辽宁省沈阳市高二上学期期末数学试卷(理科)

合集下载

沈阳市高二上学期期末数学试卷(理科)(I)卷(模拟)

沈阳市高二上学期期末数学试卷(理科)(I)卷(模拟)

沈阳市高二上学期期末数学试卷(理科)(I)卷姓名:________ 班级:________ 成绩:________一、选择题: (共12题;共24分)1. (2分)已知条件p:|x+1|>2,条件q:5x﹣6>x2 ,则¬p是¬q的()A . 充分不必要条件B . 必要不充分条件C . 充要条件D . 既不充分也不必要条件2. (2分) (2016高一下·会宁期中) 某社区有400个家庭,其中高等收入家庭120户,中等收入家庭180户,低收入家庭100户.为了调查社会购买力的某项指标,要从中抽取一个容量为100的样本,记作①;某校高一年级有13名排球运动员,要从中选出3人调查学习负担情况,记作②.那么,完成上述2项调查宜采用的抽样方法是()A . ①用简单随机抽样,②用系统抽样B . ①用分层抽样,②用简单随机抽样C . ①用系统抽样,②用分层抽样D . ①用分层抽样,②用系统抽样3. (2分) (2017高三上·荆州期末) 已知实数x,y满足,其中a= (x2﹣1)dx,则实数的最小值为()A .B .C .D .4. (2分)抛物线的准线方程为,则抛物线的标准方程为()A .B .C .D .5. (2分)设、分别是定义在R上的奇函数和偶函数。

当时,且。

则不等式的解集是()A .B .C .D .6. (2分) (2015高三上·大庆期末) 在△ABC中,,.若点D满足,则 =()A .B .C .D .7. (2分)如图的程序框图,能判断任意输入的整数x的奇偶性:其中判断框内的条件是()A . m=0B . x=0C . x=1D . m=18. (2分)“”是“直线与平行”的()A . 充分不必要条件B . 必要不充分条件C . 充分必要条件D . 既不充分也不必要条件9. (2分)(2016·花垣模拟) 下列说法正确的是(m,a,b∈R)()A . am>bm,则a>bB . a>b,则am>bmC . am2>bm2 ,则a>bD . a>b,则am2>bm210. (2分)(2017·蔡甸模拟) 已知F为双曲线C:(a>0,b>0)的左焦点,直线l经过点F,若点A(a,0),B(0,b)关于直线l对称,则双曲线C的离心率为()A .B .C .D .11. (2分)设f(x)=x2﹣2x﹣3(x∈R),则在区间[﹣π,π]上随机取一个实数x,使f(x)<0的概率为()A .B .C .D .12. (2分) (2018高一上·和平期中) 已知函数,若对任意的,且时,,则实数的取值范围为()A .B .C .D .二、填空题: (共4题;共4分)13. (1分) (2016高三上·辽宁期中) 已知f(x)=3x2+2x+1,若 f(x)dx=2f(a),则a=________.14. (1分)若命题“存在x∈R,ax2+4x+a≤0”为假命题,则实数a的取值范围是________15. (1分) (2017高二上·长泰期末) 椭圆的焦点F1F2 , P为椭圆上的一点,已知PF1⊥PF2 ,则△F1PF2的面积为________.16. (1分) (2015高二上·石家庄期末) 已知函数f(x)= ﹣1+lnx,若存在x0>0,使得f(x0)≤0有解,则实数a的取值范围为________.三、解答题: (共6题;共65分)17. (10分) (2018高二下·四川期中) 近年来空气质量逐步恶化,雾霾天气现象增多,大气污染危害加重.大气污染可引起心悸、呼吸困难等心肺疾病.为了解心肺疾病是否与性别有关,在市第一人民医院随机对入院50人进行了问卷调查,得到了如表的列联表:患心肺疾病不患心肺疾病合计男5女10合计50已知在全部50人中随机抽取1人,抽到患心肺疾病的人的概率为 .参考格式:,其中 .下面的临界值仅供参考:0.150.100.050.0250.0100.0050.0012.072 2.7063.841 5.024 6.6357.87910.828(1)请将上面的列联表补充完整;(2)是否有99%的把握认为患心肺疾病与性别有关?说明你的理由.18. (10分) (2017高二下·汉中期中) 已知函数f(x)=x﹣alnx(a∈R)(1)当a=2时,求曲线y=f(x)在点A(1,f(1))处的切线方程;(2)求函数f(x)的极值.19. (10分) (2017高三下·长宁开学考) 已知在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=BB1=1,直线B1C与平面ABC成30°的角.(1)求点C1到平面AB1C的距离;(2)求二面角B﹣B1C﹣A的余弦值.20. (10分) (2017高二下·曲周期中) 袋子A和B中装有若干个均匀的红球和白球,从A中摸出一个红球的概率是,从B中摸出一个红球的概率为p.(1)从A中又放回的摸球,每次摸出一个,共摸5次①恰好有3次摸到红球的概率;②第一次、第三次、第五次摸到红球的概率.(2)若A、B两个袋子中的球之比为12,将A、B中的球装在一起后,从中摸出一个红球的概率是,求p 的值.21. (10分) (2018高二下·深圳月考) 为美化环境,某市计划在以、两地为直径的半圆弧上选择一点建造垃圾处理厂(如图所示).已知、两地的距离为,垃圾场对某地的影响度与其到该地的距离有关,对、两地的总影响度对地的影响度和对地影响度的和.记点到地的距离为,垃圾处理厂对、两地的总影响度为 .统计调查表明:垃圾处理厂对地的影响度与其到地距离的平方成反比,比例系数为;对地的影响度与其到地的距离的平方成反比,比例系数为 .当垃圾处理厂建在弧的中点时,对、两地的总影响度为 .(1)将表示成的函数;(2)判断弧上是否存在一点,使建在此处的垃圾处理厂对、两地的总影响度最小?若存在,求出该点到地的距离;若不存在,说明理由.22. (15分) (2016高二下·韶关期末) 已知椭圆Γ: + =1(a>b>0)的右焦点与短轴两端点构成一个面积为2的等腰直角三角形,O为坐标原点:(1)求椭圆Г的方程:(2)设点A在椭圆Г上,点B在直线y=2上,且OA⊥OB,求证: + 为定值:(3)设点C在Γ上运动,OC⊥OD,且点O到直线CD距离为常数d(0<d<2),求动点D的轨迹方程:参考答案一、选择题: (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题: (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题: (共6题;共65分)17-1、17-2、18-1、18-2、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、22-3、。

