫做a的,记作“”(a称为被开方数)。
6.正数有一个的立方根;0的立方根是;负数有一个的立方根。
7.求一个数的平方根(或立方根)的运算叫开(或开)。
8.立方根与平方根的区别:
一个数只有个立方根,并且符号与这个数;
只有正数和0有平方根,数没有平方根,正数的平方根有个,并且互为相反数,0的平方根只有一个且为.
9.一般来说,被开放数扩大(或缩小) 倍,算术平方根扩大(或缩小)倍,例如 .
10.平方表:(自行完成)
12=
62=
112=
162=
212=
22=
8.下列运算中,错误的是()
① ,② ,③ ④
A.1个B.2个C.3个D. 4个
9.若 , ,则 的值为()
A. 8 B.±8C.±2 D.±8或±2
(二)、细心填一填
10.在数轴上表示 的点离原点的距离是。设面积为5的正方形的边长为 ,那么 =
11. 9的算术平方根是; 的平方根是, 的立方根是,-125的立方根
3、地球离太阳约有150000000万千米,用科学记数法表示为___________万千米.
4、若a为大于1的有理数,则a , , 三者按照从小到大的顺序列为_______________.
一、选择。
5、一个数的平方一定是()
A.正数B.负数C.非正数D.非负数
6、下面用科学记数法表示106000,其中正确的是()
11、当 时, 有意义。12、当 时, 有意义。
13、当 时, 有意义。14、当 时,式子 有意义。
15、若 有意义,则 能取的最小整数为
二、
1.9的算术平方根是()
2.下列计算正确的是()
A. =±2 B. =9 C. D.
3.下列说法中正确的是()
A.9的平方根是3 B. 的算术平方根是±2
C. 的算术平方根是4 D. 的平方根是±2
4.64的平方根是()
A.±8 B.±4 C.±2 D.±
5.4的平方的倒数的算术平方根是()
6.下列结论正确的是()
A B C D
7.以下语句及写成式子正确的是()
A、7是49的算术平方根,即 B、7是 的平方根,即
C、 是49的平方根,即 D、 是49的平方根,即
8.下列语句中正确的是()
A、 的平方根是 B、 的平方根是
72=
122=
172=
222=
32=
82=
132=
182=
232=
42=
92=
142=
192=
242=
52=
102=
152=
202=
252=
三、【题型规律总结】:
1、平方根是其本身的数是;算术平方根是其本身的数是;立方根是其本身的数是。
2、每一个正数都有个互为相反数的平方根,其中正的那个是算术平方根;任何一个数都有唯一立方根,这个立方根的符号与原数。
知识点有理数的混合运算(一)
1.计算:(1)(-8)×5-40=_____;(2)(-1.2)÷(- )-(-2)=______.
2.计算:(1)-4÷4× =_____;(2)-2 ÷1 ×(-4)=______.
3.当 =1,则a____0;若 =-1,则a______0.
4.(1)若-1<a<0,则a______ ;(2)当a>1,则a_______ ;(3)若0<a≤1,则a______ .
(三)、用心做一做
20.-7,0.32, ,0, , , , ,0.1010010001…
①有理数集合{…}
②无理数集合{…}
③负实数集合{…}
21.化简(每小题5分,共20分)
① +3 —5 ② ( - )
③| | + | |-| |④
22.求下列各式中的x(10分,每小题5分)
(1) (2)
23.比较下列各组数的大少(5分)
(3)[ ÷(-1 )]×(- )÷(-3 )-0.25÷
(4)(–1.76)+(–19.15)+ (–8.24)
(5)(+ 3 )+(–2 )+ 5 +(–8 )
(6)100×(0.7– – + 0.03)(7)(–11)× +(–11)×9
(8) 20–15÷(–5)(9)[ ÷(– – )+2 ]÷(–1 )
(3)42÷(-1 )-1 ÷(-0.125);(4)(-48)÷82-(-25)÷(-6)2;
(5)- +( )×(-2.4).
2.计算题:(10′×5=50′)
(1)-23÷1 ×(-1 )2÷(1 )2;
(2)-14-(2-0.5)× ×[( )2-( )3];
(3)-1 ×[1-3×(- )2]-( )2×(-2)3÷(- )3
A、100÷ ×(—7)=100÷ B、100÷ ×(—7)=100×7×(—7)
C、100÷ ×(—7)=100× ×7 D、100÷ ×(—7)=100×7×7
6、 表示的意义是()
A、6个—5相乘的积B、-5乘以6的积C、5个—6相乘的积D、6个—5相加的和
(1) 与 (2) 与 (3) 与 (4) 与
16、计算.
(1) (2)
(3) (4)
17计算.
(l) (2)
(3) (4)
有理数加、减、乘、除、乘方测试
一、精心选一选,慧眼识金
1、已知两个有理数的和为负数,则这两个有理数()
A、均为负数B、均不为零C、至少有一正数D、至少有一负数
2、计算 的结果是()
以上这种化简的步骤叫做分母有理化。
还可以用以下方法化简:
= (四)
(1)请用不同的方法化简 :
参照(三)式得 =__________________;
参照(四)式得 =___________________。
(2)化简:
七年级数学《实数》基础测试题
(一)、
1.有下列说法:
(1)无理数就是开方开不尽的数;(2)无理数包括正无理数、零、负无理数;
3、 本身为数,有性,即 ≥0; 有意义的条件是a≥0。
4、公式:⑴( )2=(a≥0);⑵ =(a取任何数)。
5、区分( )2=a(a≥0),与 =
6.非负数的重要性质:若几个非负数之和等于0,则每一个非负数都为(此性质应用很广,务必掌握)。
【典型例题】
1.下列语句中,正确的是()
A.一个实数的平方根有两个,它们互为相反数B.负数没有立方根