(完整版)小船渡河问题练习题大全

合集下载

小船渡河、牵连速度专题训练(附答案)

小船渡河、牵连速度专题训练(附答案)

小船渡河模型1.小船要横渡一条宽400m 的小河,河水流速是3m/s ,船在静水中的速度是5m/s ,(已知sin53°=0.8,cos53°=0.6)求:(1)要使船到达对岸的时间最短,船头应指向何处?最短时间是多少? (2)要使船航程最短,船头应指向何处?最短航程为多少?渡河时间又是多少?2.汽艇在宽为400 m 、水流速度为2 m/s 的河中横渡河面,已知它在静水中的速度为4 m/s .求: (1)如果要在最短时间内过河,船头应取什么航向?最短时间为多少?(2)若水流速度为4 m/s ,船在静水中的速度为2 m/s ,求出船能过河的最短航程?3.小船匀速横渡一条河流,水流速度的大小1v ,船在静水中的速度大小2v ,第一次船头垂直对岸方向航行时,在出发后020s t =到达对岸下游60m 处;第二次船头保持与河岸成53θ=︒角向上游航行时,小船恰好经过时间t 1能垂直河岸到达正对岸,已知sin53︒=0.8,cos53︒=0.6,求: (1)求船在静水中的速度大小v 2; (2)求第二次过河的时间t 1;(3)若上游大暴雨,导致水流速度增大到10m/s 时,求小船到达河对岸的最短位移x 及所用时间时间t 2。

4.一条宽度为L 的河,水流速度v 水恒定,(1)若船在静水中的速度为v 船,那么,保持发动机输出功率不变,怎样渡河时间最短?最短时间? (2)若船在静水中速度v v >船水,怎样渡河位移最小?最小位移?(3)如图,某同学偶然发现在水流速度恒定的河流中,某渡河游艇的航迹好像是一条抛物线,又发现游艇船头指向对岸,该同学猜测该游艇可能在垂直河岸方向做匀加速运动,请你分析论证该同学的猜想。

参考答案1.【详解】(1)船头始终垂直河岸航行时,在垂直于河岸方向的速度最大,到达对岸时间最短,且最短时间1400s 80s 5d t v ===船 (2)由于船速大于水速度,船能到达正对岸时航程最短,此时设船与河岸夹角为θ,则3cos 5v v θ==水船 可得 θ=53°船头与上游河岸夹角为53°最短航程为河宽400m4m/s v ==合过河时间 2=100s dt v =合2.【详解】(1)由合运动与分运动具有等时性及分运动的独立性知,在船速一定的情况下,船头应垂直指向对岸开渡河时间最短.则:t =1dv =100 s (其中d 为河宽).(2)由于河水的流速大于船速,故小船不可能垂直于河岸过河,如图,设船从A 点开始渡河,按题意作出速度矢量三角形,若要航程最短,只需船的合速度v ′方向与AB 间的夹角α最小,由于v 1′的大小恒定,所以当v ′与圆周相切,即v 1′⊥v ′时航程最短.由相似三角形关系知最短航程为'2'1X 800m v d v ==.3.【详解】(1)第二次到达正对岸,有 21cos v v α= 第一次航行时,有 10s v t = 解得 25m/s v =(2)第一次过河时,河宽为 20100m d v t == 第二次过河时间为 1225s sin dt v α==(3)由于船速小于水速,所以船无法到达正对岸,设船头与上游河岸的夹角为β ,则当211cos 2v v β==' 时,小船到达对岸的位移最小,所用的时间为12sin d t v β==最小位移为 200m sin dx β==4.(1)如图所示设船头斜向上游与河岸成任意角θ,这时船速在垂直与河岸方向的速度分量为2sin v v θ=船渡河所用时间为 2sin L Lt v v θ==船 由此可知L 、v 船一定时,t 随sin θ增大而减小;当θ=90°时,sin θ=1(最大),所以船头与河岸垂直时,渡河时间最小为 min =Lt v 船(2))如图所示,渡河的最小位移即河的宽度为使船能直达对岸,船头应指向河的上游,并与河岸成一定角度θ,根据三角函数关系有cos v v θ=水船因为0≤cos θ≤1,所以只有在v 船>v 水时,船才有可能垂直河岸渡河,此时渡河最短位移为L ; (3)由题可知水流速度不变,而游艇的运动轨迹是曲线,故游艇的速度发生变化,根据运动轨迹可知,游艇的加速度沿y 轴正方向,与游艇的初速度方向相同,故游艇沿y 轴方向做匀加速直线运动。

(完整版)高中物理小船渡河模型典型例题(含答案)【经典】..

(完整版)高中物理小船渡河模型典型例题(含答案)【经典】..

