空间直线与平面平面与平面的位置关系
高中数学人教版必修二2.1.3,2.14空间中直线与平面,平面与平面之间的位置关系

①若a∥b,b,则a∥ ②若a∥,b∥,则
a∥b ③若a∥b,b∥,则a∥ ④若a∥,
b,则a∥b 新疆 王新敞 奎屯
其中正确命题的个数是
( A)
(A)0个 (B)1个 (C)2个 (D)3个
巩固练习:
3.已知m,n为异面直线,m∥平面,n∥ 平面,∩=l,则l ( C ) (A)与m,n都相交 (B)与m,n中至少一条相交 (C)与m,n都不相交 (D)与m,n中一条相交
a
/ /
a
/
/
面//面
线//面
④ 1、下列正确的有
:
①直线 l 平行于平面 α 内的无数条直线,则 l∥α;
②若直线 a 在平面 α 外,则 a∥α;
③若直线 a∥b,直线 b⊂α,则 a∥α;
④若直线 a∥b,b⊂α,那么直线 a 就平行于平面 α 内的无数条直线.
B 2、若直线 a 不平行于平面 α 且 a α 内,则下列结论成立的是( )
∨ 任意一条直线都没有公共点。( )
复习引入: 1、空间两直线的位置关系 (1)相交;(2)平行;(3)异面 2.公理4的内容是什么? 平行于同一条直线的两条直线互相平行. 3.等角定理的内容是什么? 空间中如果两个角的两边分别对应平行,那么 这两个角相等或互补。 新疆
王新敞 奎屯
4.等角定理的推论是什么? 如果两条相交直线和另两条相交直线分别平行, 那么这两条直线所成的锐角(或直角)相等.
X X X
例4、判断下列命题的正确
(1)若直线 l上有无数个点不在平面 内,
则 l// 。( )
(2)若直线l与平面 平行,则l与平面 内的任
意一条直线都平行。(
)
(3)如果两条平行直线中的一条与一个平面平行, 那么另一条也与这个平面平行。( )
2.1.3-2.1.4空间中直线与平面、平面与平面之间的位置关系

探究( 探究(二):平面与平面之间的位置关系
思考1:拿出两本书,看作两个平面, 思考1:拿出两本书,看作两个平面,上 1:拿出两本书 左右移动和翻转, 下、左右移动和翻转,它们之间的位置 关系有几种变化? 关系有几种变化? 思考2:如图,围成长方体 思考2:如图, 2:如图 ABCD-A′B′C′D′的 ABCD-A′B′C′D′的 D′ 六个面, 六个面,两两之间 A′ 的位置关系有几种? 的位置关系有几种? D
课堂练习( ):过平面外一点可作多 课堂练习(一):过平面外一点可作多 少条直线与这个平面平行? 少条直线与这个平面平行?无数条 若直线l平行于平面α 则直线 与平面 若直线 平行于平面α,则直线l与平面 平行于平面 内的直线的位置关系如何? α内的直线的位置关系如何? 平行或异面
P
l
α
α
课堂练习( ):若两条平行直线中有 课堂练习(二):若两条平行直线中有 一条平行于一个平面, 一条平行于一个平面,那么另一条也平 行于这个平面吗? 行于这个平面吗?
课堂练习( ):已知平面α 课堂练习(三):已知平面α,β和直 已知平面 ,则直 线a,b,且α∥β,a ⊂ α , b ⊂ β,则直 与平面β的位置关系如何?直线a 线a与平面β的位置关系如何?直线a与 直线b的位置关系如何? 直线b的位置关系如何?