沈阳市高二上学期期末数学试卷(理科)(I)卷

沈阳市高二上学期期末数学试卷(理科)(I)卷
19-4、答案:略
20-1、答案:略
20-2、答案:略
21-1、答案:略
21-2、答案:略
21-3、答案:略
21-4、答案:略
22-1、
22. (5分) (2017·大连模拟) 已知函数f(x)=x﹣alnx﹣1, ,其中a为实数.
(Ⅰ)求函数g(x)的极值;
(Ⅱ)设a<0,若对任意的x1、x2∈[3,4](x1≠x2), 恒成立,求实数a的最小值.
参考答案
一、 选择题 (共12题;共24分)
1-1、
2-1、答案:略
3-1、答案:略
21. (20分) (2019高三上·北京月考) 已知函数 .
(1) 当 时,求 的单调递增区间;
(2) 当 时,求 的单调递增区间;
(3) 是否存在 ,使得对任意的 ,都有 恒成立.若存在,求出 的取值范围;若不存在,请说明理由.
(4) 是否存在 ,使得对任意的 ,都有 恒成立.若存在,求出 的取值范围;若不存在,请说明理由.
15. (1分) 将八个半径都为1的球分放两层放置在一个圆柱内,并使得每个球都和其相邻的四个球相切,且与圆柱的一个底面及侧面都相切,则此圆柱的高等于 ________
16. (1分) (2016高二上·辽宁期中) 已知P为椭圆 =1上的一个点,M,N分别为圆(x+3)2+y2=1和圆(x﹣3)2+y2=4上的点,则|PM|+|PN|的最小值为________.
B . 如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值
C . 如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极小值
D . 如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极大值

辽宁省沈阳市数学高二上学期理数期末考试试卷

辽宁省沈阳市数学高二上学期理数期末考试试卷

辽宁省沈阳市数学高二上学期理数期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共12分)1. (1分)下列说法中正确的有()(1)命题“若,则”的逆否命题为“若,则”;(2)“”是“”的充分不必要条件;(3)若为假命题,则、均为假命题;(4)对于命题则A . 1个B . 2个C . 3个D . 4个2. (1分) (2018高一上·滁州期中) 若函数满足关系式,则()A .B .C .D .3. (1分) (2019高二上·浙江期末) 若为实数,则“ ”是“ ”的()A . 充分而不必要条件B . 必要而不充分条件C . 充分必要条件D . 既不充分也不必要条件4. (1分) (2019高三上·宁波期末) 在空间直角坐标系中,为坐标原点,满足,则下列结论中不正确的是()A . 的最小值为-6B . 的最大值为10C . 最大值为D . 最小值为16. (1分) (2016高二下·咸阳期末) 一批种子的发芽率为80%,现播下100粒该种种子,则发芽的种子数X 的均值为()A . 60B . 70C . 80D . 907. (1分)已知 x、y 为正实数,且,则的最小值是()A . 4B . 8C . 12D . 168. (1分)从的展开式中任取一项,则取到有理项的概率为()A .B .C .D .9. (1分) (2017高三上·唐山期末) 设实数满足约束条件,则的最小值为()A .B .C .D .10. (1分) (2017高二上·红桥期末) 已知双曲线一焦点坐标为(5,0),一渐近线方程为3x﹣4y=0,则双曲线离心率为()A .B .C .D .11. (1分)(2016·铜仁) 正方体ABCD—A1B1C1D1中直线与平面夹角的余弦值是()A .B .C .D .12. (1分) (2017高三上·四川月考) 已知函数的图像上有且仅有四个不同的点关于直线的对称点在的图像上,则实数的取值范围是()A .B .C .D .二、填空题 (共4题;共4分)13. (1分)在正方形ABCD中,点E为AD的中点,若在正方形ABCD内部随机取一个点Q,则点Q落在△ABE 内部的概率是________14. (1分)某学校有学生4 022人.为调查学生对2012年伦敦奥运会的了解状况,现用系统抽样的方法抽取一个容量为30的样本,则分段间隔是________.15. (1分)(2017·襄阳模拟) 以下四个命题:①已知随机变量X~N(0,σ2),若P(|X|<2)=a,则P(X>2)的值为;②设a、b∈R,则“log2a>log2b”是“2a﹣b>1”的充分不必要条件;③函数f(x)= ﹣()x的零点个数为1;④命题p:∀n∈N,3n≥n2+1,则¬p为∀n∈N,3n≤n2+1.其中真命题的序号为________.16. (1分) (2018高二上·江苏月考) 方程表示双曲线,则实数的取值范围是________.三、解答题 (共6题;共12分)17. (2分)(2020·丽江模拟) 设、为曲线上两点,与的横坐标之和为 .(1)求直线的斜率;(2)设弦的中点为,过点、分别作抛物线的切线,则两切线的交点为,过点作直线,交抛物线于、两点,连接、 .证明: .18. (2分) (2018高一下·葫芦岛期末) 为了解学生身高情况,某校以的比例对全校1000名学生按性别进行分层抽样调查,已知男女比例为,测得男生身高情况的频率分布直方图(如图所示):(1)计算所抽取的男生人数,并估计男生身高的中位数(保留两位小数);(2)从样本中身高在之间的男生中任选2人,求至少有1人身高在之间的概率.19. (2分) (2017高二下·南阳期末) 设函数(a∈R).(1)求f(x)的单调区间;(2)曲线y=xf(x)是否存在经过原点的切线,若存在,求出该切线方程,若不存在说明理由.20. (2分) (2019高二上·内蒙古月考) 为了解某地区某种农产品的年产量(单位:吨)对价格(单位:千元/吨)的影响,对近五年该农产品的年产量和价格统计如表:x12345y86542(参考公式:)已知和具有线性相关关系.(1)求关于的线性回归方程;(2)若年产量为4.5吨,试预测该农产品的价格.21. (2分)(2017·舒城模拟) 如图,在三棱台DEF﹣ABC中,AB=2DE,G,H分别为AC,BC的中点.(Ⅰ)求证:BD∥平面FGH;(Ⅱ)若CF⊥平面ABC,AB⊥BC,CF=DE,∠BAC=45°,求平面FGH与平面ACFD所成的角(锐角)的大小.22. (2分) (2019高三上·铁岭月考) 在直角坐标系xOy中,曲线C的参数方程为(t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为.(1)求C和l的直角坐标方程;(2)求C上的点到l距离的最小值.参考答案一、单选题 (共12题;共12分)1-1、2-1、3-1、4-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共12分) 17-1、17-2、18-1、18-2、19-1、19-2、20-1、20-2、22-1、22-2、。