考点四:小船渡河模型1.(1.(小船渡河问题小船渡河问题小船渡河问题))小船在200 m 宽的河中横渡,水流速度是2 m/s 2 m/s,小船在静水中的航速是,小船在静水中的航速是4 m/s.4 m/s.求:求:求:(1)(1)要使小船渡河耗时最少,应如何航行?最短时间为多少?要使小船渡河耗时最少,应如何航行?最短时间为多少?要使小船渡河耗时最少,应如何航行?最短时间为多少?(2)(2)要使小船航程最短,应如何航行?最短航程为多少?要使小船航程最短,应如何航行?最短航程为多少?要使小船航程最短,应如何航行?最短航程为多少?答案 (1)船头正对河岸航行耗时最少,最短时间为50 s.(2)船头偏向上游,与河岸成60°角,最短航程为200 m.解析 (1)如图甲所示,船头始终正对河岸航行时耗时最少,即最短时间tmin =d v 船=2004s =50 s. (2)如图乙所示,航程最短为河宽d ,即最短航程为200 m ,应使v 合的方向垂直于河岸,故船头应偏向上游,与河岸成α角,有 cos α=v 水v 船=24=12,解得α=60°. 2、一小船渡河,河宽d =180 m 180 m,水流速度,水流速度v1v1==2.5 m/s.2.5 m/s.若船在静水中的速度为若船在静水中的速度为v2v2==5 m/s 5 m/s,求:,求:,求: (1)(1)欲使船在最短的时间内渡河,船头应朝什么方向?用多长时间?位移是多少?欲使船在最短的时间内渡河,船头应朝什么方向?用多长时间?位移是多少?欲使船在最短的时间内渡河,船头应朝什么方向?用多长时间?位移是多少?(2)(2)欲使船渡河的航程最短,船头应朝什么方向?用多长时间?位移是多少?欲使船渡河的航程最短,船头应朝什么方向?用多长时间?位移是多少?欲使船渡河的航程最短,船头应朝什么方向?用多长时间?位移是多少?答案 (1)船头垂直于河岸 36 s 90 5 m (2)船头向上游偏30° 24 3 s 180 m3、已知某船在静水中的速率为v1v1==4 m/s m/s,现让船渡过某条河,假设这条河的两岸是理想的平行线,河宽,现让船渡过某条河,假设这条河的两岸是理想的平行线,河宽为d =100 m 100 m,河水的流动速度为,河水的流动速度为v2v2==3 m/s 3 m/s,方向与河岸平行,方向与河岸平行,方向与河岸平行..试分析:试分析:(1)(1)欲使船以最短时间渡过河去,船的航向怎样?最短时间是多少?到达对岸的位置怎样?船发生的位移欲使船以最短时间渡过河去,船的航向怎样?最短时间是多少?到达对岸的位置怎样?船发生的位移是多大?是多大?(2)(2)欲使船渡河过程中的航行距离最短,船的航向又应怎样?渡河所用时间是多少?欲使船渡河过程中的航行距离最短,船的航向又应怎样?渡河所用时间是多少?欲使船渡河过程中的航行距离最短,船的航向又应怎样?渡河所用时间是多少?解析 (1)根据运动的独立性和等时性,当船在垂直河岸方向上的分速度v⊥最大时,渡河所用时间最短.设船头指向上游且与上游河岸夹角为α,其合速度v 与分运动速度v1、v2的矢量关系如图所示.河水流速v2平行于河岸,不影响渡河快慢,船在垂直河岸方向上的分速度v⊥=v1sin α,则船渡河所用时间为t =d v1sin α. 显然,当sin α=1即α=90°时,v⊥最大,t 最小,此时船身垂直于河岸,船头始终垂直指向对岸,但船实际的航向斜向下游,如图所示.渡河的最短时间tmin =d v1=1004s =25 s 船的位移为l =v 21+v 22tmin =42+32×25 m=125 m 船渡过河时到达正对岸的下游A 处,其顺水漂流的位移为x =v2tmin =3×25 m=75 m.(2)由于v1>v2,故船的合速度与河岸垂直时,船的航行距离最短.设此时船速v1的方向(船头的指向)斜向上游,且与河岸成θ角,如图所示,则cos θ=v2v1=34,θ=arccos 34. 船的实际速度为v 合=v 21-v 22=42-32 m/s =7 m/s 故渡河时间:t′=d v 合=1007 s =10077 s. 答案 (1)t=25s ,x=75m ,l=125m (2)t=10077s 4、河宽60 m 60 m,水流速度,水流速度v1v1==6 m/s 6 m/s,小船在静水中的速度,小船在静水中的速度v2v2==3 m/s 3 m/s,则:,则:,则:(1)(1)它渡河的最短时间是多少?它渡河的最短时间是多少?它渡河的最短时间是多少?(2)(2)最短航程是多少?最短航程是多少?最短航程是多少?答案 (1)20 s (2)120 m5.(单选单选))一小船在静水中的速度为3 m/s 3 m/s,它在一条河宽为,它在一条河宽为150 m 150 m,水流速度为,水流速度为4 m/s 的河流中渡河,则该小船该小船( ( ). 答案答案 CA .能到达正对岸.能到达正对岸B B B.渡河的时间可能少于.渡河的时间可能少于50 s甲 乙 AC .以最短时间渡河时,它沿水流方向的位移大小为200 mD 200 m D.以最短位移渡河时,位移大小为.以最短位移渡河时,位移大小为150 m6. 6.一只小船在静水中的速度为一只小船在静水中的速度为5 m/s 5 m/s,它要渡过一条宽为,它要渡过一条宽为50 m 的河,河水流速为4 m/s 4 m/s,则,则,则( ( ) ) 答案答案 CA.A.这只船过河位移不可能为这只船过河位移不可能为50 mB.B.这只船过河时间不可能为这只船过河时间不可能为10 sC.C.若河水流速改变,船过河的最短时间一定不变若河水流速改变,船过河的最短时间一定不变若河水流速改变,船过河的最短时间一定不变D.D.若河水流速改变,船过河的最短位移一定不变若河水流速改变,船过河的最短位移一定不变若河水流速改变,船过河的最短位移一定不变7.