图腾柱驱动电路你了解多少

合集下载

双模式图腾柱无桥PFC电路的研究

双模式图腾柱无桥PFC电路的研究
!.# ! ! 当 . *53 X) (% @9PO m) 时 $ d*. 漏 极 和 源 极
" %# "
Copyright©博看网. All Rights Reserved.
电器与能效管理技术!"!#$%&#"
电能质量
图 %!双模式图腾柱 LbG电路关键波形!倍压 LbG模式#
图 S!双模式图腾柱 LbG电路模态图! 倍压 LbG模式#
J88OA功率因 数 校 正 变 换 器 因 其 输 入 电 流 纹 波小%电路实现简单等优点$成为单级有源 LbG 变换器最常用的拓扑,&/$- & 传统的有源功率因数 校正电路大多采用带有整流桥的 J88OA电路$这
种电路首先采用工频整流桥对输入的交流电压进 行整流$再通过采用相应控制策略的 J88OA电路 进行功率因数校正& 但是$在电路的任意工作状 态下$输入电流均流过 , 个半导体器件$给电路带 来了固有的导通损耗$限制了整体效率的提升& 针对传统 J88OALbG电路整流桥的导通损耗对电 路效率提升的限制$ 一系列的无桥 LbG电 路 被 提出,#/"S- &
进入稳态后$电路工作各模态& 模态 ", G) RG" - .如图 S! :# $此时电路工作过 程与图腾柱模式模态 " 相同$不做赘述& 模态 ., G" RG. - .如图 S ! 9# $G" 时刻 >d*. 两端 电压达到 )(%@9PO时$dBd*, 开始导通$电感电流 通过 +H_ 管 d*, 的体二极管和二极管 dB. 构成 的回路 续 流& G" 时 刻 开 始$ 电 感 两 端 的 电 压 为 )(%@9POX*53$电感电流线性下降$直到 G. 时刻电感 电流 0/ 下降到零& 模态 ,, G. RG, - .如图 S! 2# $G. 时刻电感电流 下降到零后$为实现开关管的零电压导通! fd_# 或谷底导通! d_# $通常让开关管延时至 G, 时刻导 通& 从 G. 时刻开始$J88OA电感和寄生电容 >d*" % >d*. 发生谐振$谐振电压表达式为 *>d*.!G# A@53," B28O!)=G#- J)(%@9PO28O!)=G#

分立元件构成的NMOS、PMOS驱动电路

分立元件构成的NMOS、PMOS驱动电路

采用分立元件构成的NMOS、PMOS驱动电路:
驱动NMOS的电路
驱动PMOS的电路
这里针对NMOS驱动电路做一个简单分析:
Vl和Vh分别是低端和高端的电源,两个电压可以是相同的,但是Vl不应该超过Vh。

Q1和Q2组成了一个反置的图腾柱,用来实现隔离,同时确保两只驱动管Q3和Q4不会同时导通。

R2和R3提供了PWM电压基准,通过改变这个基准,可以让电路工作在PWM信号波形比较陡直的位置。

Q3和Q4用来提供驱动电流,由于导通的时候,Q3和Q4相对Vh和GND最低都只有一个Vce的压降,这个压降通常只有0.3V左右,大大低于0.7V的Vce。

R5和R6是反馈电阻,用于对gate电压进行采样,采样后的电压通过Q5对Q1和Q2的基极产生一个强烈的负反馈,从而把gate电压限制在一个有限的数值。

这个数值可以通过R5和R6来调节。

最后,R1提供了对Q3和Q4的基极电流限制,R4提供了对MOS管的gate电流限制,也就是Q3和Q4的Ice的限制。

必要的时候可以在R4上面并联加速电容。

这个电路提供了如下的特性:
1,用低端电压和PWM驱动高端MOS管。

2,用小幅度的PWM信号驱动高gate电压需求的MOS管。

3,gate电压的峰值限制
4,输入和输出的电流限制
5,通过使用合适的电阻,可以达到很低的功耗。

6,PWM信号反相。

NMOS并不需要这个特性,可以通过前置一个反相器来解决。

图腾柱电路解析整理

图腾柱电路解析整理

再谈图腾柱驱动电路(diànlù)之一、之二、之三汇总(注:根据(gēnjù)davida的建议,觉得还是(hái shi)把这个三个帖子综合起来跟方便大家探讨。

