导体载流量计算公式

合集下载

电缆与电线的电流计算公式

电缆与电线的电流计算公式

电缆及电线的电流计算公式1、电线的载流量是这样计算的:对于1.5、2.5、4、6、10mm2的导线可将其截面积数乘以5倍。

对于16、25mm2的导线可将其截面积数乘以4倍。

对于35、50mm2的导线可将其截面积数乘以3倍。

对于70、95mm2的导线可将其截面积数乘以2.5倍。

对于120、150、185mm2的导线可将其截面积数乘以2倍。

看你的开关是多少安的用上面的工式反算一下就可以了。

2、二点五下乘以九,往上减一顺号走。

三十五乘三点五,双双成组减点五。

条件有变加折算,高温九折铜升级。

穿管根数二三四,八七六折满载流。

说明:(1)本节口诀对各种绝缘线(橡皮和塑料绝缘线)的载流量(安全电流)不是直接指出,而是“截面乘上一定的倍数”来表示,通过心算而得。

由表53可以看出:倍数随截面的增大而减小。

“二点五下乘以九,往上减一顺号走”说的是2.5mm’及以下的各种截面铝芯绝缘线,其载流量约为截面数的9倍。

如2.5mm’导线,载流量为2.5×9=22.5(A)。

从4mm’及以上导线的载流量和截面数的倍数关系是顺着线号往上排,倍数逐次减l,即4×8、6×7、10×6、16×5、25×4。

“三十五乘三点五,双双成组减点五”,说的是35mm”的导线载流量为截面数的3.5倍,即35×3.5=122.5(A)。

从50mm’及以上的导线,其载流量与截面数之间的倍数关系变为两个两个线号成一组,倍数依次减0.5。

即50、70mm’导线的载流量为截面数的3倍;95、120mm”导线载流量是其截面积数的2.5倍,依次类推。

“条件有变加折算,高温九折铜升级”。

上述口诀是铝芯绝缘线、明敷在环境温度25℃的条件下而定的。

若铝芯绝缘线明敷在环境温度长期高于25℃的地区,导线载流量可按上述口诀计算方法算出,然后再打九折即可;当使用的不是铝线而是铜芯绝缘线,它的载流量要比同规格铝线略大一些,可按上述口诀方法算出比铝线加大一个线号的载流量。

导体载流量计算方式

导体载流量计算方式
S=π×φ²(直径)×1/4=4000mm²≥694mm²,完全满足要求。
我们按最小导电率计算导体载流量的数据:I=S×j=4000×1=4000A
2.中心导体的设计
按照额定电流大小及运行电流密度的选择导体截面。
铜管:j=2.2-2.5A/mm2,散热条件好的部位可取较大值;
导电率≥55%铝管,j=1.2-1.35A/ mm²;导电率≤45%铝管,j=1A/ mm²
导体载流量I=S×j
导体直径取φ100,考虑到导体载流的肌肤效应,取导体有效厚度为30mm
导体载流量计算方式
1.导体截面积:
S=
S为导体截面积,单位:mm²
I为短时耐受电流,单位:A(本次取50KA)
单位为 0.5表示并按下列规定:
铜取13铝取8.5
铁取4.5铅取2.5
t:电流通过时间,单位s(一般为0.2~5s)
Δθ为温,Δθ可增加到215K

3.1导体载流量和运行温度计算-河海大学

3.1导体载流量和运行温度计算-河海大学
A A t t I 2R mc mc 0 (1 e ) ( s 0 )e A
导体的稳定温升W
初始时刻的温升 K
任意时刻t的温升
A A t t I 2R mc mc 0 (1 e ) ( s 0 )e A
W (1 e
影响长期发热最高允许温度的因素主 要是保证导体接触部分可靠地工作。
导体的短时最高允许温度,对硬铝及铝锰合金
可取+200℃,硬铜可取+300℃
影响短时发热最高允许温度的因素主要是机械强度和带 绝缘导体的绝缘耐热度(如电缆),机械强度的下降还
与发热持续时间有关,发热时间越短,引起机械强度下 降的温度就越高,故短时发热最高允许温度远高于长期 发热最高允许温度。
ห้องสมุดไป่ตู้
时,由电阻损耗产生的热量:
Q R I Rac
2 W
其中Rac为导体的交流电阻
Rac K s
[1 t ( w 20)]
S
Rac K s
[1 t ( w 20)]
S
导体的集肤系数Ks与电流的频率、导体的形状和尺 寸有关。 导体温度为20℃时的直流电阻率ρ, Ω ·mm2/m 电阻温度系数 t , ℃-1 导体的运行温度 w , ℃ 导体截面积S,mm2
的热量及吸收太阳热量之和应等于导体辐射散 热和空气对流散热之和(由于空气导热量很小, 因此裸导体对空气的导热可以忽略不计):
Q R Qt Q l Q f
导体电阻损 耗的热量
导体辐射 散热量
导体吸收太阳 辐射的热量
导体对流 散热量
单位:W/m
1.导体电阻损耗的热量
单位长度的导体,通过有效值为Iw 的交流电流