(7.(运动的合成和分解运动的合成和分解运动的合成和分解))某河宽为600 m 600 m,河中某点的水流速度,河中某点的水流速度v 与该点到较近河岸的距离d 的关系如图所示.船在静水中的速度为4 m/s 4 m/s,要想使船渡河的时间最短,下列说法正确的是,要想使船渡河的时间最短,下列说法正确的是,要想使船渡河的时间最短,下列说法正确的是( ( ) ) 答案答案 ADA.A.船在航行过程中,船头应与河岸垂直船在航行过程中,船头应与河岸垂直船在航行过程中,船头应与河岸垂直B.B.船在河水中航行的轨迹是一条直线船在河水中航行的轨迹是一条直线船在河水中航行的轨迹是一条直线C.C.渡河的最短时间为渡河的最短时间为240 sD.D.船离开河岸船离开河岸400 m 时的速度大小为2 5 m/s8. ( (多选多选多选))小船横渡一条两岸平行的河流,船本身提供的速度小船横渡一条两岸平行的河流,船本身提供的速度((即静水速度即静水速度))大小不变、船身方向垂直于河岸,水流速度与河岸平行,已知小船的运动轨迹如图所示,则岸,水流速度与河岸平行,已知小船的运动轨迹如图所示,则( ( ) ) 答案答案 ACA .越接近河岸水流速度越小.越接近河岸水流速度越小B .越接近河岸水流速度越大.越接近河岸水流速度越大C .无论水流速度是否变化,这种渡河方式耗时最短.无论水流速度是否变化,这种渡河方式耗时最短D .该船渡河的时间会受水流速度变化的影响.该船渡河的时间会受水流速度变化的影响 9. ( (单选单选单选))有一条两岸平直、河水均匀流动、流速恒为v 的大河.小明驾着小船渡河,去程时船头指向始终与河岸垂直,回程时行驶路线与河岸垂直.去程与回程所用时间的比值为k ,船在静水中的速度大小相同,则小船在静水中的速度大小为同,则小船在静水中的速度大小为( ( ) ) 答案答案 BA.kv k2k2--1B.v 1-k2C.kv 1-k2D.v k2k2--1解析 设大河宽度为d ,小船在静水中的速度为v0,则去程渡河所用时间t1=d v0,回程渡河所用时间t2=d v 20-v2.由题知t1t2=k ,联立以上各式得v0=v1-k2,选项B 正确,选项A 、C 、D 错误. 10. 10. (单选)如图所示,甲、乙两船在同一条河流边同时开始渡河,河宽为(单选)如图所示,甲、乙两船在同一条河流边同时开始渡河,河宽为H ,河水流速为u ,划船速度为v ,出发时两船相距H 332,甲、乙船头均与岸边成o 60角,且乙船恰好能直达对岸的A 点,则下列判断正确的是点,则下列判断正确的是(( D )A .甲、乙两船到达对岸的时间不同.甲、乙两船到达对岸的时间不同B .两船可能在未到达对岸前相遇.两船可能在未到达对岸前相遇C .甲船在A 点右侧靠岸点右侧靠岸D .甲船也在A 点靠岸点靠岸11.11.如图所示,一艘轮船正在以如图所示,一艘轮船正在以4 m/s 的速度沿垂直于河岸方向匀速渡河,河中各处水流速度都相同,其大小为v1v1==3 m/s 3 m/s,行驶中,轮船发动机的牵引力与船头朝向的方向相同.某时刻发动机突然熄火,轮船,行驶中,轮船发动机的牵引力与船头朝向的方向相同.某时刻发动机突然熄火,轮船牵引力随之消失,轮船相对于水的速度逐渐减小,但船头方向始终未发生变化.求:牵引力随之消失,轮船相对于水的速度逐渐减小,但船头方向始终未发生变化.求:(1)(1)发动机未熄火时,轮船相对于静水行驶的速度大小;发动机未熄火时,轮船相对于静水行驶的速度大小;发动机未熄火时,轮船相对于静水行驶的速度大小;(2)(2)发动机熄火后,轮船相对于河岸速度的最小值.发动机熄火后,轮船相对于河岸速度的最小值.发动机熄火后,轮船相对于河岸速度的最小值.答案 (1)5 m/s (2)2.4 m/s解析 (1)发动机未熄火时,轮船运动速度v 与水流速度v1方向垂直,如图所示,故此时船相对于静水的速度v2的大小:v2=v2+v 21=42+32 m/s =5 m/s ,设v 与v2的夹角为θ,则cos θ=v v2=0.8.(2)熄火前,船的牵引力沿v2的方向,水的阻力与v2的方向相反,熄火后,牵引力消失,在阻力作用下,v2逐渐减小,但其方向不变,当v2与v1的矢量和与v2垂直时,轮船的合速度最小,则vmin =v1cos θ=3×0.8 m/s =2.4 m/s.12.12.如图所示,河宽如图所示,河宽d =120 m 120 m,设小船在静水中的速度为,设小船在静水中的速度为v1v1,河水的流速为,河水的流速为v2.v2.小船从小船从A 点出发,在渡河时,船身保持平行移动若出发时船头指向河对岸上游的B 点,经过10 min 10 min,小船恰好到达河正对岸的,小船恰好到达河正对岸的C 点;若出发时船头指向河正对岸的C 点,经过8 min 8 min,小船到达,小船到达C 点下游的D 点.求:求:(1)(1)小船在静水中的速度小船在静水中的速度v1的大小;的大小;(2)(2)河水的流速河水的流速v2的大小;的大小;(3)(3)在第二次渡河中小船被冲向下游的距离在第二次渡河中小船被冲向下游的距离sCD.答案 (1)0.25 m/s (2)0.15 m/s (3)72 m解析 (1)小船从A 点出发,若船头指向河正对岸的C 点,则此时v1方向的位移为d ,故有v1=d tmin =12060×8m/s =0.25 m/s. (2)设AB 与河岸上游成α角,由题意可知,此时恰好到达河正对岸的C 点,故v1沿河岸方向的分速度大小恰好等于河水的流速v2的大小,即v2=v1cos α,此时渡河时间为t =d v1sin α,所以sin α=d v1t=0.8,故v2=v1cos α=0.15 m/s. (3)在第二次渡河中小船被冲向下游的距离为sCD =v2tmin =72 m.。