辽宁省沈阳市郊联体高二(上)期末数学试卷(理科)含答案解析

辽宁省沈阳市郊联体高二(上)期末数学试卷(理科)含答案解析

辽宁省沈阳市郊联体高二(上)期末数学试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)抛物线x2=2y的准线方程为()A.y=﹣1 B.x=﹣1 C.D.2.(5分)下列说法正确的是()A.若命题p:∃x∈R,x2+x+1<0,则¬p:∀x∈R,x2+x+1>0B.命题已知x,y∈R,若x+y≠3,则x≠2或y≠1是真命题C.设x∈R,则2+x≥0是﹣1≤x≤3的充分不必要条件D.∀x、y∈R,如果xy=0,则x=0的否命题是∀x、y∈R,如果xy=0,则x≠0 3.(5分)直线l过点P(﹣2,﹣4)且与抛物线y2=﹣8x只有一个公共点,这样的直线共有()A.0条 B.1条 C.2条 D.3条4.(5分)双曲线的一个焦点到其渐近线的距离为,则双曲线的离心率为()A.B.C.D.5.(5分)已知20枚的一元硬币中混有6枚五角硬币,从中任意取出两枚,已知其中一枚为五角硬币,则两枚都是五角硬币的概率为()A.B.C.D.6.(5分)将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由落下,小球在下落的过程中,将3次遇到黑色障碍物,最后落入A袋或B 袋中,已知小球每次遇到黑色障碍物时,向左、右两边下落的概率分别为,则小球落入A袋中的概率为()A.B.C.D.7.(5分)(x2+3x+2)6展开式中x的系数为()A.92 B.576 C.192 D.3848.(5分)设O为坐标原点,动点N在圆C:x2+y2=8上,过N作y轴的垂线,垂足为M,点P满足,则点P的轨迹方程为()A.B.C.D.9.(5分)我们可以用计算机产生随机数的方法估计π的近似值,如图所示的程序框图表示其基本步骤(Scilab中用rand()函数来产生0~1的均匀随机数),若输出的结果为524,则由此可估计π的近似值为()A.3.144 B.3.154 C.3.141 D.3.14210.(5分)过抛物线y2=2px(p>0)的焦点F作倾斜角为的直线,交抛物线于A、B两点,则=()A.B.C. D.11.(5分)已知双曲线上有不共线的三点A、B、C,且AB、BC、AC 的中点分别为D、E、F,若OD、OE、OF的斜率之和为﹣2,则=()A.﹣4 B.C.4 D.612.(5分)2016年1月14日,国防科工局宣布,嫦娥四号任务已经通过了探月工程重大专项领导小组审议通过,正式开始实施,如图所示,假设“嫦娥四号”卫星将沿地月转移轨道飞向月球后,在月球附近一点P变轨进入月球球F为一个焦点的椭圆轨道I绕月飞行,之后卫星在P点第二次变轨进入仍以F为一个焦点的椭圆轨道II绕月飞行,若用2c1和2c2分别表示椭圆轨道I和II的焦距,用2a1和2a2分别表示椭圆轨道I和II的长轴长,给出下列式子:①a1﹣c1=a2﹣c2②a1+c1=a2+c2③c1a2>a1c2④其中正确的式子的序号是()A.②③B.①④C.①③D.②④二、填空题(本大题共4小题,每小题5分,满分20分,将答案填在答题纸上)13.(5分)为了了解2000名学生的学习情况,计划采用系统抽样的方法从全体学生中抽取容量为100的样本,若第一组抽出的号码为11,则第五组抽出的号码为.14.(5分)在平面直角坐标系xoy中,已知双曲线的渐近线方程为4x﹣3y=0,且它与椭圆有相同的焦点,则该双曲线方程为.15.(5分)如图,椭圆的中心在坐标原点O,顶点分别是A1、A2、B1、B2,焦点分别为F1、F2,延长B1F2与A2B2交于P点,若∠B1PB2为钝角,则此椭圆的离心率的取值范围是.16.(5分)过y轴上定点P(0,m)的动直线与抛物线x2=﹣16y交于A、B两点,若为定值,则m=.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)已知a∈R,命题P:∀x∈[1,2],x2﹣a≥0,命题q:已知方程表示双曲线.(1)若命题q为真命题,求实数a的取值范围;(2)若命题p∨q为真命题,命题p∧q为假命题,求实数a的取值范围.18.(12分)高二某班共有20名男生,在一次体验中这20名男生被平均分成两个小组,第一组和第二组男生的身高(单位:cm)的茎叶图如图:(1)根据茎叶图,分别写出两组学生身高的中位数;(2)从该班身高超过180cm的7名男生中随机选出2名男生参加校篮球队集训,求这2名男生至少有1人来自第二组的概率;(3)在两组身高位于[170,180)(单位:cm)的男生中各随机选出2人,设这4人中身高位于[170,180)(单位:cm)的人数为X,求随机变量X的分布列和数学期望.19.