第5章-1 曲线拟合(线性最小二乘法)讲解

合集下载

曲线拟合 最小二乘法

曲线拟合 最小二乘法

曲线拟合最小二乘法
曲线拟合是指通过已知数据点来推导出一条函数曲线,使得该曲线尽
可能地贴近这些数据点。

而最小二乘法(Least Squares Method)是求解
这种拟合问题的一种常用方法。

最小二乘法的核心思想是尽量减小误差平方和。

假设已知的数据点为$(x_i, y_i)$,曲线函数为 $y=f(x)$,我们希望找到一组参数 $\theta$,使得 $f(x_i;\theta)$ 与 $y_i$ 的差距最小,即:
$$\min_{\theta}\sum_{i=1}^n [y_i - f(x_i;\theta)]^2$$。

这个式子被称为目标函数,也叫做残差平方和(RSS)。

通过对目标
函数进行求导,可以得到最优参数 $\theta^*$ 的解析解:
$$\theta^* = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T
\mathbf{y}$$。

其中,$\mathbf{X}$ 是一个 $n \times p$ 的矩阵,每一行代表一
个数据点的特征向量,$p$ 是曲线函数的参数个数。

$\mathbf{y}$ 是一
个 $n \times 1$ 的列向量,代表数据点的真实输出值。

最小二乘法在实际应用中有很广泛的应用。

例如,可以用它来构建多
项式回归模型、高斯过程回归模型等。

此外,在机器学习领域,最小二乘
法也被用于求解线性回归模型、岭回归模型等。

第五章 曲线拟合

第五章  曲线拟合

)2
j 1
j 1 i0
对ak求偏导数(k=0,1…m)
ak
nm
2
(
ai
x
i j
j1 i0
y
j
)
x
k j
0
m
m
n
化简得
ai
xik j
y
j
x
k j
i0 j 1
j 1
n
n

x
k j
Sk
y
j
x
k j
Tk
j 1
j 1 m
aiSki Tk (k 0,1m)
i0
写成矩阵形式
S0 S1 S2 Sm S1 S2 S3 Sm1 S2 S3 S4 Sm2 Sm Sm1 Sm2 S mm
i1 j 1
i 1
用矩阵形式给出即: AT Ax ATb 法方程组

用最小二乘法解下列超定方程组的近似解
2x1 x2 1 8x1 4x2 0 2x1 x2 1 7x1 x2 8 4x1 3
解: A=
2 1 8 4 2 1 7 1 4 0
2 1
AT A
如何衡量接近程度?
最小二乘原理
一、什么是最小二乘原理
是衡量接近程度的一种方法
x x0 x1 xn 已知 y y0 y1 yn
设p(x) a0 a1x an xn
n
n
求a0 , a1,an 使 Ri2 (P(xi ) yi )2 最小。
io
i0
用最小二乘原理进行曲线拟合的方法称为最小二乘法。
这里(m<n),适当的选取 a0 , a`,am 使得
n
(a0 , a1,am ) [ p(x j ) y j ]2 为最小值 j 1

第5章-1 曲线拟合(线性最小二乘法)讲解

第5章-1 曲线拟合(线性最小二乘法)讲解
a ∑xi2 +b ∑xi= ∑xi yi a ∑xi+bn=∑ yi
求所需系数,得到方程: 29.139a+17.9b=29.7076 17.9a+11b=18.25
通过全选主元高斯消去求得:
a=0.912605
b=0.174034
所以线性拟合曲线函数为: y=0.912605x+0.174034
练习2
根据下列数据求拟合曲线函数: y=ax2+b
x 19 25 31 38 44 y 19.0 32.3 49.0 73.3 97.8
∑xi4 a + ∑xi2 b = ∑xi 2yi
∑xi2 a + n b = ∑yi
7277699a+5327b=369321.5 5327a+5b=271.4
曲线拟合的最小二乘法
1.曲线拟合的意思
Y
.
.
.
.
y=ax+b y=ax2+bx+c
X
y=ax+b y=ax2+bx+c 就是未知函数的拟合曲线。
2最小二乘法原理
观测值与拟合曲线值误差的平方和为最小。
yi y0 y1 y2 y3 y4…… 观测值 y^i y^0 y^1 y^2 y^3 y^4…… 拟合曲线值
拟合曲线为: y=(-11x2-117x+56)/84
x
yHale Waihona Puke 1.61 1.641.63 1.66
1.6 1.63
1.67 1.7
1.64 1.67
1.63 1.66
1.61 1.64
1.66 1.69
1.59 1.62