a α
b β
理论迁移
给出下列四个命题: 例1 给出下列四个命题: (1)若直线 上有无数个点不在平面α内,则 (1)若直线l上有无数个点不在平面α 若直线 上有无数个点不在平面 l∥α. (×) ∥α. (2)若直线 与平面α平行, 与平面 若直线l与平面 与平面α (2)若直线 与平面α平行,则l与平面α内的 任意一条直线都平行. 任意一条直线都平行. (×) (3)如果两条平行直线中的一条与一个平面平 (3)如果两条平行直线中的一条与一个平面平 那么另一条也与这个平面平行. 行,那么另一条也与这个平面平行. (×) (4)若直线 与平面α平行, 与平面 若直线l与平面 与平面α (4)若直线 与平面α平行,则l与平面α内的 任意一条直线都没有公共点. 任意一条直线都没有公共点. ( ) 其中正确命题的个数共有__ __个 其中正确命题的个数共有__个. 1
空间几何中的平面与直线的位置关系

空间几何中的平面与直线的位置关系在空间几何的研究中,平面和直线是最基本的几何元素之一。
它们之间的位置关系对理解空间几何的特性和性质起着至关重要的作用。
本文将探讨平面与直线的七种常见位置关系,并通过具体例子进行说明。
一、平面与直线相交于一点当一个平面与一条直线相交于一点时,我们称这两者的位置关系为相交于一点。
在这种情况下,平面可以被视为一个切平面,将直线切割成两段。
如图1所示,平面P与直线L相交于点A。
图1 平面与直线相交于一点二、平面与直线相交于多个点当一个平面与一条直线相交于多个点时,我们称这两者的位置关系为相交于多点。
这种情况下,平面将直线切割成多段,直线的起点和终点都在平面上。
如图2所示,平面P与直线L相交于点B、点C和点D。
图2 平面与直线相交于多个点三、直线在平面上当一条直线完全位于一个平面上时,我们称这两者的位置关系为直线在平面上。
换句话说,直线上的任意一点都落在平面上。
如图3所示,直线L完全位于平面P上。
图3 直线在平面上四、平面与直线相交当一个平面与一条直线有公共点,但该直线不完全位于平面上时,我们称这两者的位置关系为相交。
如图4所示,平面P与直线L相交于点E和点F,但直线L的一部分位于平面外。
图4 平面与直线相交五、直线平行于平面当一条直线与一个平面没有公共点,且直线与平面的方向相同或者相反时,我们称这两者的位置关系为平行。
如图5所示,直线L与平面P平行。
图5 直线平行于平面六、直线垂直于平面当一条直线与一个平面垂直且通过该平面的法线时,我们称这两者的位置关系为垂直。
如图6所示,直线L垂直于平面P。
图6 直线垂直于平面七、直线与平面重合当一条直线与一个平面重合,即二者完全重合时,我们称这两者的位置关系为重合。
如图7所示,直线L与平面P重合。
图7 直线与平面重合综上所述,空间几何中的平面与直线有七种常见的位置关系,分别为相交于一点、相交于多点、直线在平面上、相交、平行、垂直和重合。
高中数学必修2立体几何常考题型:空间中直线与平面、平面与平面之间的位置关系

空间中直线与平面、平面与平面之间的位置关系【知识梳理】1.直线与平面的位置关系位置关系直线a在平面α内直线a在平面α外直线a与平面α相交直线a与平面α平行公共点无数个公共点一个公共点没有公共点符号暗示a⊂αa∩α=A a∥α图形暗示2.两个平面的位置关系位置关系图示暗示法公共点个数两平面平行α∥β没有公共点两平面相交α∩β=l 有无数个公共点(在一条直线上)【常考题型】题型一、直线与平面的位置关系【例1】下列说法:①若直线a在平面α外,则a∥α;②若直线a∥b,直线b⊂α,则a∥α;③若直线a∥b,b⊂α,那么直线a就平行于平面α内的无数条直线.其中说法正确的个数为()A.0个B.1个C.2个D.3个[解析]对于①,直线a在平面α外包孕两种情况:a∥α或a与α相交,∴a和α纷歧定平行,∴①说法错误.