电缆与电线的电流计算公式

电缆与电线的电流计算公式

电缆及电线的电流计算公式1、电线的载流量是这样计算的:对于1.5、2.5、4、6、10mm2的导线可将其截面积数乘以5倍。

对于16、25mm2的导线可将其截面积数乘以4倍。

对于35、50mm2的导线可将其截面积数乘以3倍。

对于70、95mm2的导线可将其截面积数乘以2.5倍。

对于120、150、185mm2的导线可将其截面积数乘以2倍。

看你的开关是多少安的用上面的工式反算一下就可以了。

2、二点五下乘以九,往上减一顺号走。

三十五乘三点五,双双成组减点五。

条件有变加折算,高温九折铜升级。

穿管根数二三四,八七六折满载流。

说明:(1)本节口诀对各种绝缘线(橡皮和塑料绝缘线)的载流量(安全电流)不是直接指出,而是“截面乘上一定的倍数”来表示,通过心算而得。

由表53可以看出:倍数随截面的增大而减小。

“二点五下乘以九,往上减一顺号走”说的是2.5mm’及以下的各种截面铝芯绝缘线,其载流量约为截面数的9倍。

如2.5mm’导线,载流量为2.5×9=22.5(A)。

从4mm’及以上导线的载流量和截面数的倍数关系是顺着线号往上排,倍数逐次减l,即4×8、6×7、10×6、16×5、25×4。

“三十五乘三点五,双双成组减点五”,说的是35mm”的导线载流量为截面数的3.5倍,即35×3.5=122.5(A)。

从50mm’及以上的导线,其载流量与截面数之间的倍数关系变为两个两个线号成一组,倍数依次减0.5。

即50、70mm’导线的载流量为截面数的3倍;95、120mm”导线载流量是其截面积数的2.5倍,依次类推。

“条件有变加折算,高温九折铜升级”。

上述口诀是铝芯绝缘线、明敷在环境温度25℃的条件下而定的。

若铝芯绝缘线明敷在环境温度长期高于25℃的地区,导线载流量可按上述口诀计算方法算出,然后再打九折即可;当使用的不是铝线而是铜芯绝缘线,它的载流量要比同规格铝线略大一些,可按上述口诀方法算出比铝线加大一个线号的载流量。

第四章导体的发热电动力及常用计算公式1

第四章导体的发热电动力及常用计算公式1
: 2 S

tk
0
I dt =
2 kt
C0 ρ m
ρ0
1 + βθ ∫θ w 1 + αθ d θ
θh
求解得:
1 S2

tk
0
2 I kt d t = Ah − Aw
C0 ρ m α − β β Ah = α 2 ln (1 + αθ h ) + α θ h = g (θ h ) ρ0 C0 ρ m α − β β Aw = α 2 ln (1 + αθ w ) + α θ w = g (θ w ) ρ0
20
4.3 导体的短时发热
引言
短时发热的含义: 短时发热的含义:
载流导体短路时发热, 载流导体短路时发热,是指从短路开始至短 路切除为止很短一段时间内导体发热的过程。 路切除为止很短一段时间内导体发热的过程。
短时发热的特点: 短时发热的特点:
短路电流大, 短路电流大,发热量多 时间短, 时间短,热量不易散发
tk
0
I d t = ∫ 2 I pt cos ωt + inp0e d t 0 2t − k tk Ta 2 2 1 − e Ta inp0 = Qp + Qnp ≈ ∫ I pt d t + 0 2
2 kt
tk
2
由于短路电流I 的表达式很复杂, 由于短路电流 kt的表达式很复杂,一般难于用简单的 26 解析式求解Q 工程上常采用近似计算法计算。 解析式求解 k,工程上常采用近似计算法计算。
5×1016 A[J/(Ωm4)]
1 Qk 2 S
25
1 Ah = Aw + 2 Qk S