曲线拟合问题最常用的解法

曲线拟合问题最常用的解法

曲线拟合问题最常用的解法——线性最小二乘法的基本思路第一步:先选定一组函数 r 1(x), r 2(x), …r m (x), m<n, 令f(x)=a 1r 1(x)+a 2r 2(x)+ …+a m r m (x) (1) 其中 a 1,a 2, …a m 为待定系数。

第二步: 确定a 1,a 2, …a m 的准则(最小二乘准则): 使n 个点(x i ,y i ) 与曲线 y=f(x) 的距离δi 的平方和最小 。

记221211211(,,)[()][()](2)n nm i i i i i nmk k i i i k J a a a f x y a r x y δ======-=-∑∑∑∑问题归结为,求 a 1,a 2, …a m 使 J(a 1,a 2, …a m ) 最小。

线性最小二乘法的求解:预备知识超定方程组:方程个数大于未知量个数的方程组111122111122 ()m m n n nm m nr a r a r a y n m r a r a r a y +++=⎧⎪>⎨⎪+++=⎩ 即 Ra=y其中111112112,,m n n nm m n a y r r r R a y r r r a y ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦超定方程一般是不存在解的矛盾方程组。

如果有向量a 使得211221()ni i im m i i r ar a r a y =+++-∑ 达到最小,则称a 为上述超定方程的最小二乘解。

线性最小二乘法的求解所以,曲线拟合的最小二乘法要解决的问题,实际上就是求以下超定方程组的最小二乘解的问题。

Ra=y (3)其中111111()(),,()()m n m n m n r x r x a y R a y r x r x a y ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦定理:当R T R 可逆时,超定方程组(3)存在最小二乘解,且即为方程组 R T Ra=R T y的解:a=(R T R)-1R T y线性最小二乘拟合f(x)=a1r1(x)+ …+a m r m(x)中函数{r1(x), …r m(x)}的选取1. 通过机理分析建立数学模型来确定f(x);2. 将数据(x i,y i) i=1, …n 作图,通过直观判断确定f(x):用MATLAB作线性最小二乘拟合1. 作多项式f(x)=a1x m+ …+a m x+a m+1拟合,可利用已有程序:例对下面一组数据作二次多项式拟合xi 0.1 0.2 0.4 0.5 0.6 0.7 0.8 0.9 1 yi 1.978 3.28 6.16 7.34 7.66 9.58 9.48 9.30 11.22123()f x a x a x a =++中 的123(,,)A a a a =使得:1121[()] iii f x y =-∑最小解法1.用解超定方程的方法211211111 1x x R x x ⎛⎫⎪=⎪ ⎪⎝⎭此时 1)输入以下命令:x=0:0.1:1;y=[-0.447 1.978 3.28 6.16 7.08 7.34 7.66 9.56 9.48 9.30 11.2]; R=[(x.^2)' x' ones(11,1)]; A=R\y'2)计算结果: A = -9.8108 20.1293 -0.03172()9.810820.12930.0317f x x x =-+-解法2.用多项式拟合的命令 1)输入以下命令: x=0:0.1:1;y=[-0.447 1.978 3.28 6.16 7.08 7.34 7.66 9.56 9.48 9.30 11.2]; A=polyfit(x,y,2) z=polyval(A,x);plot(x,y,'k+',x,z,'r') %作出数据点和拟合曲线的图形 2)计算结果: A = -9.8108 20.1293 -0.03172()9.810820.12930.0317f x x x =-+-用MATLAB 作非线性最小二乘拟合Matlab 的提供了两个求非线性最小二乘拟合的函数:lsqcurvefit 和lsqnonlin 。