(12分)已知点M与点F(4,0)的距离比它的直线l:x+6=0的距离小2.(1)求点M的轨迹方程;(2)OA,OB是点M轨迹上互相垂直的两条弦,问:直线AB是否经过x轴上一定点,若经过,求出该点坐标;若不经过,说明理由.20.(12分)某高中生调查了当地某小区的50户居民由于台风造成的经济损失,将收集的数据分成[0,2000)、(2000,4000]、(4000,6000]三组,并作出如下频率分布直方图:(1)在直方图的经济损失分组中,以各组的区间中点值代表该组的各个值,并以经济损失落入该区间的频率作为经济损失取该区间中点值的概率(例如:经济损失x∈[0,2000]则取x=1000,且x=1000的概率等于经济损失落入[0,2000]的频率).现从当地的居民中随机抽出2户进行捐款援助,设抽出的2户的经济损失的和为ξ,求ξ的分布列和数学期望.(2)台风后居委会号召小区居民为台风重灾区捐款,此高中生调查的50户居民捐款情况如下表,在表格空白处填写正确数字,并说明是否有95%以上的把握认为捐款数额多于或少于500元和自身经济损失是否到4000元有关?经济损失不超过4000元经济损失超过4000元合计捐款超过500元30捐款不超过500元6合计附:临界值表参考公式:.P(K2≥k)0.150.100.050.0250.010 k 2.072 2.706 3.841 5.024 6.63521.(12分)已知椭圆T:的离心率为,若椭圆T与圆=1相交于M,N两点,且圆P在椭圆T内的弧长为π.(1)求a,b的值;(2)过椭圆T的中心作两条直线AC,BD交椭圆T于A,C和B,D四点,设直线AC的斜率为k1,BD的斜率为k2,且k1k2=.①求直线AB的斜率;②求四边形ABCD面积的取值范围.22.(12分)在平面直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴,建立极坐标系,曲线C1的极坐标方程为ρsinθ=2,M为曲线C1上的动点,点P 在线段OM上,且满足|OM||OP|=4.(1)求点P的轨迹C2的直角坐标方程;(2)直线l的参数方程是(t为参数),其中0≤α<π.l与C2交于点,求直线l的斜率.2017-2018学年辽宁省沈阳市郊联体高二(上)期末数学试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)抛物线x2=2y的准线方程为()A.y=﹣1 B.x=﹣1 C.D.【解答】解:抛物线x2=2y的准线方程为:y=﹣,故选:D.2.(5分)下列说法正确的是()A.若命题p:∃x∈R,x2+x+1<0,则¬p:∀x∈R,x2+x+1>0B.命题已知x,y∈R,若x+y≠3,则x≠2或y≠1是真命题C.设x∈R,则2+x≥0是﹣1≤x≤3的充分不必要条件D.∀x、y∈R,如果xy=0,则x=0的否命题是∀x、y∈R,如果xy=0,则x≠0【解答】解:对于A,命题p:∃x∈R,x2+x+1<0,则¬p:∀x∈R,x2+x+1≥0,故A错误;对于B,命题已知x,y∈R,若x+y≠3,则x≠2或y≠1的逆否命题为:已知x,y∈R,若x=2且y=1,则x+y=3,是真命题,则原命题是真命题,故B 正确;对于C,设x∈R,由2+x≥0,得x≥﹣2,当x=4时,不满足﹣1≤x≤3,故C错误;对于D,∀x、y∈R,如果xy=0,则x=0的否命题是∀x、y∈R,如果xy≠0,则x≠0,故D错误.故选:B.3.(5分)直线l过点P(﹣2,﹣4)且与抛物线y2=﹣8x只有一个公共点,这样的直线共有()A.0条 B.1条 C.2条 D.3条【解答】解:由题意可知点(﹣2,﹣4)在抛物线y2=﹣8x上,故过点(﹣2,﹣4)且与抛物线y2=﹣8x只有一个公共点时只能是:i)过点(﹣2,﹣4)且与抛物线y2=﹣8x相切,ii)过点(﹣2,﹣4)且平行于对称轴.故选:C.4.(5分)双曲线的一个焦点到其渐近线的距离为,则双曲线的离心率为()A.B.C.D.【解答】解:∵双曲线∴双曲线的渐近线方程为y=±x,即ax±by=0∵双曲线一个焦点到一条渐近线的距离为,∴右焦点F(0,c)到渐近线ax±by=0的距离d==,解之得b=,即,化简得c2=a2因此,该双曲线的标准离心率为e==故选:C.5.(5分)已知20枚的一元硬币中混有6枚五角硬币,从中任意取出两枚,已知其中一枚为五角硬币,则两枚都是五角硬币的概率为()A.B.C.D.