导体载流量和运行温度计算

导体载流量和运行温度计算

QR Qt Ql Q f
式中 QR– 单位长度导体电阻损耗的热量,W/m; Qt– 单位长度导体吸收太阳日照的热量,W/m; Ql– 单位长度导体的对流散热量,W/m; Qf– 单位长度导体向周围介质辐射散热量,W/m;
第一节 导体载流量和运行温度计算 二.导体的发热和散热
《发电厂电气主系统》
《发电厂电气主系统》
第三章 常用计算的 基本理论和方法
第一节 导体载流量
和运行温度计算
第一节 导体载流量和运行温度计算
《发电厂电气主系统》
第三章 常用计算的基本理论和方法
教学内容
本节教学内容
一、概述 二、导体的发热和散热
三、导体载流量的计算
首页
第一节 导体载流量和运行温度计算 一.概述
《发电厂电气主系统》
Fd-导热面积(m2);
-物体厚度(m); 1、2-分别为高温区和低温区的温度(℃)。
第一节 导体载流量和运行温度计算 三、导体载流量的计算
《发电厂电气主系统》
第三章 常用计算的基本理论和方法
三. 导体载流量的计算
1、导体的温升过程 导体的温度由最初温度开始上升,经过一段时间后达到 稳定温度。导体的升温过程,可按热量平衡关系来描述。 导体散到周围介质的热量,为对流换热量QI与辐射换热 量Qf之和(一般导热量很小可以忽略),这是一种复合换热。 工程上为了便于分析与计算,常把辐射换热量表示成与对流 换热量相似的计算形式,故用一个总换热系数w来包括对流 换热与辐射换热的作用,即
第三章 常用计算的基本理论和方法
第一节 导体载流量和运行温度计算 一、概述
1)当电流通过导体时,在导体电阻中所产生的电阻损耗。 2)绝缘材料在电压作用下所产生的介质损耗。 3)导体周围的金属构件,特别是铁磁物质,在电磁场作 用下,产生的涡流和磁滞损耗。 发热的分类 (1)长期发热:导体和电器中长期通过正常工作电流所引 起的发热。 (2) 短时发热:由短路电流通过导体和电器时引起的发热。