最小二乘法与曲线拟合-PPT

最小二乘法与曲线拟合-PPT
点(xi,yi)带入y=(x) ,便得到以a0,a1,…,am为未知
量的矛盾方程组
0 + 1 1 + 2 12 + ⋯ + 1 = 1
其矩阵形式为
Ԧ =
0 + 1 2 + 2 22 + ⋯ +
其中
1
= 1

1
1
2


12
22

2



最小二乘法与曲线拟合
§5.0 问题的提出
如果实际问题要求解在[a,b]区间的每一点都“很
好地” 逼近f(x)的话,运用插值函数有时就要失败。
另外,插值所需的数据往往来源于观察测量,本身有
一定的误差。要求插值曲线通过这些本身有误差的点,
势必使插值结果更加不准确。
如果由试验提供的数据量比较大,又必然使得插值
不为零,从而有rankA=m+1。由引理2知,正则方程
组有唯一解。
证毕
四、最小二乘法拟合曲线的步骤
1..通过观察、分析得到拟合曲线的数学模型,或
根据经验公式确定数学模型。
2.将拟合曲线的数学模型转换为多项式。
3.写出矛盾方程组。
4.写出正则方程组。(可由多项式模型直接得到)
5.求解正则方程组,得到拟合曲线的待定系数。
多项式的次数过高而效果不理想。
从给定的一组试验数据出发,寻求函数的一个近似
表达式y=(x),要求近似表达式能够反映数据的基本
趋势而又不一定过全部的点(xi,yi),这就是曲线拟合
问题,函数的近似表达式y=(x)称为拟合曲线。本章
介绍用最小二乘法求拟合曲线。
§5.1 用最小二乘法求解矛盾方程组

《数值分析》第5章 曲线拟合与函数插值

《数值分析》第5章 曲线拟合与函数插值

例如用函数
y Aebx
(5.8)
去拟合一组给定的数据,其中 A和 b是待定参这数时. ,可以在 (5.8) 式两端取
对数,得
ln y ln A bx
记 y ln y,a ln A,则上式可写成 y a b. x这样,仍可用最小二乘法解出
和 a (从而b 也就确定了 和 A) ,于b 是得到拟合函数
区间 [a,b]上是存在的,但往往不知道其具体的解析表达式,只能通过观察、
测量或实验得到一些离散点上的函数值.
我们希望对这种理论上存在的函数用一个比较简单的表达式近似地给出整体 上的描述.
此外,有些函数虽然有明确的解析表达式,但却过于复杂而不便于进行理论 分析和数值计算,我们同样希望构造一个既能反映函数特性又便于计算的简 单函数,近似替代原来的函数.
图5-1 人口增长的线性模型
5.1.1 最小二乘问题
设人口 y 与年份 x之间的函数关系为
y a bx
(5.1)
其中 a和 b 是待定参数. 由图5-1可知, (xi , yi并) 不是严格地落在一条直线上,
因此,不论怎样选择 和 a,都b不可能使所有的数据点
(x均i ,满yi )足关系
式 (5.1) .
s0 10, s1 545, s2 29785, u0 18.09, u1 987.78
于是正规方程组为
10 545 a 18.09 545 29785 b 987.78
5.1.2 最小二乘拟合多项式
解得 a 0.570,4 b 0.02,27于是 A ea 1.76,90所求拟合函数为
21 91
441
a1
163
91 441 2275 a2 777
解得 a0 26.8,a1 14.08,57 a2 ,2因此所求拟合多项式为