对于②,∵直线a∥b,b⊂α,则只能说明a和b无公共点,但a可能在平面α内,∴a纷歧定平行于α.∴②说法错误.对于③,∵a∥b,b⊂α,∴a⊂α或a∥α,∴a与平面α内的无数条直线平行.∴③说法正确.[答案] B【类题通法】空间中直线与平面只有三种位置关系:直线在平面内、直线与平面相交、直线与平面平行.在判断直线与平面的位置关系时,这三种情形都要考虑到,避免疏忽或遗漏.另外,我们可以借助空间几何图形,把要判断关系的直线、平面放在某些具体的空间图形中,以便于正确作出判断,避免凭空臆断.【对点训练】1.下列说法中,正确的个数是()①如果两条平行直线中的一条和一个平面相交,那么另一条直线也和这个平面相交;②一条直线和另一条直线平行,它就和经过另一条直线的任何平面都平行;③经过两条异面直线中的一条直线,有一个平面与另一条直线平行;④两条相交直线,其中一条与一个平面平行,则另一条必然与这个平面平行.A.0 B.1C.2 D.3解析:选C①正确;②错误,如图1所示,l1∥m,而m⊂α,l1⊂α;③正确,如图2所示,在正方体ABCD-A1B1C1D1中,直线A1C1与直线BD异面,A1C1⊂平面A1B1C1D1,且BD∥平面A1B1C1D1,故③正确;④错误,直线还可能与平面相交.由此可知,①③正确,故选C.题型二、平面与平面的位置关系【例2】(1)平面α内有无数条直线与平面β平行,问α∥β是否正确,为什么?(2)平面α内的所有直线与平面β都平行,问α∥β是否正确,为什么?[解](1)不正确.如图所示,设α∩β=l,则在平面α内与l平行的直线可以有无数条:a1,a2,…,a n,…,它们是一组平行线,这时a1,a2,…,a n,…与平面β都平行(因为a1,a2,…,a n,…与平面β无交点),但此时α与β不平行,α∩β=l.(2)正确.平面α内所有直线与平面β平行,则平面α与平面β无交点,符合平面与平面平行的定义.【类题通法】两个平面的位置关系同平面内两条直线的位置关系类似,可以从有无公共点区分:如果两个平面有一个公共点,那么由公理3可知,这两个平面相交于过这个点的一条直线;如果两个平面没有公共点,那么就说这两个平面互相平行.这样我们可以得出两个平面的位置关系:①平行——没有公共点;②相交——有且只有一条公共直线.若平面α与β平行,记作α∥β;若平面α与β相交,且交线为l,记作α∩β=l.【对点训练】2.在底面为正六边形的六棱柱中,互相平行的面视为一组,则共有________组互相平行的面.与其中一个侧面相交的面共有________个.解析:六棱柱的两个底面互相平行,每个侧面与其直接相对的侧面平行,故共有4组互相平行的面.六棱柱共有8个面围成,在其余的7个面中,与某个侧面平行的面有1个,其余6个面与该侧面均为相交的关系.答案:4 63.如图所示,平面ABC与三棱柱ABC-A1B1C1的其他面之间有什么位置关系?解:∵平面ABC与平面A1B1C1无公共点,∴平面ABC与平面A1B1C1平行.∵平面ABC与平面ABB1A1有公共直线AB,∴平面ABC与平面ABB1A1相交.同理可得平面ABC与平面ACC1A1及平面BCC1B1均相交.【练习反馈】1.M∈l,N∈l,N∉α,M∈α,则有()A.l∥αB.l⊂αC.l与α相交D.以上都有可能解析:选C由符号语言知,直线l上有一点在平面α内,另一点在α外,故l与α相交.2.如图所示,用符号语言可暗示为()A.α∩β=lB.α∥β,l∈αC.l∥β,l⊄αD.α∥β,l⊂α解析:选D显然图中α∥β,且l⊂α.3.平面α∥平面β,直线a⊂α,则a与β的位置关系是________.答案:平行4.经过平面外两点可作该平面的平行平面的个数是________.解析:若平面外两点所在直线与该平面相交,则过这两个点不存在平面与已知平面平行;若平面外两点所在直线与该平面平行,则过这两个点存在独一的平面与已知平面平行.答案:0或15.三个平面α、β、γ,如果α∥β,γ∩α=a,γ∩β=b,且直线c⊂β,c∥b.(1)判断c与α的位置关系,并说明理由;(2)判断c与a的位置关系,并说明理由.解:(1)c∥α.因为α∥β,所以α与β没有公共点,又c⊂β,所以c与α无公共点,则c∥α.(2)c∥a.因为α∥β,所以α与β没有公共点,又γ∩α=a,γ∩β=b,则a⊂α,b⊂β,且a,b⊂γ,所以a,b没有公共点.由于a、b都在平面γ内,因此a∥b,又c∥b,所以c∥a.。