【解答】解:20枚的一元硬币中混有6枚五角硬币,从中任意取出两枚,设事件A表示“其中一枚为5角硬币”,事件B表示“另一枚也是5角硬币”,则P(A)=1﹣=,P(AB)==,∴其中一枚为五角硬币,则两枚都是五角硬币的概率为:P(B|A)===.故选:D.6.(5分)将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由落下,小球在下落的过程中,将3次遇到黑色障碍物,最后落入A袋或B 袋中,已知小球每次遇到黑色障碍物时,向左、右两边下落的概率分别为,则小球落入A袋中的概率为()A.B.C.D.【解答】解:∵将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由落下,小球在下落的过程中,将3次遇到黑色障碍物,最后落入A 袋或B袋中,小球每次遇到黑色障碍物时,向左、右两边下落的概率分别为,小球落入A袋中的概率为:P(A)=1﹣P(B)=1﹣()=.故选:D.7.(5分)(x2+3x+2)6展开式中x的系数为()A.92 B.576 C.192 D.384【解答】解:(x2+3x+2)6 表示6个因式开式(x2+3x+2)的乘积,其中一个因式取3x,其余的都取2,可得展开式中x的系数为•3•25=576,故选:B.8.(5分)设O为坐标原点,动点N在圆C:x2+y2=8上,过N作y轴的垂线,垂足为M,点P满足,则点P的轨迹方程为()A.B.C.D.【解答】解:设N(x0,y0),由题意可得M(0,y0),设P(x,y),由点P满足,可得(x,y﹣y0)=(x0,0),可得x=x0,y=y0,即有x0=2x,y0=y,代入圆C:x2+y2=8,可得.即有点P的轨迹方程为.故选:B.9.(5分)我们可以用计算机产生随机数的方法估计π的近似值,如图所示的程序框图表示其基本步骤(Scilab中用rand()函数来产生0~1的均匀随机数),若输出的结果为524,则由此可估计π的近似值为()A.3.144 B.3.154 C.3.141 D.3.142【解答】解:x2+y2+z2<1发生的概率为π×13×=,当输出结果为524时,i=1001,m=527,x2+y2+z2<1发生的概率为P=,∴=,即π=3.144,故选:A.10.(5分)过抛物线y2=2px(p>0)的焦点F作倾斜角为的直线,交抛物线于A、B两点,则=()A.B.C. D.【解答】解:抛物线y2=2px(p>0)的焦点坐标为(,0),∵直线l倾斜角为30°,∴直线l的方程为:y﹣0=(x﹣).设直线与抛物线的交点为A(x1,y1)、B(x2,y2),∴|AF|=x1+,|BF|=x2+,联立方程组,消去y并整理,得4x2﹣28px+p2=0,解得x1=p,x2=p,或x2=p,x1=p,当x1=p,x2=p时,∴|AF|=x1+=(4+2)p,|BF|=x2+=(4﹣2)p,∴|AF|:|BF|==7+4,当x2=p,x1=p时,∴|AF|:|BF|==7﹣4,故选:C.11.(5分)已知双曲线上有不共线的三点A、B、C,且AB、BC、AC 的中点分别为D、E、F,若OD、OE、OF的斜率之和为﹣2,则=()A.﹣4 B.C.4 D.6【解答】解:设A(x1,y1),B(x2,y2),D(x0,y0),则x1+x2=2x0,y1+y2=2y0.由A,B在双曲线,则,相减可得=×=×=×,∴k AB=,即=2k OD.同理可得=2k OE,=2k OF.∴=2(k OD+k OE+k OF)=2×(﹣2)=﹣4.故选A.12.(5分)2016年1月14日,国防科工局宣布,嫦娥四号任务已经通过了探月工程重大专项领导小组审议通过,正式开始实施,如图所示,假设“嫦娥四号”卫星将沿地月转移轨道飞向月球后,在月球附近一点P变轨进入月球球F为一个焦点的椭圆轨道I绕月飞行,之后卫星在P点第二次变轨进入仍以F为一个焦点的椭圆轨道II绕月飞行,若用2c1和2c2分别表示椭圆轨道I和II的焦距,用2a1和2a2分别表示椭圆轨道I和II的长轴长,给出下列式子:①a1﹣c1=a2﹣c2②a1+c1=a2+c2③c1a2>a1c2④其中正确的式子的序号是()A.②③B.①④C.①③D.②④【解答】解:由图可知a2>a1、c2>c1,从而a1+c1<a2+c2;根据a1﹣c1=|PF|,a2﹣c2=|PF|可知a1﹣c1=a2﹣c2∴①正确,②不正确.∴a1+c2=a2+c1,∴(a1+c2)2=(a2+c1)2,即a12﹣c12+2a1c2=a22﹣c22+2a2c1,∴b12+2a1c2=b22+2a2c1,∵b1<b2,∴c1a2<a1c2,∴③不正确;此时④,∴④正确.