高一物理小船过河问题

高一物理小船过河问题

小船过河问题船速大于水速船速小于水速水速不断变化两船比对问题其他问题中的应用一、船速大于水速情况下的小船过河1.澳大利亚东部遭遇洪灾,当地一辆摩托艇接到救援任务,在一宽度为240m的洪水对面解救被困人员。

摩托艇在静水中的速度为8m/s,洪水的流速为6m/s,则下列说法正确的是()A.摩托艇可以垂直到达正对岸B.摩托艇垂直到达正对岸的时间为30sC.摩托艇到达对面的最短时间为24sD.若摩托艇以最短时间到达洪水对面,则摩托艇沿着洪水流速方向运动了180m2.运动员在河面上做划船运动训练,河水流动的速度v大小不变,方向沿河岸向下游方向,运动员划船的速度方向沿船头方向,大小不变。

如图所示,为五幅描述船过河的航线图,图中虚线表示船运动的实际航线。

下列说法正确的是()A.甲、乙、戊三幅图描绘的航线都可能是符合实际的船过河的航线B.甲图所绘航线是符合实际的,船头保持甲图所示方向航行,船过河时间最短C .丙图所绘航线是符合实际的,船头保持丙图所示方向航行,船过河位移最小D .乙图和戊图所绘航线都是符合实际的,船头保持图示方向航行,船过河位移都可能最小3.随着我国全面进入主汛期,防汛形势十分严峻。

各地区各部门坚持人民至上、生命至上,全力以赴抗洪抢险。

某船积极参加抗洪,已知该船在静水中的最大速度为5m/s 。

现让该船渡过某条河,假设河的两岸是平行线河水流速恒定,河宽d =100m ,船以最短时间渡河,航线与岸的夹角为60°,则( ) A .渡河时间为10s B 53C .实际渡河位移为3D .无论如何调整船头方向,船都无法到达正对岸4.2020年,中国多地遭遇洪涝灾害,在一次抗洪抢险中,甲、乙两名战士驾驶摩托艇救人。

假设江岸是平直的,洪水沿江向下游流去,水流速度为1v ,摩托艇在静水中的航速均为2v ,且12v v <,战士救人的地点离岸边最近处的距离相同。

战士甲用最短时间将人送上岸,战士乙用最短距离将人送上岸,则甲、乙两战士所用时间之比为( )A 22212v v -B 22221v v -C .12v vD 22211v v -二、船速小于水速情况下的小船过河5.一小船渡过一条宽120m 、水流速度为8m/s 的河流,已知船在静水中的速度为6m/s ,下列分析正确的是( )A .小船以最短位移渡河时,时间为20sB .小船渡河的位移大于等于160mC .小船以最短位移渡河时,位移大小为120mD .小船以最短时间渡河时,它的位移大小为160m6.金马河流经温江后河宽逐渐增大,由300米扩至1200米,是温江的一张名片。

(完整版)小船过河问题练习

(完整版)小船过河问题练习

曲线运动——小船渡河问题分析1.一人以垂直河岸不变的速度(相对水)向对岸游去,若河水流动速度恒定。

下列说法中正确的是A.河水流动速度对人渡河无任何影响B.游泳者渡河的路线与河岸垂直C.由于河水流动的影响,人到达对岸的位置将向下游方向偏移D.由于河水流动的影响,人到达对岸的时间与静水中不同答案:C正确的是A.小船过河所需的最短时间是40sB.要使小船过河的位移最短,船头应始终正对着对岸C.要使小船过河的位移最短,过河所需的时间是50sD.如果水流速度增大为6m/s,小船过河所需的最短时间将增大答案:AA、下落时间越短B、下落时间越长C、落地时速度越小D、落地时速度越大答案:D4.小船匀速横渡一条宽120m的河流,当船头垂直于河岸方向航行时,30s到达河对岸下游60m处,则船在静水中的速度为;若船头保持与河岸上游成α角航行,恰好到达正对岸,则α= 。

答案:5.一小船在静水的速度为3m/s,它在一条河宽150m,水流速度为4m/s的河流中渡河,则该小船()A.能到达正对岸 B.渡河的时间可能少于50sC.以最短时间渡河时,它沿水流方向的位移大小为200mD.以最短位移渡河时,位移大小为150m答案:C6.小船在静水中的速度是v,今小船要渡过一河流,渡河时小船朝对岸垂直划行,若航行至河中心时,河水流速增大,则渡河时间将()A. 不变B.减小C.增大D.不能确定答案:A7.若河水的流速大小与水到河岸的距离有关,河中心水的流速最大,河岸边缘处水的流速最小。