第5章最小二乘法

第5章最小二乘法
表示成矩阵形式为
24
线性参数正规方程的矩阵形式
又因
(5-21)
有 即 若令 则正规方程又可写成 若矩阵C是满秩的,则有
(5-22)
(5-22) (5-23)
Xˆ 的数学期望
因 可见 Xˆ 是X的无偏估计。
式中Y、X为列向量(n ×1阶矩阵和t×l阶矩阵)
其中矩阵元素Y1,Y2,…,Yn为直接量的真值,而 Xl,X2,…,Xn为待求量的真值。
41
n
前面已证明
2 i
/
2
是自由度为(n-t)的χ2变量。
i 1
根据χ2变量的性质,有
(5-39) 取
(5-40) 可以证明它是σ2的无偏估计量
因为
42
习惯上,式5-40的这个估计量也写成σ2,即 (5-41)
因而测量数据的标准差的估计量为 (5-43)
43
例5.3
• 试求例5.1中铜棒长度的测量精度。 已知残余误差方程为 将ti,li,值代人上式,可得残余误差为
34
(2)用表格计算给出正规方程常数项和系数
(3)给出正规方程 (4)求解正规方程组
解得最小二乘法处理结果为
35
四、最小二乘原理与算术平均值原理 的关系
为了确定一个量X的估计量x,对它进 行n次直接测量,得到n个数据
l1,l2,…,ln,相应的权分别为p1, p2,…,pn,则测量的误差方程为
(5-35)
共得k个方程,称正规方程,求此联立方程的解可得 出诸参数估计值 aˆ j (j=1,2,…,k)。
10
最小二乘法的几何意义
从几何图形上可看出,最小二乘法就是要在穿过各 观测点(xi,yi)之间找出这样一条估计曲线,使各观测 点到该曲线的距离的平方和为最小。

数值分析论文--曲线拟合的最小二乘法

数值分析论文--曲线拟合的最小二乘法

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 数值分析论文--曲线拟合的最小二乘法曲线拟合的最小二乘法姓名:徐志超学号:2019730059 专业:材料工程学院:材料科学与工程学院科目:数值分析曲线拟合的最小二乘法一、目的和意义在物理实验中经常要观测两个有函数关系的物理量。

根据两个量的许多组观测数据来确定它们的函数曲线,这就是实验数据处理中的曲线拟合问题。

这类问题通常有两种情况:一种是两个观测量 x 与 y 之间的函数形式已知,但一些参数未知,需要确定未知参数的最佳估计值;另一种是 x 与 y 之间的函数形式还不知道,需要找出它们之间的经验公式。

后一种情况常假设 x 与 y 之间的关系是一个待定的多项式,多项式系数就是待定的未知参数,从而可采用类似于前一种情况的处理方法。

在两个观测量中,往往总有一个量精度比另一个高得多,为简单起见把精度较高的观测量看作没有误差,并把这个观测量选作x,而把所有的误差只认为是y 的误差。

设 x 和 y 的函数关系由理论公式 y=f(x; c1, c2, cm)1 / 13(0-0-1)给出,其中 c1, c2, cm 是 m 个要通过实验确定的参数。

对于每组观测数据(xi, yi) i=1, 2,, N。

都对应于 xy 平面上一个点。

若不存在测量误差,则这些数据点都准确落在理论曲线上。

只要选取m 组测量值代入式(0-0-1),便得到方程组yi=f (x;c1,c2,cm)(0-0-2)式中 i=1,2,, m.求 m 个方程的联立解即得 m 个参数的数值。