故选:B二、填空题(本大题共4小题,每小题5分,满分20分,将答案填在答题纸上)13.(5分)为了了解2000名学生的学习情况,计划采用系统抽样的方法从全体学生中抽取容量为100的样本,若第一组抽出的号码为11,则第五组抽出的号码为91.【解答】解:样本间隔为2000÷100=20,则抽出的号码为11+20(x﹣1),则第五组号码为11+20×4=91,故答案为:91.14.(5分)在平面直角坐标系xoy中,已知双曲线的渐近线方程为4x﹣3y=0,且它与椭圆有相同的焦点,则该双曲线方程为.【解答】解:椭圆的焦点为(±5,0),双曲线的焦点坐标在x轴上.则双曲线的c=5,即a2+b2=25,由双曲线的渐近线方程为4x﹣3y=0,则3b=4a,解得,a=3,b=4.则双曲线的方程为.故答案为:.15.(5分)如图,椭圆的中心在坐标原点O,顶点分别是A1、A2、B1、B2,焦点分别为F1、F2,延长B1F2与A2B2交于P点,若∠B1PB2为钝角,则此椭圆的离心率的取值范围是.【解答】解:由题意,设椭圆的长半轴、短半轴、半焦距分别为a,b,c,则=(a,﹣b)、=(﹣c,﹣b),由∠B1PB2为钝角知道与的数量积大于0,所以有:﹣ac+b2>0,把b2=a2﹣c2代入不等式得:a2﹣ac﹣c2>0,除以a2得1﹣e﹣e2>0,即e2+e﹣1>0,解得,又0<e<1,所以0<e<,故答案为:.16.(5分)过y轴上定点P(0,m)的动直线与抛物线x2=﹣16y交于A、B两点,若为定值,则m=﹣8.【解答】解:设A(x1,y1),B(x2,y2),存在满足条件的点P(0,m),直线l:y=tx+m,有,消y可得x2+16tx+16m=0,由△=162t2﹣4×16m>0可得4t﹣m>0∴x1+x2=﹣16t,x1x2=16m,∴|AP|2=x12+(y1﹣m)2=x12+t2x12=(1+t2)x12,|BP|2=x22+(y2﹣m)2=(1+t2)x22,∴=+=•=•当m=﹣8时,为定值,故答案为:﹣8.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)已知a∈R,命题P:∀x∈[1,2],x2﹣a≥0,命题q:已知方程表示双曲线.(1)若命题q为真命题,求实数a的取值范围;(2)若命题p∨q为真命题,命题p∧q为假命题,求实数a的取值范围.【解答】解:(1)若q为真命题时:(a+1)(a﹣2)<0,∴﹣1<a<2,∴a∈(﹣1,2);(2)若p为真命题时:a≤(x2)min x∈[1,2],∴a≤1,p∨q为真命题,p∧q为假命题,则p、q一真一假,即或,解得1<a<2或a≤﹣1,∴a的范围为(1,2)∪(﹣∞,﹣1].18.(12分)高二某班共有20名男生,在一次体验中这20名男生被平均分成两个小组,第一组和第二组男生的身高(单位:cm)的茎叶图如图:(1)根据茎叶图,分别写出两组学生身高的中位数;(2)从该班身高超过180cm的7名男生中随机选出2名男生参加校篮球队集训,求这2名男生至少有1人来自第二组的概率;(3)在两组身高位于[170,180)(单位:cm)的男生中各随机选出2人,设这4人中身高位于[170,180)(单位:cm)的人数为X,求随机变量X的分布列和数学期望.【解答】解:(1)第一组学生身高的中位数为,第二组学生身高的中位数为;(2)记“这2名男生至少有1人来自第二组”为事件A,,∴这2名男生至少有1人来自第二组的概率为;(3)X的可能取值为0,1,2,3,,,,∴X的分布列为X0123P.19.(12分)已知点M与点F(4,0)的距离比它的直线l:x+6=0的距离小2.(1)求点M的轨迹方程;(2)OA,OB是点M轨迹上互相垂直的两条弦,问:直线AB是否经过x轴上一定点,若经过,求出该点坐标;若不经过,说明理由.【解答】解:(1)由题意知动点M到(4,0)的距离比它到直线l:x=﹣6的距离小2,即动点M到(4,0)的距离与它到直线x=﹣4的距离相等,由抛物线定义可知动点M的轨迹为以(4,0)为焦点的抛物线,则点M的轨迹方程为y2=16x;(2)法一:由题意知直线AB的斜率显然不能为0,设直线AB的方程为x=ty+m(m≠0)A(x1,y1),B(x2,y2),联立方程,消去x,可得y2﹣16ty﹣16m=0,△>0即4t2+m>0,y1+y2=16t,y1y2=﹣16m,,由题意知OA⊥OB,即,则x1x2+y1y2=0,∴m2﹣16m=0,∵m≠0,∴m=16,∴直线AB的方程为x=ty+16,∴直线AB过定点,且定点坐标为(16,0);法二:假设存在定点,设定点P(x0,0),A(x1,y1),B(x2,y2)(y1y2≠0),∵OA⊥OB,∴,∴x1x2+y1y2=0,又∵A、B在抛物线上,即代入上式,可得,∴y1y2=﹣256,又∵A、B、P三点共线,∴,∴,∴假设成立,直线AB经过x轴的定点,坐标为(16,0).20.