现假设河的宽度为120m,河中心水的流速大小为5m/s,船在静水中的速度大小为3m/s,则下列说法中正确的是()A.船渡河的最短时间是40sB.船在河水中航行的轨迹是一条直线C.要使船渡河时间最短,船头应始终与河岸垂直D.要使船渡河行程最短,船头应与上游河岸成53°行驶答案:AC8.一条河宽100m,水流速度为3m/s,一条小船在静水中的速度为5m/s,关于船过河的过程,下列说法不正确的是:A.船过河的最短时间是20s B.船要垂直河岸过河需用25s的时间C.船的实际速度可能为5m/s D.船的实际速度可能为10m/s答案:D9.某船在静水中的速率为4m/s, 要横渡宽为40m的河, 河水的流速为5m/s、下列说法中不正确的是A、该船不可能沿垂直于河岸的航线抵达对岸B、该船渡河的速度最小速度是3m/sC、该船渡河所用时间至少是10sD、该船渡河所经位移的大小至少是50m答案:B10.一只船在200m宽的河中横渡,水流速度是2m/s,船在静水中的航速是4m/s,欲使小船以最短时间渡过河去,则应使船头方向_________河岸(填“垂直”或“不垂直”)行驶,最短的时间是_________ s.答案:垂直5011.一艘船以相对于静水恒定的速率渡河,水流速度也恒定(且小于船速),若河的宽度一定,要使船到达对岸航程最短,则()A.船头指向应垂直河岸航行B.船头指向应偏向下游一侧C.船头指向应偏向上游一侧D.船不可能沿直线到达对岸答案:C12.一只小船在静水中的速度为3m/s,它要渡过一条宽度为30m的河,河水的流速为4m/s,则下列说法正确的是( )A.船不能渡过河 B.船过河的速度一定为5m/sC.船运动的轨迹不可能垂直河岸D.船过河的最短时间为10s答案:CD13.王聪同学,为了测量某河流的水速,找来一条小船,他首先保持小船对水以恒定的速度行驶.第一次,保持船头始终垂直河岸划行,经10min到达正对岸下游120m处;第二次,船头始终保持指向与上游河岸成θ角划行,经12.5min到达正对岸。