空间点、直线、平面之间的位置关系

空间点、直线、平面之间的位置关系一、基础知识1.平面的基本性质(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.(2)公理2:过不在一条直线上的三点,有且只有一个平面.(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.2.空间中两直线的位置关系(1)空间中两直线的位置关系⎩⎪⎨⎪⎧ 共面直线⎩⎨⎧ 平行相交异面直线:不同在任何一个 平面内(2)异面直线所成的角 ①定义:设a ,b 是两条异面直线,经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).②范围:⎝ ⎛⎦⎥⎤0,π2. (3)公理4:平行于同一条直线的两条直线互相平行.(4)定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.3.空间中直线与平面、平面与平面的位置关系(1)直线与平面的位置关系有相交、平行、在平面内三种情况.直线l和平面α相交、直线l和平面α平行统称为直线l在平面α外,记作l⊄α.(2)平面与平面的位置关系有平行、相交两种情况.二、常用结论1.公理2的三个推论推论1:经过一条直线和这条直线外一点有且只有一个平面.推论2:经过两条相交直线有且只有一个平面.推论3:经过两条平行直线有且只有一个平面.2.异面直线判定的一个定理过平面外一点和平面内一点的直线,与平面内不过该点的直线是异面直线.3.唯一性定理(1)过直线外一点有且只有一条直线与已知直线平行.(2)过直线外一点有且只有一个平面与已知直线垂直.(3)过平面外一点有且只有一个平面与已知平面平行.(4)过平面外一点有且只有一条直线与已知平面垂直.考点一平面的基本性质及应用B1C1D1中,E,F分[典例]如图所示,在正方体ABCD-A别是AB和AA1的中点.求证:(1)E,C,D1,F四点共面;(2)CE,D1F,DA三线共点.[证明](1)如图,连接EF,CD1,A1B.∵E,F分别是AB,AA1的中点,∴EF∥A1B.又A1B∥D1C,∴EF∥CD1,∴E,C,D1,F四点共面.(2)∵EF∥CD1,EF<CD1,∴CE与D1F必相交,设交点为P,如图所示.则由P∈CE,CE⊂平面ABCD,得P∈平面ABCD.同理P∈平面ADD1A1.又平面ABCD∩平面ADD1A1=DA,∴P∈DA,∴CE,D1F,DA三线共点.[变透练清]1.如图是正方体或四面体,P,Q,R,S分别是所在棱的中点,则这四个点不共面的一个图是()解析:选D A,B,C图中四点一定共面,D中四点不共面.2.(变结论)若本例中平面BB1D1D与A1C交于点M,求证:B,M,D1共线.证明:连接BD1(图略),因为BD1与A1C均为正方体ABCD-A1B1C1D1的对角线,故BD1与A1C相交,则令BD1与A1C的交点为O,则B,O,D1共线,因为BD1⊂平面BB1D1D,故A1C与平面BB1D1D的交点为O,与M重合,故B,M,D1共线.考点二空间两直线的位置关系[典例](1)(优质试题·郑州模拟)已知直线a和平面α,β,α∩β=l,a⊄α,a ⊄β,且a在α,β内的射影分别为直线b和c,则直线b和c的位置关系是() A.