(12分)某高中生调查了当地某小区的50户居民由于台风造成的经济损失,将收集的数据分成[0,2000)、(2000,4000]、(4000,6000]三组,并作出如下频率分布直方图:(1)在直方图的经济损失分组中,以各组的区间中点值代表该组的各个值,并以经济损失落入该区间的频率作为经济损失取该区间中点值的概率(例如:经济损失x∈[0,2000]则取x=1000,且x=1000的概率等于经济损失落入[0,2000]的频率).现从当地的居民中随机抽出2户进行捐款援助,设抽出的2户的经济损失的和为ξ,求ξ的分布列和数学期望.(2)台风后居委会号召小区居民为台风重灾区捐款,此高中生调查的50户居民捐款情况如下表,在表格空白处填写正确数字,并说明是否有95%以上的把握认为捐款数额多于或少于500元和自身经济损失是否到4000元有关?经济损失不超过4000元经济损失超过4000元合计捐款超过500元30捐款不超过500元6合计附:临界值表参考公式:.P(K2≥k)0.150.100.050.0250.010 k 2.072 2.706 3.841 5.024 6.635【解答】(1)由题意可知P(x=1000)=0.3,P(x=3000)=0.5,P(x=5000)=0.2,ξ的所有可能取值为2000,4000,6000,8000,10000,,P(ξ=10000)=0.22=0.04,所以ξ的分布列为ξ200040006000800010000 P0.090.300.370.200.04 E(ξ)=2000×0.09+4000×0.30+6000×0.37+8000×0.20+10000×0.04=5600元(2)经济损失不超过4000元经济损失超过4000元合计捐款超过500元30434捐款不超过500元10616合计401050,∴有95%以上的把握认为捐款数额多于或少于500元和自身经济损失是否到4000元有关.21.(12分)已知椭圆T :的离心率为,若椭圆T 与圆=1相交于M,N两点,且圆P在椭圆T 内的弧长为π.(1)求a,b的值;(2)过椭圆T的中心作两条直线AC,BD交椭圆T于A,C和B,D四点,设直线AC的斜率为k1,BD的斜率为k2,且k1k2=.①求直线AB的斜率;②求四边形ABCD面积的取值范围.【解答】解:(1)由圆P在椭圆T 内的弧长为,则该弧所对的圆心角为,M、N 的坐标分别为,设c2=a2+b2,由可得,∴a2=4b2,则椭圆方程可记为+=1,将点(﹣1,)代入得,∴b2=1,a2=4,∵a>b>0,∴a=2,b=1;(2)①由(1)知椭圆方程可记为,由题意知直线AB的斜率显然存在,设直线AB的方程为:y=kx+m,设A(x1,y1),B(x2,y2),联立,消去y,可得(1+4k2)x2+8kmx+4m2﹣4=0,由△>0,即16(1+4k2﹣m2)>0,∴,∴,∵,∴,即x1x2=4y1y2,∴4k2=1,∴k=±;②,O到直线AB的距离,四边形ABCD面积,∵m2∈(0,1)∪(1,2),∴四边形ABCD面积S∈(0,4).22.(12分)在平面直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴,建立极坐标系,曲线C1的极坐标方程为ρsinθ=2,M为曲线C1上的动点,点P 在线段OM上,且满足|OM||OP|=4.(1)求点P的轨迹C2的直角坐标方程;(2)直线l的参数方程是(t为参数),其中0≤α<π.l与C2交于点,求直线l的斜率.【解答】解:(1)设点P的极坐标(ρ,θ)(ρ>0),点M的极坐标(ρ1,θ)(ρ1>0),由题意可知,由|OP||OM|=4得曲线C2的极坐标方程为ρ=2sinθ(ρ>0),∴点P的轨迹C2的直角坐标方程为x2+(y﹣1)2=1(y≠0);(2)法一:由直线的参数方程可知,直线l过原点且倾角为α,则直线l极坐标方程为θ=α,联立,∴A(2sinα,α),∴,∴或,∴或,∴直线l得斜率为或;法二:由题意分析可知直线l的斜率一定存在,且由直线l的参数方程可得,直线l过原点,设直线l的普通方程为y=kx,∴C2到l的距离,可得,∴直线l得斜率为或.。