导体载流量

导体载流量

导体载流量导体载流量是电流学中的一个重要概念,它指的是导体通过的电荷数量。

导体载流量的大小与导体的尺寸和电流的强度有关。

本文将从导体载流量的概念、计算方法以及对电路的影响等方面进行阐述。

一、导体载流量的概念导体载流量是指单位时间内通过导体的电荷数量,通常用安培(A)来表示。

在电路中,导体承载的电流越大,其载流量也就越大。

导体载流量的计算可以通过以下公式得出:导体载流量 = 电流强度× 时间其中,电流强度指的是单位时间内通过导体某一截面的电荷数量,通常用安培表示。

三、导体载流量对电路的影响1. 发热:当电流通过导体时,由于导体存在一定的电阻,电流会产生热量。

导体的载流量越大,电阻产生的热量也就越大。

2. 电磁场:导体载流量的变化会产生相应的电磁场。

当导体载流量越大时,产生的电磁场也就越强。

3. 电压降:根据欧姆定律,电流通过导体时会产生电压降。

导体载流量越大,电压降也就越大。

4. 电磁干扰:导体载流量的变化也会引起电磁干扰。

在一些对电磁干扰敏感的设备中,需要特别注意导体载流量的控制。

四、导体载流量的应用导体载流量的大小对电路设计和电器设备的选择都有一定的影响。

在设计电路时,需要根据导体承载的电流来选择合适的导线尺寸,以确保导线不会因为电流过大而发生过热现象。

此外,在选择电器设备时,也需要考虑导体载流量的大小,以满足设备的工作要求。

总结:导体载流量是电流学中一个重要的概念,它与导体的尺寸和电流的强度密切相关。

了解导体载流量的概念和计算方法,对于电路设计和电器设备的选择都有一定的指导意义。

同时,导体载流量的大小也会对电路产生一定的影响,如发热、电磁场、电压降以及电磁干扰等。

因此,在实际应用中,需要根据导体载流量的大小进行合理的设计和选择,以确保电路的稳定工作。

电流载流量计算公式

电流载流量计算公式

导体载流量‎的计算口诀‎1. 用途:各种导线的‎载流量(安全电流)通常可以从‎手册中查找‎。

但利用口诀‎再配合一些‎简单的心算‎,便可直接算‎出,不必查表。

导线的载流‎量与导线的‎载面有关,也与导线的‎材料(铝或铜),型号(绝缘线或裸‎线等),敷设方法(明敷或穿管‎等)以及环境温‎度(25度左右‎或更大)等有关,影响的因素‎较多,计算也较复‎杂10 下五,1 0 0 上二。

2 5 ,3 5 ,四三界。

7 0 ,95 ,两倍半①。

穿管温度,八九折。

②裸线加一半‎。

③铜线升级算‎。

3.说明:口诀是以铝‎芯绝缘线,明敷在环境‎温度25 度的条件为‎准。

若条件不同‎,口诀另有说‎明。

绝缘线包括‎各种型号的‎橡皮绝缘线‎或塑料绝缘‎线。

口诀对各种‎截面的载流‎量(电流,安)不是直接指‎出,而是“用截面乘上‎一定的倍数‎”,来表示。

为此,应当先熟悉‎导线截面,(平方毫米)的排列1 1.5 2.5 4 6 10 16 25 35 50 7O 95 l20 150 185......生产厂制造‎铝芯绝缘线‎的截面积通‎常从而2.5开始,铜芯绝缘线‎则从1 开始;裸铝线从1‎6开始;裸铜线从1‎0开始。

① 这口诀指出‎:铝芯绝缘线‎载流量,安,可以按截面‎数的多少倍‎来计算。

口诀中阿拉‎伯数码表示‎导线截面(平方毫米),汉字表示倍‎数。

把口诀的截‎面与倍数关‎系排列起来‎便如下:.10 16--25 35--50 70--95 120....五倍四倍三倍两倍半二倍现在再和口‎诀对照就更‎清楚了.原来“10 下五”是指截面从‎10 以下,载流量都是‎截面数的五‎倍。

“100 上二”(读百上二),是指截面1‎00以上,载流量都是‎截面数的二‎倍。

截面25与‎35 是四倍和三‎倍的分界处‎.这就是“口诀25、35 四三界”。

而截面70‎、95 则为2.5 倍。

从上面的排‎列,可以看出:除10 以下及10‎0以上之外,中间的导线‎截面是每两‎种规格属同‎一倍数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二、导体的发热和散热
导体的发热: 导体电阻损耗的热量 导体吸收太阳辐射的热量
导体的散热: 导体对流散热 导体辐射散热 导体导热散热
二、导体的发热和散热
稳态时:
QR+Qt=Ql+Qf
QR -单位长度导体电阻损耗的热量 Qt -单位长度导体吸收的热量 Ql -单位长度导体的对流散热量 Qf -单位长度导体的辐射散热量
二、导体的发热和散热Hale Waihona Puke 1. 导体电阻损耗的热量QR
QR

I
2 W
Rac
(W/m)
Rac

[1 t (W
S
20)] Kf
(Ω/m)
ρ -导体温度为20 ºC的直流电阻率Ωmm2/m αt -导体温度系数 ºC-1 θ -导体温度 ºC S -导体的截面积mm2 Kf -导体的集肤效应,导体的集肤效应系数Kf与电 流的频率、导体的形状和尺寸有关。
对流。
Ql l ( W 0 )Fl
al — 对流散热系数。根据
对流条件的不同,有不同 的计算公式。
(1) 自然对流散热:
l 1.5(W 0 )0.35
(2) 强迫对流散热:
l

