精算师考试试题 (5)
中国精算师考试考试题目

选择题:在保险精算中,确定保费时需要考虑的主要因素不包括:A. 被保险人的年龄B. 被保险人的性别C. 被保险人的职业D. 被保险人的婚姻状况(正确答案)下列哪项不是精算师在保险公司中的主要职责?A. 产品设计与定价(正确答案)B. 市场营销策略制定C. 准备金评估D. 风险管理在进行寿险精算时,下列哪个公式用于计算纯保费?A. 纯保费= 保险金额× 发生率B. 纯保费= 保险金额/ 发生率C. 纯保费= 保险金额× (1 -发生率)D. 纯保费= 保险金额+ 发生率(正确答案)下列哪项不是影响保险公司偿付能力的主要因素?A. 资本金数额B. 准备金数额C. 保险业务规模D. 公司员工数量(正确答案)在进行非寿险精算时,下列哪个概念用于描述单位时间内发生赔案的频率?A. 赔案发生率(正确答案)B. 平均赔款额C. 纯保费D. 附加保费下列哪项不是精算师在进行财务分析时常用的工具?A. 财务报表B. 敏感性分析C. 场景分析D. 市场调研问卷(正确答案)在进行保险产品设计时,精算师需要考虑的法律法规不包括:A. 《保险法》B. 《公司法》C. 《税收法》D. 《消费者权益保护法》(正确答案)下列哪项不是精算师在风险管理中的主要任务?A. 识别风险B. 量化风险C. 控制风险D. 承担风险(正确答案)在进行保险产品定价时,下列哪个因素通常不会被考虑?A. 预期赔付成本B. 运营成本C. 预期利润D. 市场竞争对手的股价(正确答案)。
2021精算师考试《精算模型》真题模拟及答案(5)

2021精算师考试《精算模型》真题模拟及答案(5)1、如果假设每份保单的索赔次数服从泊松分布,而在一个保单组合中,不同保单的泊松参数服从参数为(α,β)的伽玛分布,已知记录了个体保单在n年内的经验索赔次数,则Bühlmann信度模型的信度因子为()。
(单选题)A. nα/(nα+1)B. n/(n+β)C. nβ/(nβ+1)D. n/(n+αβ)E. n/(n+α+β)试题答案:C2、设死力函数,则=()。
(单选题)A.B.C.D.E.试题答案:D3、计算v x,v x+1和v x+2时,将出现()个不同的u x。
(单选题)A. 12B. 13C. 14D. 15E. 16试题答案:D4、在关于硬币上抛例子中,我们仍取先验均值是1/2。
现把此硬币上抛10次,得到7次正面。
对于较少的上抛次数,我们认为对先验观点的置信度是对试验结果的置信度的两倍。
按照已经得到的试验结果,T的修正“期望值”(即后验均值)是()。
(单选题)A. 0.5661B. 0.5663C. 0.5665D. 0.5667E. 0.5669试题答案:D5、某一群体在出生时男女人数相等,且男性的死亡力为μm(x)=0.09(x≥0),女性的死亡力为μf(x)=0.07(x≥0),则这个人群50岁的死亡概率q50=()。
(单选题)A. 0.0525B. 0.0653C. 0.0726D. 0.0779E. 0.0842试题答案:C6、考虑下述人寿保单:若被保险人在一年内因意外事故死亡,则赔偿5万元;而因非意外事故死亡,则赔偿2.5万元。
设该人群内因意外事故及非意外事故的死亡率分别为0.0005及0.002,即:P{I=1,B=5}=0.0005P{I=1,B=2.5}=0.002其中记X为每个被保险人的实际索赔金额,则E(X)+ (单选题)A. 0.0324B. 0.0474C. 0.1278D. 0.1653E. 0.1728试题答案:D7、某保险公司承保的某风险组合在单位时间内期望的索赔金额是60个单位元,初始盈余为180元。
2020年中国精算师考试试题:(冲刺必看题5)

2020年中国精算师考试试题:(冲刺必看题5)多项选择题1.以下陈述中。
哪几项是错误的?A.保险人对自留额的精度要求不高时,采用相对自留额;B.各类风险同质性较高,只能采用绝对自留额;C.绝对自留额的优点是操作简便、减少成本;D.相对自留额相比于绝对自留额的优点是易于监管;E.保险人缺乏经验时,常采用绝对自留额法。
2.下列哪些命题是准确的?A.NCD制度有助于减少小额索赔发生次数;B.NCD制度在精算上绝对公平;C.NCD制度会导致高折扣组别的保单数增加;D.NCD制度有助于竞争;E.转移概率矩阵是NCD制度的全部内容。
3.关于经验估费法,下列命题中哪几项是准确的?A.最小平方信度方法就是求使信度估计误差平方的期望达到最小的信度因子a值的方法;B.最小平方信度估计与贝叶斯估计是一致的,当贝叶斯估计采用平方损失函数时;C.假设各类风险的风险单位数相等,那么用最小平方信度方法求出的信度因子a具有的形式,其中,n是样本容量,k的分子、分母分别为被估计量的条件方差的期望和条件期望的方差;D.假设先验信息数据为15,最近观察值为20,信度因子a=O.6,那么所求的可信度估计为:0.6×15+0.4×20;E.X服从参数为的指数分布,参数为一随机变量,并设其服从指数为 1的指数分布,则的后险分布也是指数分布。
4.关于准备金的陈述,下列哪几项是准确的?A.逐案估计法没有考虑到IBNR索赔,这是其不足之处;B.链梯法与修正IBNR方法均属于统计方法;C.如果某一年期财产保险的年保费总收入为400万元,假设该保费收入在一年内是服从均匀分布的,则在会计年度末应该计提的未到期责任准备金为200万元;D.假设保费收入在季度内是均匀分布的,已知某财产保险的保费收入情况是:则会计年度末应计提的未到期准备金为210万元;E.在“C”的陈述中,根据我国相关法律,到会计年度末应该计提的未到期责任准备金为240万元。
2020精算师考试《精算模型》真题模拟及答案(5)

2020精算师考试《精算模型》真题模拟及答案(5)共70道题1、设理赔次数N服从均值为4的几何分布,个别理赔额X恒等于40。
S表示聚合理赔额,则E[J100(S)]=()。
(单选题)A. 81.92B. 92.16C. 102.40D. 128.07E. 132.25试题答案:B2、对于某一特定风险,一年之内的理赔次数服从均值为p的伯努利分布,p的先验概率分布为[0,1]上的均匀分布,计算得到的贝叶斯信度估计值是观察理赔额的1/5时,则理赔额为0的年数是()。
(单选题)A. 1B. 2C. 3D. 4E. 5试题答案:C3、已知,则=()。
(单选题)A. 10.5B. 12.5C. 13.5D. 15.5E. 16.5试题答案:A4、已知。
运用K-J修匀法,求(A+B)-1(u-m)=()。
(单选题)A.B.C.D.E.试题答案:C5、设某险种索赔额为常数,在正态假设下计算信度因子为1/2的期望索赔次数为(),设p=0.90,k=0.05。
(单选题)A. 250B. 260C. 270D. 280E. 290试题答案:C6、用平移伽马分布近似方法估计聚合理赔款分布,已知:x0=0,E(S)=μ,Var(S)=δ2,E[(S-μ)3]=γ3。
则γ=()。
(单选题)A.B.C.D.E.7、已知损失额X服从单参数的Pareto分布,其分布密度函数为:随机抽取5个样本,其中2个样本都超过了25,但具体数额未知,另外3个样本分别为3,6和14。
则参数α的极大似然估计为()。