小船渡河问题

小船渡河问题

小船渡河问题1.在抗洪抢险中,战士驾驶摩托艇救人,假设江岸是平直的,洪水沿江向下游流去,水流速度为v1,摩托艇在静水中的航速为v2,战士救人的地点A离岸边最近处O的距离为d,如战士想在最短时间内将人送上岸,则摩托艇登陆的地点离O点的距离为()A.B.0 C.D.2.一艘船的船头始终正对河岸方向行驶,如图所示.已知船在静水中行驶的速度为v1,水流速度为v2,河宽为d.则下列判断正确的是()A.船渡河时间为B.船渡河时间为C.船渡河过程被冲到下游的距离为·dD.船渡河过程被冲到下游的距离为·d3.唐僧、悟空、沙僧和八戒师徒四人想划船渡过一条宽150 m的河,他们在静水中划船的速度为5 m/s,现在他们观察到河水的流速为4 m/s,对于这次划船过河,他们有各自的看法,其中正确的是A.唐僧说:我们要想到达正对岸就得朝着正对岸划船B.悟空说:我们要想节省时间就得朝着正对岸划船C.沙僧说:我们要想少走点路就得朝着正对岸划船D.八戒说:今天这种情况我们是不可能到达正对岸的4.一艘小船要从O点渡过一条两岸平行、宽度为d=100 m的河流,已知河水流速为v1=4 m/s,小船在静水中的速度为v2=2 m/s,B点距正对岸的A点x0=173 m.下面关于该船渡河的判断,其中正确的是()A.小船过河的最短航程为100 m B.小船过河的最短时间为25 sC.小船可以在对岸A、B两点间任意一点靠岸D.小船过河的最短航程为200 m5.(多选)如图所示,河水由西向东流,河宽为800 m,河中各点的水流速度大小为v水,各点到较近河岸的距离为x,v水与x的关系为v水=x(m/s),让小船船头垂直河岸由南向北渡河,小船在静水中的速度大小恒为v船=4 m/s,下列说法正确的是()A.小船渡河的轨迹为直线B.小船在河水中的最大速度是5 m/sC.小船渡河的时间是200 sD.小船在距南岸200 m处的速度小于距北岸200 m处的速度6.某人划小船横渡一条两岸平行的河流,船在静水中的速度大小不变,船头方向始终垂直于河岸,水流速度与河岸平行,已知小船的运动轨迹如图所示,则()A.各处水流速度大小都一样B.离两岸越近水流速度越小C.离两岸越近水流速度越大D.无论水流速度是否变化,这种渡河方式耗时最长7.(多选)一船在静水中的速度是6 m/s,要渡过宽为180 m、水流速度为8 m/s的河流,则下列说法中正确的是()A.船相对于地的速度可能是15 m/s B.此船过河的最短时间是30 sC.此船可以在对岸的任意位置靠岸D.此船不可能垂直到达对岸8.一小船渡河,河宽d=180 m,水流速度v1=2.5 m/s.船在静水中的速度为v2=5 m/s,则:(1)欲使船在最短的时间内渡河,船头应朝什么方向?用多长时间?位移是多少?(2)欲使船渡河的航程最短,船头应朝什么方向?用多长时间?位移是多少?9.已知某船在静水中的速度为v1=5 m/s,现让船渡过某条河,假设这条河的两岸是理想的平行线,河宽为d=100 m,水流速度为v2=3 m/s,方向与河岸平行.(1)欲使船以最短时间渡河,渡河所用时间是多少?位移有多大?(2)欲使船以最小位移渡河,渡河所用时间是多少?(3)若水流速度为v2′=6 m/s,船在静水中的速度为v1=5 m/s不变,船能否垂直河岸渡河.答案解析1.【答案】C【解析】根据v=,可知摩托艇登陆的最短时间t=,登陆点到O点的距离s=v1t=,故选C.2.【答案】C【解析】小船正对河岸运动,渡河时间t=,沿河岸方向运动的位移x2=v2t=·d,故A、B、D错误,C正确.3.【答案】B【解析】AB、当船头垂直于河岸时,渡河的时间最短,为:t=;但30s内要随着水向下游移动,故A错误,B正确;C D、当合速度与河岸垂直时,渡河的位移最小,此时船头偏向上游,故C、D错误.4.【答案】D【解析】ACD、因为水流速度大于船静水速度,所以合速度的方向不可能垂直河岸,则小船不可能到达正对岸.当合速度的方向与相对水的速度的方向垂直时,合速度的方向与河岸的夹角最短,渡河航程最小;根据几何关系,则有:=,因此最短的航程是:s=d=×100 m =200 m,故A、C错误,D正确;B、当船静水速的方向与河岸垂直时,渡河时间最短,最短时间:t==s=50 s,故B错误.5.【答案】BC【解析】小船在垂直河岸方向上做匀速直线运动,在沿河岸方向上做变速运动,合加速度的方向与合速度方向不在同一条直线上,做曲线运动,选项A错误;当小船行驶到河中央时水流速度最大,v水=×400 m/s=3 m/s,则小船在河水中的最大速度v max=m/s=5 m/s,选项B正确;小船船头垂直河岸由南向北渡河,那么小船渡河的时间是t==s =200 s,选项C正确;小船在距南岸200 m处的河水速度大小与距北岸200 m处的河水速度大小相等,根据矢量的合成法则,这两种情况的合速度大小相等,选项D错误.6.【答案】B【解析】从轨迹曲线的弯曲形状上可以知道,小船先具有指向下游的加速度,后具有指向上游的加速度,故加速度是变化的,且水流是先加速后减速,即越接近河岸水流速度越小,故A、C错误,B正确;根据运动的独立性,船身方向垂直于河岸,与水流速度是否变化无关,这种渡河方式耗时最短,故D错误.7.【答案】BD【解析】船相对于地的速度的可能值处在2~14 m/s之间,选项A错误;当船头垂直河岸渡河时,船过河的时间最短,最短时间是t==s=30 s,选项B正确;因为船在静水中的速度小于水流速度,船的合速度不可能垂直对岸,所以船不能垂直到达河对岸,选项C 错误,D正确.本题答案为B、D.8.【答案】(1)船头垂直于河岸36 s90m(2)船头偏向上游与河岸夹角为60°24s180 m【解析】将船实际的速度(合速度)分解为垂直河岸方向和平行河岸方向上的两个分速度,垂直分速度影响渡河的时间,而平行分速度只影响平行河岸方向上的位移.(1)欲使船在最短时间内渡河,船头应朝垂直河岸方向.当船头垂直河岸时,如图所示.时间t==s=36 s,v合==m/s位移为x=v合t=90m.(2)欲使船渡河航程最短,应使合运动的速度方向垂直河岸渡河,船头应朝上游与河岸成某一夹角β.垂直河岸渡河要求v平行=0,所以船头应向上游偏转一定角度,如图所示:有v2sinα=v1,得α=30°,所以当船头偏向上游与河岸夹角β=60°时航程最短.最短航程x′=d=180 m,所用时间t′===s=24s.9.【答案】(1)20 s20m(2)25 s(3)不能【解析】(1)由题意知,当船在垂直于河岸方向上的分速度最大时,渡河所用时间最短,河水流速平行于河岸,不影响渡河时间,所以当船头垂直于河岸渡河时,所用时间最短,则最短时间为t==s=20 s.如图甲所示,当船到达对岸时,船沿水流方向也发生了位移,由几何知识可得,船的位移为l=,由题意可得x=v2t=3×20 m=60 m,代入得l=20m.(2)分析可知,当船的实际速度方向垂直于河岸时,船的位移最小,因船在静水中的速度为v1=5 m/s,大于水流速度v2=3 m/s,故可以使船的实际速度方向垂直于河岸.如图乙所示,设船斜指向上游河对岸,且与河岸所成夹角为θ,则有v1cosθ=v2,cosθ==0.6,则sinθ==0.8,所用的时间为t==s=25 s.(3)当水流速度v2′=6 m/s大于船在静水中的速度v1=5 m/s时,不论v1方向如何,其合速度方向总是偏向下游,故不能垂直河岸渡河.。

(完整版)小船渡河模型(含答案)

(完整版)小船渡河模型(含答案)