相交或平行B.相交或异面C.平行或异面D.相交、平行或异面(2)G,N,M,H分别是下图中正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形的是________.(填序号)[解析](1)如图,取平面ABCD为α,平面ABFE为β.若直线CH为a,则a在α,β内的射影分别为CD,BE,此时CD,BE异面,即b,c异面,排除A;若直线GH为a,则a在α,β内的射影分别为CD,EF,此时CD,EF平行,即b,c平行,排除B;若直线BH为a,则a在α,β内的射影分别为BD,BE,此时BD,BE相交,即b,c 相交,排除C.综上所述选D.(2)图①中,直线GH∥MN;图②中,G,H,N三点共面,但M∉平面GHN,因此直线GH与MN异面;图③中,连接MG,GM∥HN,因此GH与MN共面;图④中,G,M,N共面,但H∉平面GMN,因此GH与MN异面.所以在图②④中,GH与MN异面.[答案](1)D(2)②④[题组训练]1.下列结论中正确的是()①在空间中,若两条直线不相交,则它们一定平行;②与同一直线都相交的三条平行线在同一平面内;③一条直线与两条平行直线中的一条相交,那么它也与另一条相交;④空间四条直线a,b,c,d,如果a∥b,c∥d,且a∥d,那么b∥c.A.①②③B.②④C.③④D.②③解析:选B①错,两条直线不相交,则它们可能平行,也可能异面;②显然正确;③错,若一条直线和两条平行直线中的一条相交,则它和另一条直线可能相交,也可能异面;④由平行直线的传递性可知正确.故选B.2.如图,在正方体ABCD -A1B1C1D1中,M,N分别为棱C1D1,C1C的中点,有以下四个结论:①直线AM与CC1是相交直线;②直线AM与BN是平行直线;③直线BN与MB1是异面直线;④直线AM与DD1是异面直线.其中正确结论的序号为________.解析:直线AM与CC1是异面直线,直线AM与BN也是异面直线,所以①②错误.点B,B1,N在平面BB1C1C中,点M在此平面外,所以BN,MB1是异面直线.同理AM,DD1也是异面直线.答案:③④[课时跟踪检测]1.(优质试题·衡阳模拟)若直线l与平面α相交,则()A.平面α内存在直线与l异面B.平面α内存在唯一一条直线与l平行C.平面α内存在唯一一条直线与l垂直D.平面α内的直线与l都相交解析:选A当直线l与平面α相交时,这条直线与该平面内任意一条不过交点的直线均为异面直线,故A正确;该平面内不存在与直线l平行的直线,故B错误;该平面内有无数条直线与直线l垂直,所以C错误,平面α内的直线与l可能异面,故D错误,故选A.2.在正方体ABCD-A1B1C1D1中,E,F分别是线段BC,CD1的中点,则直线A1B与直线EF的位置关系是()A.相交B.异面C.平行D.垂直解析:选A由BC綊AD,AD綊A1D1,知BC綊A1D1,从而四边形A1BCD1是平行四边形,所以A1B∥CD1,又EF⊂平面A1BCD1,EF∩D1C=F,故A1B与EF相交.3.已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件解析:选B直线a,b分别在两个不同的平面α,β内,则由“直线a和直线b相交”可得“平面α和平面β相交”,反之不成立.所以“直线a和直线b 相交”是“平面α和平面β相交”的充分不必要条件.故选B.4.设四棱锥P-ABCD的底面不是平行四边形,用平面α去截此四棱锥(如图),使得截面四边形是平行四边形,则这样的平面α()A.不存在B.只有1个C.恰有4个D.有无数多个解析:选D设四棱锥的两组不相邻的侧面的交线为m,n,直线m,n确定了一个平面β.作与β平行的平面α,与四棱锥的各个侧面相交,则截得的四边形必为平行四边形,而这样的平面α有无数多个.5.