(单选题)A. 0.1575B. 0.2507C. 0.3750D. 0.4500E. 0.6250试题答案:B8、寿命X是随机变量,则60岁的人的寿命不超过80岁的概率为()。
(单选题)A. (1)(2)B. (1)(3)C. (2)(4)D. (3)(4)E. (4)试题答案:A9、在x岁的样本中,n x=14200,c x=4400个对象预计在岁结束,观察得是在岁之前的c x中的死亡人数,是在(x+1)岁之前剩下的观察人群n x-c x中的死亡人数,假设在区间(x,x+1]上的死亡力为常数,则q x的极大似然估计量为()。
保险精算考试题及答案

保险精算考试题及答案1. 保险精算中,用于计算未来现金流的现值的公式是:A. 未来值 = 现值× (1 + 利率)^期数B. 现值 = 未来值÷ (1 + 利率)^期数C. 未来值 = 现值× (1 - 利率)^期数D. 现值 = 未来值× (1 - 利率)^期数答案:B2. 在非寿险精算中,用于计算纯保费的公式是:A. 纯保费 = 预期损失 + 预期费用B. 纯保费 = 预期损失 - 预期费用C. 纯保费 = 预期损失× 预期费用D. 纯保费 = 预期损失÷ 预期费用答案:A3. 以下哪项是寿险精算中的生命表的主要组成部分?A. 死亡率表B. 疾病率表C. 残疾率表D. 以上都是答案:A4. 寿险精算中,计算年金现值的公式是:A. 年金现值 = 年金支付额× 利率× (1 - 1/(1 + 利率)^期数)B. 年金现值 = 年金支付额÷ 利率× (1 - 1/(1 + 利率)^期数)C. 年金现值 = 年金支付额× 利率÷ (1 - 1/(1 + 利率)^期数)D. 年金现值 = 年金支付额÷ 利率÷ (1 - 1/(1 + 利率)^期数) 答案:A5. 保险精算中,用于评估保险公司财务稳定性的指标是:A. 偿付能力比率B. 资产负债比率C. 投资回报率D. 以上都是答案:A6. 在精算评估中,用于计算保单持有人未来利益的现值的贴现率是:A. 预定利率B. 市场利率C. 法定利率D. 以上都不是答案:A7. 以下哪项是精算师在评估寿险保单的死亡率风险时常用的方法?A. 蒙特卡洛模拟B. 敏感性分析C. 精算表分析D. 以上都是答案:C8. 保险精算中,用于计算保单持有人未来利益的现值的公式是:A. 未来利益现值 = 未来利益× 利率× (1 - 1/(1 + 利率)^期数)B. 未来利益现值 = 未来利益÷ 利率× (1 - 1/(1 + 利率)^期数)C. 未来利益现值 = 未来利益× 利率÷ (1 - 1/(1 + 利率)^期数)D. 未来利益现值 = 未来利益÷ 利率÷ (1 - 1/(1 + 利率)^期数) 答案:B9. 在保险精算中,用于计算保单的准备金的公式是:A. 准备金 = 未来利益现值 - 已收保费B. 准备金 = 未来利益现值 + 已收保费C. 准备金 = 未来利益现值× 已收保费D. 准备金 = 未来利益现值÷ 已收保费答案:A10. 以下哪项是保险精算中用于评估保单持有人未来利益的不确定性的方法?A. 精算评估B. 风险评估C. 敏感性分析D. 以上都是答案:C。
精算师资格考试真题

1.精算学中最基本的原则之一是:A.最大诚信原则B.风险中性原则C.效用最大化原则D.公平定价原则2.在寿险定价中,死亡率假设的确定主要依赖于:A.宏观经济指标B.历史经验数据C.未来预测模型D.政府政策导向3.下列哪项不属于精算模型在保险中的应用?A.准备金评估B.投资收益预测C.风险管理决策D.营销策略制定4.在进行寿险保单定价时,考虑利率风险的主要目的是:A.确保保险公司盈利B.反映市场利率变动对保单价值的影响C.降低保单成本D.吸引更多投保人5.死亡率改善因子(Mortality Improvement Factor)主要用于调整:A.预期寿命估计B.保险费率C.死亡率曲线形状D.投资收益预期6.下列关于长期健康保险准备金评估的说法,错误的是:A.需要考虑未来医疗成本的变化B.准备金评估方法可能因保险产品类型而异C.仅依赖于当前医疗成本进行评估D.可能涉及复杂的精算模型7.在保险精算中,使用蒙特卡洛模拟法的主要目的是:A.精确计算保险费率B.评估保险产品的潜在风险C.预测市场变化趋势D.简化复杂的精算计算过程8.下列哪项不是影响养老金计划负债评估的关键因素?A.投资收益假设B.死亡率假设C.税收政策变化D.产品设计细节9.在进行再保险安排时,精算师需要评估的主要风险包括:A.市场风险、信用风险、操作风险B.利率风险、汇率风险、政治风险C.巨灾风险、长尾风险、集中度风险D.流动性风险、技术风险、法律风险10.精算师在保险产品设计阶段,主要关注的是:A.如何提高产品知名度B.如何降低营销成本C.如何确保产品定价的公平性和合理性D.如何快速响应市场变化。
2021精算师考试《精算管理》真题模拟及答案(5)

2021精算师考试《精算管理》真题模拟及答案(5)1、会计基本职能是()。
(单选题)A. 计划和核算B. 预测和监督C. 核算和监督D. 决策和监督试题答案:C2、企业从职工工资中代扣代缴的个人所得税,应借记的会计科目是()。
(单选题)A. 其他应付款B. 应付职工薪酬C. 银行存款D. 应交税费——应交个人所得税试题答案:B3、利用个体样本的信度加权平均计算μ,则第一组保单在第四年的Bühlmann信度保费为()。
(单选题)A. 8.82B. 9.42C. 10D. 11.42E. 12试题答案:C4、根据企业所得税法律制度的规定,在计算企业所得税应纳税所得额时,准予扣除的有()。
(多选题)A. 向客户支付的合同违约金B. 向税务机关支付的税收滞纳金C. 向银行支付的逾期借款利息D. 向公安部门缴纳的交通违章罚款试题答案:A,C5、下列各项中,可以成为法律关系客体的有()。
(多选题)A. 自然人B. 自然物C. 人造物D. 道德产品试题答案:B,C,D6、(1)若样本的生存分布为区间(0,15]上的均匀分布,则Var[So(6)]=____;(2)若没有均匀分布的假设,则估计值Var[So(6)]=____。
()(单选题)A. 0.03,0.03125B. 0.03,0.045C. 0.03125,0.03D. 0.03125,0.045E. 0.045,0.03125试题答案:A7、根据增值税法律制度的规定,下列行为中,属于视同销售服务或无形资产的有()。
(多选题)A. 单位向客户无偿转让专利技术使用权B. 单位向客户无偿提供运输服务C. 单位向本单位员工无偿提供搬家服务D. 单位向本单位员工无偿提供房屋装饰服务试题答案:A,B8、设S1服从复合泊松分布,泊松变量的期望为10,个体索赔额的分布为f X(1)=0.80,f X(2)=0.20,S2也服从复合泊松分布,泊松变量的期望为20,个体索赔额的分布为f Y(1)=0.70,f Y(2)=0.30,已知S1和S2相互独立,设S=S1+S2,则P(S=2)为()。
中国准精算师考试A5-试卷

) 。
对当前处于状态 0 的老年人, 计算未来的期望开支的总额为 ( (A) 28454 (B) 28954 (C) 29332 (D) 29702 (E) 30454
18. 已知 ( x) 的生存函数为
x , 1 s( x) 110 0, (0 x 110) ( x 110)