)一、驱动(qūdònɡ)电路之一由于本人最近(zuìjìn)接触才saber,仿真能力有限,本想仿真,但实在是由于有关saber的基础东西还很多不会呢,所以只能请教大家了1、问:(1)在下面电路中,VCC的选择和哪些因素有关系?VCC和后级的mos管的Vgs电压相等吗?(2) NPN、PNP管子的选取的依据?三极管的电流Ic要满足什么样的条件才能驱动后端的mos?在下帖/bbs/2169.html15楼胡庄主曾提到“1)首先要确定(quèdìng)的是你需要多少的驱动能力?要驱动的负载(一般可认为是功率管)有多少?以MOSFET为例,驱动其实(qíshí)就是对MOS的门级电容的充放电,这就要考虑(kǎolǜ)你有几个MOS并联(bìnglián),门级电容有多大?MOS的Rg 有多大,加上驱动回路寄生电感(diàn ɡǎn)等,其实就是一个LRC串联回路。

2)驱动能力用个简化的公式来算就是I=C*Du/Dt,MOS的门级电容先确定,再来考虑你准备要几V的门级电压,然后就是这个电压建立和消除的时间,也就牵涉到MOS的开通关断速度,这会直接影响到功率管的损耗及其它问题,如应力等。

这几个想好了,所要的驱动电流也就出来了。

3)得到这个所要的驱动电流,再考虑上驱动回路的一堆寄生参数等,也就可以推出你图腾柱电路需提供多少驱动电流(注意这是个脉冲电流)。

”针对上边的内容我有些疑问:1、MOS属于单级型电压驱动器件,是栅极电压来控制漏极电流的,如果从表面理解的话,是不是只要保证栅极的电压达到Vgs就可以?和电流没有关系??2、MOS管的门极电容是怎么确定的?是下图这些参数吗?二、驱动电路之二问:1、图中的C18的作用(zuòyòng)?二极管D是否有必要加?要加的话(dehuà),起作用?2、R15、R16加与不加(bù jiā)?R15、R16在一般(yībān)电路中,是并接在mos的GS端,起消除(xiāochú)Cgs累计电荷的作用,防止mos处于开始处于导通或者状态不明确的情况。

采用图腾柱方式驱动MOSFET电路设计

采用图腾柱方式驱动MOSFET电路设计

采用图腾柱方式驱动MOSFET的电路分析1、原理图上图为典型的图腾柱输出方式驱动MOSFET的电路。

由于前端I/O口的对外驱动能力(一般为十几或者二十几mA)有限,为了提高对MOSFET的驱动能力,因此采用图腾柱电路。

由于MOSFET是压控型器件,则GS两端电压只要大于4.5V(导通时的阈值电压)时即可导通,为了使MOSFET可靠导通,则一般要求GS两端的电压要大于12V(不同型号的管子该电压不同),因此要求MOSFET的驱动电压幅值至少要大于12V。

此外,由于MOSFET的GS两端存在寄生电容,驱动MOSFET 的过程就是对该电容充放电的过程,充电的快慢反应MOSFET导通或关断的速度,而开关的速度又影响了MOSFET的开关损耗及EMI等内容,同时,充电的快慢又由充电电流的大小决定。