在空间四边形ABCD各边AB,BC,CD,DA上分别取E,F,G,H四点,如果EF,GH相交于点P,那么()A.点P必在直线AC上B.点P必在直线BD上C.点P必在平面DBC内D.点P必在平面ABC外解析:选A如图,因为EF⊂平面ABC,而GH⊂平面ADC,且EF和GH 相交于点P,所以点P在两平面的交线上,因为AC是两平面的交线,所以点P 必在直线AC上.6.如图,在平行六面体ABCD-A1B1C1D1中,既与AB共面又与CC1共面的棱有________条.解析:依题意,与AB和CC1都相交的棱有BC;与AB相交且与CC1平行有棱AA1,BB1;与AB平行且与CC1相交的棱有CD,C1D1.故符合条件的有5条.答案:57.在四棱锥P-ABCD中,底面ABCD为平行四边形,E,F分别为侧棱PC,PB的中点,则EF与平面P AD的位置关系为________,平面AEF与平面ABCD 的交线是________.解析:由题易知EF ∥BC ,BC ∥AD ,所以EF ∥AD ,故EF ∥平面P AD ,因为EF ∥AD ,所以E ,F ,A ,D 四点共面,所以AD 为平面AEF 与平面ABCD 的交线. 答案:平行 AD8.如图所示,在空间四边形ABCD 中,点E ,H 分别是边AB ,AD 的中点,点F ,G 分别是边BC ,CD 上的点,且CF CB =CG CD =23,有以下四个结论.①EF 与GH 平行;②EF 与GH 异面;③EF 与GH 的交点M 可能在直线AC 上,也可能不在直线AC 上; ④EF 与GH 的交点M 一定在直线AC 上.其中正确结论的序号为________.解析:如图所示.连接EH ,FG ,依题意,可得EH ∥BD ,FG ∥BD ,故EH ∥FG ,所以E ,F ,G ,H 共面.因为EH =12BD ,FG =23BD ,故EH ≠FG ,所以EFGH 是梯形,EF 与GH 必相交,设交点为M .因为点M 在EF 上, 故点M 在平面ACB 上.同理,点M 在平面ACD 上,所以点M 是平面ACB 与平面ACD 的交点,又AC 是这两个平面的交线,所以点M 一定在直线AC 上.答案:④9.如图所示,正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是A 1B 1,B 1C 1的中点.(1)AM 和CN 是否共面?说明理由;。
空间中直线与平面、平面与平面的位置关系 优秀教案

2.1.3—2.1.4 空间中直线与平面、平面与平面的位置关系
【课题】:空间中直线与平面、平面与平面的位置关系
【教学目标】:
1、知识与技能
(1)了解空间中直线与平面的位置关系;
(2)了解空间中平面与平面的位置关系;
(3)培养学生的空间想象能力。
2、过程与方法
(1)引导学生通过观察与类比,加深对这些位置关系的理解、掌握;
(2)引导学生利用已有的知识与经验归纳整理本节所学知识。
【教学重点】:空间直线与平面、平面与平面之间的位置关系。
【教学难点】:用图形表达直线与平面、平面与平面的位置关系。
【教学突破点】:以长方体等熟悉的几何体为载体,加强培养学生的逻辑推理能力.
【教法、学法设计】:与前面的处理方法一致,通过动手操作以及以长方体为载体,认识直线与平面,平面与平面的位置关系,并引导学生观察教室,形成直观感知,并正确进行归纳抽象,让学生体验获得知识的过程,抓住知识的本质特征。
【课前准备】:课件
【教学过程设计】:。
空间直线与平面 平面与平面之间的位置关系

2.1.3 空间中直线与平面之间 的位置关系
2.1.4 平面与平面之间的位置关系
一、直线与平面的位置关系
空间中直线与平面的位置关系有哪些 靠什
么来划分呢
按照公共
点的个数
直线与平面的位置关系有且只有三种: 分类
①直线在平面内——有无数个公共点; ②直线与平面相交——有且只有一个公共点; ③直线与平面平行——没有公共点.