运动的合成与分解实例——小船渡河模型一、基础知识(一)小船渡河问题分析(1)船的实际运动是水流的运动和船相对静水的运动的合运动.(2)三种速度:v1(船在静水中的速度)、v2(水流速度)、v(船的实际速度).(3)三种情景①过河时间最短:船头正对河岸时,渡河时间最短,t短=d v1(d为河宽).②过河路径最短(v2<v1时):合速度垂直于河岸时,航程最短,s短=d.船头指向上游与河岸夹角为α,cos α=v2v1.③过河路径最短(v2>v1时):合速度不可能垂直于河岸,无法垂直渡河.确定方法如下:如图所示,以v2矢量末端为圆心,以v1矢量的大小为半径画弧,从v2矢量的始端向圆弧作切线,则合速度沿此切线方向航程最短.由图可知:cos α=v1v2,最短航程:s短=dcos α=v2v1d.(二)求解小船渡河问题的方法求解小船渡河问题有两类:一是求最短渡河时间,二是求最短渡河位移.无论哪类都必须明确以下四点:(1)解决这类问题的关键是:正确区分分运动和合运动,船的航行方向也就是船头指向,是分运动.船的运动方向也就是船的实际运动方向,是合运动,一般情况下与船头指向不一致.(2)运动分解的基本方法,按实际效果分解,一般用平行四边形定则按水流方向和船头指向分解.(3)渡河时间只与垂直河岸的船的分速度有关,与水流速度无关.(4)求最短渡河位移时,根据船速v船与水流速度v水的大小情况用三角形法则求极限的方法处理.二、练习1、一小船渡河,河宽d=180 m,水流速度v1=2.5 m/s.若船在静水中的速度为v2=5 m/s,则:(1)欲使船在最短时间内渡河,船头应朝什么方向?用多长时间?位移是多少?(2)欲使船渡河的航程最短,船头应朝什么方向?用多长时间?位移是多少?解析(1)欲使船在最短时间内渡河,船头应朝垂直河岸方向.当船头垂直河岸时,如图所示.合速度为倾斜方向,垂直分速度为v2=5 m/s.t=dv2=1805s=36 sv=v21+v22=52 5 m/sx=v t=90 5 m(2)欲使船渡河的航程最短,应垂直河岸渡河,船头应朝上游与垂直河岸方向成某一夹角α,如图所示.有v2sin α=v1,得α=30°所以当船头向上游偏30°时航程最短.x′=d=180 m.t′=dv2cos 30°=180523s=24 3 s答案(1)垂直河岸方向36 s90 5 m (2)向上游偏30°24 3 s180 m2、一条船要在最短时间内渡过宽为100 m的河,已知河水的流速v1与船离河岸的距离x变化的关系如图甲所示,船在静水中的速度v2与时间t的关系如图乙所示,则以下判断中正确的是()A.船渡河的最短时间是25 s B.船运动的轨迹可能是直线。

(完整版)小船渡河问题练习题大全

(完整版)小船渡河问题练习题大全

小船过河问题I1河宽d = 60m,水流速度v i = 6m/ s,小船在静水中的速度V2=3m / s,问:(1)要使它渡河的时间最短,则小船应如何渡河?最短时间是多少?(2)要使它渡河的航程最短,则小船应如何渡河?最短的航程是多少?2在抗洪抢险中,战士驾驶摩托艇救人,假设江岸是平直的,洪水沿江向下游流去,水流速度为v i,摩托艇在静水中的航速为V2,战士救人的地点A离岸边最近处0的距离为d,如战士想在最短时间内将人送上岸,则摩托艇登陆的地点离0点的距离为(C )C.速,则船速与水速之比为()3某人横渡一河流,船划行速度和水流动速度一定,此人过河最短时间为了T i;若此船用最短的位移过河,则需时间为T2,若船速大于水(B) T2(C)T iJ2T22(D)T iT4小河宽为d,河水中各点水流速度大小与各点到较近河岸边的距离成正比,4v nV水kx, k —0, X是各点到近岸的距离,小船船头d垂直河岸渡河,小船划水速度为v0,则下列说法中正确的是()A、小船渡河的轨迹为曲线C、小船渡河时的轨迹为直线B、小船到达离河岸-处,船渡河的速度为• 2v02D、小船到达离河岸3d/4处,船的渡河速度为.1^05.如图1所示,人用绳子通过定滑轮以不变的速度v0拉水平面上的物体A ,当绳与水平方向成B角时,物体A的速度6如图3所示,某人通过一根跨过定滑轮的轻绳提升一个质量为m的重物,开始时人在滑轮的正下方,绳下端A点离滑轮的距离为H。

人由静止拉着绳向右移动,当绳下端到B点位置时,人的速度为v , 与水平面夹角为B。

问在这个过程中,人对重物做了多少功?7. 一条宽度为L的河,水流速度为v水,已知船在静水中速度为v船,那么:(1)怎样渡河时间最短?(2)若v船v水,怎样渡河位移最小? 3)若v船v水,怎样渡河船漂下的距离最短?绳8河宽60m,小船在静水中的速度为4m/s,水流速度为3m/s。