Nu
D
强迫对流风向修正系数: A B(sin)n
强迫对流散热量: Ql

Nu
D
Fl D
h
b h
bbb h bbbbb
A1

h 1000
A2

b 1000
Fl 2( A1 A2 )
当b

6mm 8mm
,Fl

22.A51A1

A2
10mm
3A1 4 A2
当b 180mmmm,Fl 34(AA1 14AA22)
二、导体的发热和散热
ε -导体材料的辐射系数 Ff —单位长度导体的辐射散热面积,依导体形状和布置 情况而定。
二、导体的发热和散热
5. 导体导热散热量Qd
固体中由于晶格振动和自由电子运动,使热量由高温 区传至低温区;而在气体中,气体分子不停地运动, 高温区域的分子比低温区域的分子具有较高的速度, 分子从高温区运动到低温区,便将热量带至低温区。 这种传递能量的过程,称为导热。
第三章 常用计算的基本理论 和方法
§3.1 正常运行时导体载流量计算
一、概述
1. 电气设备通过电流时产生的损耗
① 载流导体的电阻损耗
② 绝缘材料内部的介质损耗 ③ 金属构件中的磁滞和涡流损耗
热量
电气设备的 温度升高
一、概述
2. 发热对电气设备的影响
① 绝缘性能降低: 温度升高 => 有机绝缘材料老化加快
二、导体的发热和散热
2. 导体吸收太阳辐射的热量Qt
导体的吸收率
Qt Et At D (W/m)
太阳辐射功率密度 导体的直径
二、导体的发热和散热
3. 导体对流散热量Ql
由气体各部分发生相对位移将热量带走的过程,称为
对流。
Ql l ( W 0 )Fl
Fl —单位长度导体散热面积, 与导体尺寸、布置方式等因素 有关。导体片(条)间距离越 近,对流条件就越差,故有效 面积应相应减小。
3. 导体对流散热量Ql
由气体各部分发生相对位移将热量带走的过程,称为 对流。
Ql l ( W 0 )Fl
αl -对流散热系数 W/(m2ºC) θW — 导体温度;
θ0 — 周围空气温度。
Fl -导体的散热面积
二、导体的发热和散热
3. 导体对流散热量Ql
由气体各部分发生相对位移将热量带走的过程,称为
② 机械强度下降: 温度升高 => 材料退火软化
③ 接触电阻增加: 温度升高 => 接触部分的弹性元件因退火而压力 降低,同时接触表面氧化,接触电阻增加,引起 温度继续升高,产生恶性循环
一、概述
3. 两种工作状态时的发热
① 长期发热: 导体在正常工作状态下由工作电流产生的发热。
② 短时发热: 导体在短路工作状态下由短路电流产生的发热。
三、导体载流量的计算
2. 导体的载流量
导体的载W流量IW2
R F
I W W F W F (W 0 ) Ql Q f
R
R
R
考虑到日照影响: I Ql Q f Qt R
三、导体载流量的计算
2. 导体的载流量
➢ 为提高导体的载流量,应采用电阻率小 的材料。 ➢ 导体的形状不同,散热面不同。 ➢ 导体的布置方式不同,散热效果不同。
D
( W
0 )[ A
B(sin)n ]D
二、导体的发热和散热
4. 导体辐射散热量Qf
热量从高温物体以热射线方式传给低温物体的传播过 程,称为辐射。
Qf
5.73 273 W
100
4
273 0
100

4

Ff

三、导体载流量的计算
1. 导体的温升过程
对应时间t内的温升 0


I 2R
W F
W F t
W F t
(1 e mc ) k e mc
当时间t很长,温升趋于稳定值
W
I2R
W F

Tr
W F
mc
W (1 eTrt ) keTrt
导热面积
Qd

Fd
1
2
导热系数 物体厚度
三、导体载流量的计算
1. 导体的温升过程
QR Qc Ql Q f
Ql Q f W (W 0 )F
dt时间内
I 2 Rdt mcd W (W 0 )F(J/m)
I-流过导体的电流A R-导体的电阻Ω m-导体的质量kg c-导体的比热容J/(kg ºC)
短时发热的特点:
1o)短路电流大,发热量多 2o)时间短,热量不易散出
导体的温度迅速升高
在短路时,导体还受到很大的电动力作用,如果超过 允许值,将使导体变形或损坏。
一、概述
4. 最高允许温度
正常时: +70℃; 计及日照+80℃; 表面镀锡+85℃。
短路时: 硬铝及铝锰合金+200℃; 硬铜+300℃。
相关文档
最新文档