无交点 a∥α
下面画法错误的是:
a
α
α
a a
α
直线应画在面内
直线与平面的位置关系
位置 关系
a在α内
a与α相交 a与α平行
公共点 符号表示
有无数个公共 点
a
有且仅有一个 公共点
a∩=A
没有公共点 a∥
图形表
a
示
α
A
应用举例
例1 下列命题中正确的个数是 B
①若直线l上有无数个点不在平面α内,则l ∥α. ②若直线l与平面α平行,则l与平面α内的任意一条 直线都平行.
2.会用图形语言、符号语言表示直线与平面、平面 与平面之间的位置关系. 难点
3.培养空间想象能力.
a
练习:
若M∈平面α,M∈平面β,则不同平面α与β的
位置关系是 A.平行
B B.相交
C.重合
D.不确定
解析 由公理3知,α与β相交.
ห้องสมุดไป่ตู้
例2 如果三个平面两两相交,那么它们的交线有多少条 画出图形表示你的结论.
答:有可能1条交线,也有可能3条交线.
(2)
(1)
(3)
1.若直线a不平行于平面α,且 立的是 B
2.1.3--2.1.4 空间中直线与平面 平面与平面的位置关系

通过本节课的学习, 你有哪些收获? 1. 掌握了直线与平面的位置关系, 并会分析相关问题. 2. 掌握了平面与平面的位置关系, 并学会了解决相关问题. 3. 学会了用模型的方法判断直线与平面、平面与平面的位置关 系, 体会到了作图判断位置关系的重要性.
点击进入课时训练
)
直线与平面的位置关系
【例 1】 下列命题中正确命题的个数是( ) ①如果 a、 b是两条直线, a∥b, 那么 a平行于经过 b的任何一个平面; ②如果直线 a和平面α满足 a∥α, 那么 a平行于平面α内的任何一 条直线; ③如果直线 a、b满足 a∥α, b∥α, a∥b; 则 ④如果直线 a、b和平面α满足 a∥b, a∥α, α, b⊄ 那么 b∥α; ⑤如果平面α的同侧有两点 A, 到平面α的距离相等, AB∥α. B 则 ( ) () () ( ) A 0 B2 C1 D 3
解析: 易知①正确, ②正确. ③中两条相交直线中一条与平面平 行, 另一条可能平行于平面, 也可能与平面相交, 故③错误. C . 选
平面与平面位置关系
【例 2】 已知下列说法: ①两平面α∥β, α, β, a∥b; a⊂ b⊂ 则 ②若两个平面α∥β, α, β, a与 b是异面直线; a⊂ b⊂ 则 ③若两个平面α∥β, α, β, a与 b一定不相交; a⊂ b⊂ 则 ④若两个平面α∥β, α, β, a与 b平行或异面; a⊂ b⊂ 则 ⑤若两个平面α∩β=b, α, a与β一定相交. a⊂ 则 其中正确的序号是 ( 将你认为正确的序号都填上) .
处理这类平面与平面位置关系的技巧是什么?(牢牢 抓住其特征和定义, 把文字语言或符号语言转化, 结合 空间想象全方位、多角度思考, 特别是特殊情况, 要学 会举反例否定)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精锐教育学科教师辅导讲义讲义编号_
D D所成的角,
2
=
3
D
C
P
A
B
解析:∵AP ⊥BP ,PA ⊥PC ,∴AP ⊥PBC 连PD ,则PD 就是AD 在平面PBC 上的射影 ∴∠PDA 就是AD 与平面PBC 所成角
又∵∠ABP =∠ACP =60o ,PB =PC =2BC ,D 是BC 中点, ∴PD=
BC 2
7
, PA=6BC ∴AD=BC 231 ∴31
217
cos ==∠AD
PD
PDA ∴AD 与平面PBC 所成角的余弦值为
31
217
巩固练习: 1
选择题
(1)一条直线和平面所成角为θ,那么θ的取值范围是( ) (A )(0o,90o )
(B )[0o,90o] (C )[0o,180o] (D )[0o,180o)
(2)两条平行直线在平面内的射影可能是①两条平行线;②两条相交直线;③一条直线;④
两个点. 上述四个结论中,可能成立的个数是 ( )
(A )1个
(B )2个 (C )3个 (D )4个
(3)从平面外一点P 引与平面相交的直线,使P 点与交点的距离等于1,则满足条件的直线
条数不可能是( )
(A )0条或1条 (B )0条或无数条
(C )1条或2条
(D )0条或1条或无数条
答案:(1)B (2)C (3)D 2.填空题
(1)设斜线与平面?所成角为θ,斜线长为l ,则它在平面内的射影长是 .