求小船渡河的最小时间是多少,小船实际渡河的位移为多大?若小船在静水中的速度为5m/s,水流速度为3m/s。

小船过河问题相关练习题

小船过河问题相关练习题

小船过河问题相关练习题小船过河问题相关练习题小船过河问题是一种经典的数学问题,常常用于培养逻辑思维和解决问题的能力。

它涉及到一条河流、一只小船和若干个人或物品的过河过程。

在这个问题中,我们需要根据一些限制条件,找出一种最优的过河方案。

下面,我们将介绍一些与小船过河问题相关的练习题,希望能够帮助读者更好地理解和应用这个问题。

练习题一:三个人过河有三个人要过一条河流,但是只有一条小船,且小船每次只能载两个人。

这三个人的过河速度不同,分别为1分钟、2分钟和5分钟。

在河岸上还有一个灯,只有灯在场时,才能划船。

灯在两岸之间来回移动是不需要时间的。

问如何设计最优的过河方案,使得三个人能够在最短的时间内全部过河。

解答:首先,我们需要找到一个最快的方式将最慢的两个人过河。

根据题目中的条件,最慢的人过河需要5分钟,而其他两个人只需要1分钟和2分钟。

因此,我们可以先让最慢的两个人一起过河,花费5分钟。

接下来,我们需要一个人把船划回原来的岸边。

然后,我们让最快的人过河,花费1分钟。

最后,我们让最慢的两个人一起回到原来的岸边,花费5分钟。

综上所述,最短的过河时间为5 + 1 + 5 = 11分钟。

练习题二:四个人过河现在,我们考虑一个稍微复杂一点的情况。

有四个人要过一条河流,但是只有一条小船,且小船每次只能载两个人。

这四个人的过河速度分别为1分钟、2分钟、5分钟和10分钟。

在河岸上还有一个灯,只有灯在场时,才能划船。

问如何设计最优的过河方案,使得四个人能够在最短的时间内全部过河。

解答:我们可以采用类似于练习题一的思路来解决这个问题。

首先,我们需要找到一个最快的方式将最慢的两个人过河。

根据题目中的条件,最慢的人过河需要10分钟,而其他三个人只需要1分钟、2分钟和5分钟。

因此,我们可以先让最慢的两个人一起过河,花费10分钟。

接下来,我们需要一个人把船划回原来的岸边。

然后,我们让最快的人过河,花费1分钟。

接着,我们让最慢的两个人一起回到原来的岸边,花费10分钟。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小船过河问题|
1河宽d =60m ,水流速度v 1=6m /s ,小船在静水中的速度v 2=3m /s ,问:
(1)要使它渡河的时间最短,则小船应如何渡河?最短时间是多少? (2)要使它渡河的航程最短,则小船应如何渡河?最短的航程是多少? 2在抗洪抢险中,战士驾驶摩托艇救人,假设江岸是平直的,洪水沿江向下游流去,水流速度为v 1,摩托艇在静水中的航速为v 2,战士救人的地点A 离岸边最近处O 的距离为d ,如战士想在最短时间内将人送上岸,则摩托艇登陆的地点离O 点的距离为( C )
A .21222υυυ-d
B .0
C .21υυd
D .12υυd
3某人横渡一河流,船划行速度和水流动速度一定,此人过河最短时间为了T 1;若此船用最短的位移过河,则需时间为T 2,若船速大于水速,则船速与水速之比为( )
(A) 212
22
T T T - (B) 12T T (C) 222
11T T T - (D) 21T T
4小河宽为d ,河水中各点水流速度大小与各点到较近河岸边的距离成正比,d v k kx v 04==,水,x 是各点到近岸的距离,小船船头垂直河岸渡河,小船划水速度为0v ,则下列说法中正确的是( )
A 、小船渡河的轨迹为曲线
B 、小船到达离河岸2d 处,船渡河的速度为02v
C 、小船渡河时的轨迹为直线
D 、小船到达离河岸4/3d 处,船的渡河速度为010v
5. 如图1所示,人用绳子通过定滑轮以不变的速度0v 拉水平面上的物体A ,当绳与水平方向成θ角时,求
物体A 的速度。

6 如图3所示,某人通过一根跨过定滑轮的轻绳提升一个质量为m 的重物,开始时人在滑轮的正下方,
绳下端A 点离滑轮的距离为H 。

人由静止拉着绳向右移动,当绳下端到B 点位置时,人的速度为v ,绳
与水平面夹角为θ。

问在这个过程中,人对重物做了多少功?
7. 一条宽度为L 的河,水流速度为水v ,已知船在静水中速度为船v ,那么:
(1)怎样渡河时间最短?(2)若水船
v v >,怎样渡河位移最小?(3)若水船v v <,怎样渡河船漂下的距离最短?
8河宽60m,小船在静水中的速度为4m/s,水流速度为3m/s。

求小船渡河的最小时间是多少,小船实际渡河的位移为多大?若小船在静水中的速度为5m/s,水流速度为3m/s。

求小船渡河的最小位移是多少,小船实际渡河的时间为多大?
9:如图3的乙,一条小船位于100m宽的河岸A点处,从这里向下游1003米处有一危险区,若水流速度为4m/s,为了使小船避开危险区沿直线到达对岸,小船在静水中的速度至少多大?
10:一艘小船在100m宽的河中横渡到对岸,已知水流速度是3m/s,小船在静水中的速度是4m/s,求:(1)欲使航行距离最短,船应该怎样渡河?渡河时间多长?
(2)欲使船渡河时间最短,船应该怎样渡河?最短时间是多少?船经过的位移多大?
11:小船渡河的最值问题:一小船渡河,河宽d=180m,水流速度
s/
m
5.2
v
1
=。

(1)若船在静水中的速度为
s/
m
5
v
2
=
,求:
①欲使船在最短的时间内渡河,船头应朝什么方向?用多长时间?位移是多少?
②欲使船渡河的航程最短,船头应朝什么方向?用多长时间?位移是多少?
(2)若船在静水中的速度
s/
m
5.1
v
2
=
,要使船渡河的航程最短,船头应朝什么方向?用多长时间?位移是多少?
12、一艘小艇从河岸A处出发渡河,小艇保持与河岸垂直方向行驶,经过10min到达正对岸下游120m的C
处,如图所示,如果小艇保持原来的速度逆水斜向上游与河岸成α角方向行驶,则经过12.5min恰好到达正
对岸的B处,求:河的宽度。

13、船在静水中的航速为v1,水流的速度为v2。

为使船行驶到河正对岸的码头,则v1相对v2的方向应为()。

相关文档
最新文档