假设 (45) 与 (50) 的未来生存时间相互独立,计算状态 (45 : 50) 的完全平 均余命为( (A) 18.78 (B) 19.97 (C) 20.77 (D) 21.72 (E) 22.34 19. T ( x) 、 T ( y) 为未来寿命的随机变量,已知: (1) Pr(T ( x) T ( y)) 0.4 ( 2 )当 T ( x) T ( y) 时,有联合密度函数 fT ( x ),T ( y ) (t , s) 0.0005 ,
A5 试题 第 3 页 (共 17 页)
9. 已知: (1) nVx 0.08 (2) Px 0.024
1 0.2 (3) Px:n
计算 Px1:n 的值为( (A) 0.008 (B) 0.009 (C) 0.010 (D) 0.011 (E) 0.012 10. 已知:
) 。
(1) 1000 tV ( A x ) 100 (2) 1000P ( A x ) 11 (3) 0.03 计算 ax t 的值为( (A) 18.96 (B) 21.95 (C) 23.25 (D) 24.95 (E) 26.12 )
A5 试题 第 4 页 (共 17 页)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Faculty of Actuaries Institute of ActuariesEXAMINATIONS13 September 2001 (am)Subject 105 — Actuarial Mathematics 1Time allowed: Three hoursINSTRUCTIONS TO THE CANDIDATE1.Write your surname in full, the initials of your other names and yourCandidate’s Number on the front of the answer booklet.2.Mark allocations are shown in brackets.3.Attempt all 14 questions, beginning your answer to each question on aseparate sheet.Graph paper is not required for this paper.AT THE END OF THE EXAMINATIONHand in BOTH your answer booklet and this question paper.In addition to this paper you should have availableActuarial Tables and an electronic calculator.ã Faculty of Actuaries1Under the Manchester Unity model of sickness, you are given the following values:=5xs1 0=0.9 t xp dtòCalculate the value ofxz. [2]2Give a formula for21(2003)P in terms of20(2002)P, based on the component method of population projection. ()xP n denotes the population aged x last birthday at mid-year n.State all the assumptions that you make and define carefully all the symbols that you use. [3]3 A life insurance company issues a policy under which sickness benefit of £100 perweek is payable during all periods of sickness. There is a waiting period of 1 year under the policy.You have been asked to calculate the premium for a life aged exactly 30, who isin good health, using the Manchester Unity model of sickness.Describe how you would allow for the waiting period in your calculation, giving a reason for your choice of method. [3]4An employer recruits lives aged exactly 20, all of whom are healthy whenrecruited. On entry, the lives join a scheme that pays a lump sum of £50,000immediately on death, with an additional £25,000 if the deceased was sick at the time of death.The mortality and sickness of the scheme members are described by the following multiple-state model, in which the forces of transition depend on age only.All surviving members retire at age 65 and leave the scheme regardless of their state of health.,ab x t p is defined as the probability that a life who is in state a at age x (a = H, S, D )is in state b at age x + t (0 and ,,)t b H S D ≥=.Write down an integral expression for the expected present value, at force of interest δ, of the death benefit in respect of a single new recruit. [3]5 A pension scheme provides a pension of 1/60 of career average salary in respect ofeach full year of service, on age retirement between the ages of 60 and 65. A proportionate amount is provided in respect of an incomplete year of service.At the valuation date of