综上所述,要想驱动MOSFET正常导通和关断,则要考虑驱动幅值电压及对GS两端电容充电电流的大小。

因此,下面分别从驱动MOSFET的幅值电压及充电电流(驱动能力)的大小两个方面来分析该电路。

而幅值电压及充电电流与图中的驱动方波的幅值、电源电压V cc、电阻R2及电阻R3等有关。

因此,以下主要通过改变这些参数来验证电路设计的合理性。

2、电路分析(1)驱动方波幅值为15V、电源电压为10V、电阻R2=0R。

电路如下图所示:10V下图为仿真测试波形:流过R3的驱动电流波形E点驱动电压波形Q1的ce两端的电压波形R1两端的电压波形最低0V:完全饱和导通放电波形充电波形R1两端有5V压降Q1饱和导通时,其E极电压为10V从以上波形可知,在驱动波形为高电平(15V)时,Q1完全饱和导通,其ce间的压降为0V,此时电源电压直接加在点E处,即MOSFET的驱动电压幅值为10V,而不是驱动波形的射极跟随电压14.3V,这样存在的问题是,如果电源电压再小的话,则MOSFET的驱动电压幅值会更低。

同时,在驱动波形刚变为高电平时,流过电阻R3有一个尖峰电流,该电流就是对MOSFET的GS端电容充电的电流波形,由于C gs电容很小,因此充电时间很短,充满后就不存在充电电流,因此该电流波形在很短的时间内为尖峰。

图腾柱原理分析

图腾柱原理分析

图腾柱型驱动增强电路如图所示即为图腾柱型驱动增强电路。

图腾柱型驱动电路的作用在于:提升电流提供能力,迅速完成对于门极电荷的充电过程,而并不是提供一个门极电压。

所以电容C1的电压稳态时只会到达V1,因为如果高于V1的话,Q1的工作状态就是变化,BE之间没有压降的话Q1就截止了;同理,当Q2工作时,存在一个CE导通之后,电压被迅速拉低,但是由于Q2的工作状态要保持Q2的BE之间必须有0.7V的压降,所以等C1的电压到达0.7V以后Q2截止,所以C1的电压范围是0.7V(略低于)-4.3V(略低于)之间。

所以,图腾柱提升驱动能力的关键不是在于多增加级数,例如在同一个电源下面采用多级图腾柱串联,这样做是不能够提高驱动能力的,能做的只是将功率分散开,平分了电流I,用以驱动更大的IGBT或者mos管;要增加驱动能力,关键在于增加供电电源数量,多个电源供电之后电流增大,相当于提高了VDD的电压。

分析:MOS管/IGBT等驱动的原理就是给内部的电容充电,等效为C1充电过程:当V1为高电平时,Q1导通;Q2关断;等效电容C1由V1充电(稳态C1电压和VDD关系不大),当C1电压高于开关器件阀值时,开关器件导通,一般IGBT阀值在2V左右。

此时C1充电至(V1-0.7V)(去除Q1一个二极管压降)。

此处为什么C1的稳态电压不会VDD呢?原因在于Q1的导通状态需要位置,则Vbe之间必须有压降,如果C1的电压超过(V1-0.7V)那么Q1立刻截止,所以放电过程:当V1为低电平时,Q1关断;Q2由于C1充电至(V1-0.7V),处于高电平,此时V1拉低之后,Q2被导通,C1放电,但是由于Q2要导通的前提是C1-V1>0.7V,所以C1>0.7V时Q2可以导通,当C1<0.7V时,Q2截止,放电停止这一步的主要作用是给C1形成一个放电回路,快速释放C1的电荷,防止开关器件的导通电容C1无法放电而一直存在,处于高电平状态,开关器件的工作状态不明确。

mosfet的10种驱动电路图

mosfet的10种驱动电路图

MOSFET的10种驱动电路图1. PWM芯片直接驱动MOSFET2. 开通和关断速度分开控制的MOSFET驱动电路3. 带图腾柱扩流的MOSFET驱动电路4. 使用TL494,SG3524内部的输出电路采用的单端集电极和射极开路的驱动电路5. 使用光耦隔离的驱动电路(原原理图有误,Q1\Q2位置对调)6. 使用光耦隔离的带负压关断驱动电路:(原原理图有误,Q1\Q2位置对调)7. 采用专用驱动光耦驱动的隔离驱动电路:8. 电动车控制器驱动电路9. P管驱动电路:10. 多管并联驱动电路:下面是赠送的几篇网络励志文章需要的便宜可以好好阅读下,不需要的朋友可以下载后编辑删除!!谢谢!!出路出路,走出去才有路“出路出路,走出去才有路。