显然Nm 时,参数不能确定。

在 Nm 的情况下,式(0-0-2)成为矛盾方程组,不能直接用解方程的方法求得 m 个参数值,只能用曲线拟合的方法来处理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a ∑xi2 +b ∑xi= ∑xi yi a ∑xi+bn=∑ yi
求所需系数,得到方程: 29.139a+17.9b=29.7076 17.9a+11b=18.25
通过全选主元高斯消去求得:
a=0.912605
b=0.174034
所以线性拟合曲线函数为: y=0.912605x+0.174034
误差平方和表达公式: Q=∑i=n(1y^i-yi)2
3:拟合1次曲线y=ax+b
根据公式: Q=∑i=n(1y^i-yi)2 因为y=ax+b 所以 Q= ∑(axi+b-yi) 2
根据最小二乘原理,为使Q有最小值,应满足如下式子:
Q a =0
Q =0 b
最后得到: a ∑xi2 +b ∑xi= ∑xi yi a ∑xi+bn=∑ yi
解得:a=1.1 b=-0.7
所以:线性拟合曲线函数为: y=1.1x-0.7
例2:试用二次曲线 y=ax2+bx+c 拟合下列数据:

-3
-2 -1 0
1
23
Yi 4
2
3 0 -1 -2 -5
求得方程组为:
196a 28b
28a
+28c=-7 =-39
+7c=1
解得: b =-39/28 a=-11/84 c=2/3
练习2
根据下列数据求拟合曲线函数: y=ax2+b
x 19 25 31 38 44 y 19.0 32.3 49.0 73.3 97.8
∑xi4 a + ∑xi2 b = ∑xi 2yi
∑xi2 a + n b = ∑yi
7277699a+5327b=369321.5 5327a+5b=271.4
4:拟合2次曲线y=ax2+bx+c
分析:
误差平方和表达公式:
Q=∑(y^i-yi)2
因为y=ax2+bx+c 所以 Q= ∑(axi2+bxi+c -yi) 2
又根据:Q分别对a、b、c求偏导值为0,最后求得公式为:
∑xi4 a + ∑xi3 b + ∑xi2 c = ∑xi 2yi ∑xi3
a + ∑xi2 b + ∑xi c = ∑xi yi ∑xi2 a +
a=1/4 b=1/4 c=-1/4
Y=0.25x2+0.25x-0.25
Y=0.050035x2+0.972579
课堂练习:设给定的观测数据如下,求线性拟合函
数 y=ax2+bx+c。
xi 1
2
yi 0
2
34 25
答案:
求得方程组为:
354a+100b +30c=106 100a+30b+10c=30 30a+10b+4c=9
解得: a=0.25 b=0.25 c=-0.25
拟合曲线为: y=(-11x2-117x+56)/84
x
y
1.61 1.64
1.63 1.66
1.6 1.63
1.67 1.7
1.64 1.67
1.63 1.66
1.61 1.64
1.66 1.69
1.59 1.62
1.68 1.71
1.58 1.63
练习1
根据左侧数据求拟合曲线函数:y=ax+b
曲线拟合的最小二乘法
1.曲线拟合的意思
Y
.
.
.
.
y=ax+b y=ax2+bx+c
X
y=ax+b y=ax2+bx+c 就是未知函数的拟合曲线。
2最小二乘法原理
观测值与拟合曲线值误差的平方和为最小。
yi y0 y1 y2 y3 y4…… 观测值 y^i y^0 y^1 y^2 y^3 y^4…… 拟合曲线值
∑xi b +n c = ∑yi
例1:设给定的观测数据如下,求线性拟合函数
y=ax+b。
xi 1 2 yi 0 2
34 5 25 4
解:
a ∑xi2 +b ∑xi= ∑xi yi a ∑xi+bn=∑ yi
xi平方和为:55 xi和为:15 xi乘yi和为:50 yi和为:13
代入公式,得到方程组为: 55a+15b=50 15a+5b=13
拟合曲线为: y=0.25x2+0.25x-0.25
课堂练习
设给定观测数据如下,求线性拟合函数 y=ax2+bx+c
上题答案
Xi4和354 Xi3和100 Xi2和=30 Xi和10 Xiyi和30 Yi和9
N=4
Xi2yi和106
354a+100b+30c=106 100a+30b+10c=30 30a+10b+4c=9
相关文档
最新文档