the scheme, a new member aged exactly 40 has an annual rate of salary of £40,000.Calculate the expected present value of the future service pension on age retirement in respect of this member, using the Pension Fund Tables in the Formulae and Tables for Actuarial Examinations. [3]6 A life insurance company issues a special annuity contract to a male life agedexactly 70 and a female life aged exactly 60.Under the contract, an annuity of £10,000 per annum is payable monthly to thefemale life, provided that she survives at least 10 years longer than the male life.The annuity commences on the monthly policy anniversary next following thetenth anniversary of the death of the male life and is payable for the balance ofthe female’s lifetime.Calculate the single premium required for the contract.Basis:Mortality:a(55) Ultimate, males or females as appropriateInterest:8% per annumExpenses:none [4]7The staff of a company are subject to two modes of decrement, death and withdrawal from employment.Decrements due to death take place uniformly over the year of age in theassociated single-decrement table: 50% of the decrements due to withdrawaloccur uniformly over the year of age and the balance occurs at the end of the year of age, in the associated single-decrement table.You are given that the independent rate of mortality is 0.001 per year of age and the independent rate of withdrawal is 0.1 per year of age.Calculate the probability that a new employee aged exactly 20 will die as anemployee at age 21 last birthday. [4]8The following data are available from a life insurance company relating to the mortality experience of its temporary assurance policyholders.,x dθThe number of deaths over the period 1 January 1998 to 30 June 2001, aged x nearest birthday at entry and having duration d at the policyanniversary next following the date of death.,()y eP n The number of policyholders with policies in force at time n, aged y nearest birthday at entry and having curtate duration e at time n, wheren = 1.1.1998, 30.6.1998, 30.6.2000 and 30.6.2001.Develop formulae for the calculation of the crude central select rates of mortality corresponding to the,x dθ deaths and derive the age and duration to which these rates apply. State all the assumptions that you make.[6]9(i)State the conditions necessary for gross premium retrospective and prospective reserves to be equal. [3] (ii)Demonstrate the equality of gross premium retrospective and prospective reserves for a whole life policy, given the conditions necessary for equality.[4][Total 7]10 A life insurance company issues a special term assurance policy to two lives agedexactly 50 at the issue date, in return for the payment of a single premium. The following benefits are payable under the contract:(i)In the event of either of the lives dying within 10 years, a sum assured of£100,000 is payable immediately on this death.