”这是我妈常说的一句话,每当我面临困难及有畏难情绪的时候,我妈就用这句话来鼓励我。

一定有很多人想说:“这还在北京混个什么劲儿啊!”但他每天都乐呵呵的,就算把快递送错了也乐呵呵的。

某天,他突然递给我一堆其他公司的快递单跟我说:“我开了家快递公司,你看得上我就用我家的吧。

”我有点惊愕,有一种“哎呦喂,张老板好,今天还能三蹦子顺我吗”的感慨。

之后我却很少见他来,我以为是他孩子出生了休假去了。

再然后,我就只能见到单子见不到他了。

某天,我问起他们公司的快递员,小伙子说老板去上海了,在上海开了家新公司。

我很杞人忧天地问他:“那上海的市场不激烈吗?新快递怎么驻足啊!”小伙子嘿嘿一笑说:“我们老板肯定有办法呗!他都过去好几个月了,据说干得很不错呢!”“那老婆孩子呢?孩子不是刚生还很小吗?”“过去了,一起去上海了!”那个瞬间,我回头看了一眼办公室里坐着的各种愁眉苦脸的同事,并且举起手机黑屏幕照了一下我自己的脸,一股“人生已经如此的艰难,有些事情就不要拆穿”的气息冉冉升起。

并不是说都跳槽出去开公司才厉害,在公司瞪着眼睛看屏幕就是没发展,我是想说,只有勇气才能让自己作出改变。

我们每个人都觉得自己越活越内向,越来越自闭,越长大越孤单,以至于滋生了“换个新环境,我这种性格估计也不会跟其他人相处融洽,所以还是待着忍忍凑合过算了”的思想感情。

5种常用MOS电路

5种常用MOS电路

5种经典MOSFET驱动电路MOSFET因导通内阻低、开关速度快等优点被广泛应用于开关电源中。

MOSFET的驱动常根据电源IC和MOSFET的参数选择合适的电路。

下面一起探讨MOSFET用于开关电源的驱动电路。

在使用MOSFET设计开关电源时,大部分人都会考虑MOSFET的导通电阻、最大电压、最大电流。

但很多时候也仅仅考虑了这些因素,这样的电路也许可以正常工作,但并不是一个好的设计方案。

更细致的,MOSFET还应考虑本身寄生的参数。

对一个确定的MOSFET,其驱动电路,驱动脚输出的峰值电流,上升速率等,都会影响MOSFET的开关性能。

当电源IC与MOS管选定之后,选择合适的驱动电路来连接电源IC与MOS管就显得尤其重要了。

一个好的MOSFET驱动电路有以下几点要求:(1)开关管开通瞬时,驱动电路应能提供足够大的充电电流使MOSFET栅源极间电压迅速上升到所需值,保证开关管能快速开通且不存在上升沿的高频振荡。

(2)开关导通期间驱动电路能保证MOSFET栅源极间电压保持稳定且可靠导通。

(3)关断瞬间驱动电路能提供一个尽可能低阻抗的通路供MOSFET栅源极间电容电压的快速泄放,保证开关管能快速关断。

(4)驱动电路结构简单可靠、损耗小。

(5)根据情况施加隔离。

下面介绍几个模块电源中常用的MOSFET驱动电路。

1:电源IC直接驱动MOSFET图1 IC直接驱动MOSFET电源IC直接驱动是我们最常用的驱动方式,同时也是最简单的驱动方式,使用这种驱动方式,应该注意几个参数以及这些参数的影响。