即二面角A BC D
--的大小为
2 arctan
2
(3)取AC的中点E,连接,
EF OF,则//,//
EF AB OE CD
∴OE与EF所成的锐角或直角即为异面直线AB和CD所成角
易求得45
OEF
∠=
即异面直线AB和CD所成角为45
例5、设P是△ABC所在平面M外一点,当P分别满足下列条件时,判断点P在M内的射影的位置.
(1)P到三角形各边的距离相等.
(2)P到三角形各顶点的距离相等.
(3)PA、PB、PC两两垂直.
解析:设P在平面M内的射影是O.
(1)O是△ABC的内心;
(2)O是△ABC的外心;
(3)O是△ABC的垂心.
例6、在正方体ABCD-A 1B 1C 1D 1中,求证: (1)A 1C ⊥平面C 1DB 于G ; (2)垂足G 为正△C 1DB 的中心; (3)A 1G =2GC .
解析:(1)连AC ,对平面ABCD 来说,A 1A 是垂线,A 1C 是斜线,AC 是A 1C 在平面ABCD 上的射影,因为AC ⊥DB (正方形的性质),所以? A 1C ⊥DB . 同理可证A 1C ⊥BC 1.
因为A 1C ⊥平面C 1DB (直线与平面垂直的判定理)
(2)因为A 1B =A 1C 1=A 1D ,所以BG =GC 1=DG ,故G 是正△C 1DB 的外心,正三角形四心合一,所以G 是正△C 1DB 的中心.
(3)在正方体的对角面A 1ACC 1内,由平面几何可知△A 1GC 1∽△OGC ,且A 1C 1∶OC =A 1G ∶GC ,所以A 1G ∶GC =2∶1,因此A 1G =2GC . 变式练习:
已知:Rt △ABC 在平面α内,PC ⊥平面α于C ,D 为斜边AB 的中点,CA =6,CB =8,PC =
12.求:
(1)P ,D 两点间的距离; (2)P 点到斜边AB 的距离.
解析:(1)
(2)作PE ⊥AB 于E ,连CE 则CE ⊥AB .(三垂线定理的逆定理)PE 就是P 点到AB 边的距离.
可用等积式CE ·AB =AC ·CB ,即斜边上的高与斜边的乘积等于两直角边的乘积.
因CE ·AB 是Rt △ABC 面积的二倍,而AC ·CB 也是Rt △ABC 面积的二倍,所以它们相等;也可用△BCE ∽△ABC ,对应边成比例推出这个等积式.
E F C 1
B 1A 1D 1
D A B C (3)求异面直线AD 与BC 所成角的余弦值
解析:(1)tg ∠AFE =EF AE =2(2)异面直线AD 与BC 所成的角的余弦值为1030
7、如图,正方体ABCD -A 1B 1C 1D 1中,过顶点B 、D 、C 1作截面,则二面角B -DC 1-C 的余弦值是多少
解析:c os θ=33
8、在正方体ABCD-A 1B 1C 1D 1中,E 、F 分别是AA 1、A 1D 1的中点,求:
(1)D 1B 1与面AC 所成角的余弦值;
(2)EF 与面A 1C 1所成的角; (3)EF 与面AC 所成的角.。