(ii)In the event of the second death within 10 years, a further sum assured of £200,000 is payable immediately on the second death.Calculate the single premium.Basis:Mortality:A1967–70 UltimateInterest:4% per annumExpenses:None [8]11 A life insurance company sells term assurance policies with terms of either 10 or20 years.As an actuary in the life office, you have been asked to carry out the first review of the mortality experience of these policies. The following table shows thestatistical summary of the mortality investigation. In all cases, the central rates of mortality are expressed as rates per 1,000 lives.All policies10-year policies20-year policiesAge Numberin forceCentralmortalityrateNumberin forceCentralmortalityrateNumberin forceCentralmortalityrate–246,991 1.086,0130.86978 2.12 25–446,462 2.055,438 1.741,024 3.68 45–645,81513.264,94211.5587322.94 65–3,05175.702,57071.5348197.70 Total22,31918,9633,356(i)Calculate the directly standardised mortality rate and the standardisedmortality ratio separately in respect of the 10-year and 20-year policies.In each case, use the “all policies” population as the standard population.[6](ii)You have been asked to recommend which of these two summary mortality measures should be monitored on a regular basis.Give your recommendation, explaining the reasons for your choice. [3][Total 9]12 A life insurance company offers an option on its 10-year without profit termassurance policies to effect a whole life without profits policy, at the expiry of the 10-year term, for the then existing sum assured, without evidence of health.Premiums under the whole life policy are payable annually in advance for thewhole of life, or until earlier death.(i)Describe the conventional method of pricing the mortality option, statingclearly the data and assumptions required. Formulae are not required.[3](ii) A policyholder aged exactly 30 wishes to effect a 10-year without profits term assurance policy, for a sum assured of £100,000.Calculate the additional single premium, payable at the outset, for theoption, using the conventional method.The following basis is used to calculate the basic premiums for the termassurance policies.Basis:Mortality:A1967–70 SelectInterest:6% per annumExpenses:none [4](iii)Describe how you would calculate the option single premium for the policy described in part (ii) above using the North American method, statingclearly what additional data you would require and what assumptions youwould make. [4](iv)State, with reasons, whether it would be preferable to use theconventional method or the North American method for pricing themortality option under the policy described in part (ii) above. [3][Total 14]13(i)On 1 September 1996, a life aged exactly 50 purchased a deferred annuity policy, under which yearly benefit payments are to be made. The firstpayment, being £10,000, is to be made at age 60 exact if he is then alive.The payments will continue yearly during his lifetime, increasing by1.923% per annum compound.Premiums under the policy are payable annually in advance for 10 yearsor until earlier death.If death occurs before age 60, the total premiums paid under the policy,accumulated to the end of the year of death at a rate of interest of 1.923%per annum compound, are payable at the end of the year