第一,查看一下电源IC手册,其最大驱动峰值电流,因为不同芯片,驱动能力很多时候是不一样的。

第二,了解一下MOSFET的寄生电容,如图1中C1、C2的值。

如果C1、C2的值比较大,MOS管导通的需要的能量就比较大,如果电源IC没有比较大的驱动峰值电流,那么管子导通的速度就比较慢。

如果驱动能力不足,上升沿可能出现高频振荡,即使把图1中Rg减小,也不能解决问题!IC 驱动能力、MOS寄生电容大小、MOS管开关速度等因素,都影响驱动电阻阻值的选择,所以Rg并不能无限减小。

图腾柱驱动电路你了解多少

图腾柱驱动电路你了解多少

图腾柱驱动电路你了解多少
图腾柱驱动电路你了解多少
图腾柱输出(Totem Pole的音译)
图腾大多和生殖器有关,图腾柱驱动的原理是由阴阳2管做推挽(或者叫灌拉)运动,类似于床上运动故以得名....
图腾柱驱动电路,实际上是一个电流放大电路,一般用于驱动MOS管或IGBT管,提供足够的灌电流和拉电流。

好吧,别太水了
今天对手上两对对管进行了仿真测试,只是仿真而已,因为没有示波器嘛。

首先是2n2222 和2n2907 这对管跟8050和8550差不多,话说我买不到8050和8550
信号源输出60KHz,占空比0.45的信号通过限流电阻送到图腾的b极,那个10R电阻是抑制振铃的,仿真中可以去掉,但是实际中不行,因为走线电感会和结电容谐振。

那个快恢复二极管是用了结电容放电时短路10R电阻的,加速放电。

上升沿397ns 下降沿338ns
看起来不错,但是这对管电流不够。

那我们试试大功率的TIP41 TIP42,这对管子能过6A,非常变态的驱动。

仍然是图腾接法。

上升沿到了656ns,非常缓慢,下降沿399ns。

为什么会这样呢?这就涉及到hFE(DC Current Gain 直流电流增益)的问题了,TIP4142的hFE只有40-70,而2n2222却是75-300,差距出来了吧。

那怎么解决呢?我决定使用2级图腾,2n2222 2907负责放大,TIP4142负责推动。

哈哈,上升395ns,下降308ns,完美解决了!下降沿还是有点慢,想办法调调应该能降到100ns。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图腾柱驱动电路你了解多少
图腾柱驱动电路你了解多少
图腾柱输出(Totem Pole的音译)
图腾大多和生殖器有关,图腾柱驱动的原理是由阴阳2管做推挽(或者叫灌拉)运动,类似于床上运动故以得名....
图腾柱驱动电路,实际上是一个电流放大电路,一般用于驱动MOS管或IGBT管,提供足够的灌电流和拉电流。

好吧,别太水了
今天对手上两对对管进行了仿真测试,只是仿真而已,因为没有示波器嘛。

首先是2n2222 和2n2907 这对管跟8050和8550差不多,话说我买不到8050和8550
信号源输出60KHz,占空比0.45的信号通过限流电阻送到图腾的b极,那个10R电阻是抑制振铃的,仿真中可以去掉,但是实际中不行,因为走线电感会和结电容谐振。

那个快恢复二极管是用了结电容放电时短路10R电阻的,加速放电。

上升沿397ns 下降沿338ns
看起来不错,但是这对管电流不够。

那我们试试大功率的TIP41 TIP42,这对管子能过6A,非常变态的驱动。

仍然是图腾接法。

上升沿到了656ns,非常缓慢,下降沿399ns。

为什么会这样呢?这就涉及到hFE(DC Current Gain 直流电流增益)的问题了,TIP4142的hFE只有40-70,而2n2222却是75-300,差距出来了吧。

那怎么解决呢?我决定使用2级图腾,2n2222 2907负责放大,TIP4142负责推动。

哈哈,上升395ns,下降308ns,完美解决了!下降沿还是有点慢,想办法调调应该能降到100ns。

相关文档
最新文档