of death.Calculate the annual premium.Basis:Mortality: before age 60:A1967–70 Ultimateafter age 60:a(55) Males UltimateInterest:6% per annumExpenses: initial:10% of the initial premium, incurredat the outsetrenewal:5% of each of the second andsubsequent premiums, payable at thetime of premium paymentclaim:£100, incurred at the time of paymentof the death benefit[9](ii)On 1 September 2001, immediately before payment of the premium then due, the policyholder requests that the policy be altered so that there is nobenefit payable on death and the rate of increase of the annuity inpayment is to be altered. The premium under the policy is to remainunaltered as is the amount of the initial annuity payment.The life insurance company calculates the revised terms of the policy byequating gross premium prospective reserves immediately before andafter the alteration, calculated on the original pricing basis, allowing foran expense of alteration of £100.Calculate the revised rate of increase in payment of the annuity. [7][Total 16]14 A life insurance company issues a 3-year unit-linked endowment assurancecontract to a male life aged exactly 60 under which level annual premiums of£5,000 are payable in advance throughout the term of the policy or until earlier death. 102% of each year’s premium is invested in units at the offer price.The premium in the first year is used to buy capital units, with subsequent years’premiums being used to buy accumulation units. There is a bid-offer spread in unit values, with the bid price being 95% of the offer price.The annual management charges are 5% on capital units and 1% on accumulation units. Management charges are deducted at the end of each year,before death, surrender or maturity benefits are paid.On the death of the policyholder during the term of the policy, there is a benefit payable at the end of the year of death of £12,000 or the bid value of the units allocated to the policy, if greater. On maturity, the full bid value of the units is payable.The policy may be surrendered only at the end of the first or the second policy year. On surrender, the life insurance company pays the full bid value of the accumulation units and 80% of the nominal bid value of the capital units,calculated at the time of surrender.The company holds unit reserves equal to the full bid value of the accumulation units and a proportion, 60:3t t A +−(calculated at 4% interest and A1967-70 Ultimate mortality), of the full bid value of the capital units, calculated just after thepayment of the premium due at time t (t = 0,1 and 2). The company holds no sterling reserves.The life insurance company uses the following assumptions in carrying out profit tests of this contract:Mortality:A1967–70 Ultimate Expenses:initial:£400renewal:£80 at the start of each of the second and third policy years Unit fund growth rate:8% per annum Sterling fund interest rate:5% per annum Risk discount rate:15% per annum Surrender rates:20% of all policies still in force at the end of each of the first and second yearsCalculate the profit margin on the contract.[18]。