辽宁省沈阳市数学高二上学期理数期末考试试卷

辽宁省沈阳市数学高二上学期理数期末考试试卷

辽宁省沈阳市数学高二上学期理数期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)(2017·长沙模拟) 设集合M={x|x=2n,n∈Z},N={x|x=2n+1,n∈Z},P={x|x=4n,n∈Z},则()A . M=PB . P≠MC . N∩P≠∅D . M∩N≠∅2. (2分)复数()A .B .C .D .3. (2分) (2019高二上·大庆月考) 命题“若A∪B=A,则A∩B=B”的否命题是()A . 若A∪B≠A,则A∩B≠BB . 若A∩B=B,则A∪B=AC . 若A∩B≠B,则A∪B≠AD . 若A∪B≠A,则A∩B=B4. (2分) (2019高三上·天津月考) 已知a,b,c,d是四个互不相等的正实数,满足,且,则下列选项正确的是()A .B .C .D .5. (2分)数列满足,则与的等比中项是()A . 4B .C . 16D .6. (2分)已知函数的导函数为,且满足,则()A .B .C .D .7. (2分) (2017高一上·红桥期末) 已知向量 =(﹣1,6), =(3,﹣2),则 + =()A . (4,4)B . (2,4)C . (﹣2,4)D . (﹣4,4)8. (2分) F(c,0)是椭圆的一个焦点,F与椭圆上点的距离的最大值为m,最小值为n,则椭圆上与点F距离为的点是()A .B .C .D . 不存在9. (2分)定义在R上的函数y=f(x)满足f(-a)=-f(a),且.若当x>3时不等式成立,则的取值范围是()A .B .C .D .10. (2分)过抛物线的焦点的直线l交抛物线于、两点,如果,则()A . 8B . 9C . 10D . 1111. (2分)在等差数列3,8,13…中,第5项为().A . 15B . 18C . 19D . 2312. (2分) (2019高二上·哈尔滨月考) 已知抛物线的焦点为,抛物线上一点满足,则的面积为()A . 1B .C . 2D .二、填空题 (共4题;共4分)13. (1分) (2019高二下·青浦期末) -2的平方根是________.14. (1分) (2019高三上·南宁月考) 已知等差数列的前n项和为,且,则 ________.15. (1分) (2018高一下·通辽期末) 在中,,则此三角形的最大边的长为________.16. (1分) (2019高二下·牡丹江月考) 曲线在点处的切线方程为________.三、解答题 (共6题;共50分)17. (10分) (2018高三上·昭通期末) 数列的前n项和为Sn ,且Sn=n2+1(I)求的通项公式;(II)设,求数列的前n项和18. (10分) (2019高一下·合肥期中) 在中,内角的对边分别为 .(1)若已知,判断的形状;(2)若已知边上的高为,求的最大值.19. (5分) (2020高二下·六安月考) 已知,是的导函数,(1)若,求的值;(2)若,求的单调递增区间20. (5分) (2020高二上·无锡期末) 如图,在高为的等腰梯形中,,且,,将它沿对称轴折起,使平面平面,如图,点为的中点,点在线段上(不同于,两点),连接并延长至点,使 .(1)证明:平面;(2)若,求二面角的余弦值.21. (10分)(2017·新课标Ⅲ卷文) 设数列{an}满足a1+3a2+…+(2n﹣1)an=2n.(12分)(1)求{an}的通项公式;(2)求数列{ }的前n项和.22. (10分)(2020·攀枝花模拟) 已知为圆上一点,过点作轴的垂线交轴于点,点满足(1)求动点的轨迹方程;(2)设为直线上一点,为坐标原点,且,求面积的最小值.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共50分) 17-1、18-1、18-2、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、第11 页共11 页。

辽宁省数学高二上学期期末考试试卷(理科)(I)卷

辽宁省数学高二上学期期末考试试卷(理科)(I)卷

辽宁省数学高二上学期期末考试试卷(理科)(I)卷姓名:________ 班级:________ 成绩:________一、选择题: (共12题;共24分)1. (2分)“命题∃x∈R,x2+ax﹣4a≤0为假命题”是“﹣16≤a≤0”的()A . 充分不必要条件B . 必要不充分条件C . 充要条件D . 既不充分也不必要条件2. (2分)已知直线ax﹣by﹣2=0与曲线y=x3在点P(1,1)处的切线互相垂直,则为()A .B .C . -D . -3. (2分) (2017高三下·银川模拟) 已知双曲线﹣ =1的两个焦点分别为F1 , F2 ,以线段F1F2为直径的圆与双曲线渐近线一个交点为(4,3),则该双曲线的实轴长为()A . 6B . 8C . 4D . 104. (2分)已知平面α的法向量为=(1,2,-2),平面β的法向量为=(-2,-4,K),若α⊥β,则k=()A . 4B . -4C . 5D . -55. (2分) (2018高二下·凯里期末) 数学猜想是推动数学理论发展的强大动力,是数学发展中最活跃、最主动、最积极的因素之一,是人类理性中最富有创造性的部分.1927年德国汉堡大学的学生考拉兹提出一个猜想:对于每一个正整数,如果它是奇数,对它乘3再加1,如果它是偶数,对它除以2,这样循环,最终结果都能得到1.下面是根据考拉兹猜想设计的一个程序框图,则输出的为()A . 5B . 6C . 7D . 86. (2分)(2013·重庆理) 某质点的运动方程是,则在s时的瞬时速度为()A . -1B . -3C . 7D . 137. (2分)(2018·榆林模拟) 在直四棱柱中,底面是边长为1的正方形,,、分别是、中点,则与所成的角的余弦值为()A .B .C .D .8. (2分)已知动点P(x,y)满足,则点P的轨迹是()A . 圆B . 椭圆C . 双曲线D . 抛物线9. (2分)(2017·榆林模拟) 设函数f(x)= 在区间[0,e]上随机取一个实数x,则f(x)的值不小于常数e的概率是()A .B . 1﹣C .D .10. (2分)执行如图所示的程序框图,若输出实数k的值为4,则框图中x的值是()A . 4B . 16C . 24D . 12011. (2分)若点O和点F分别为椭圆的中心和左焦点,点P{为椭圆上的任意一点,则的最大值为()A . 8B . 6C . 3D . 212. (2分)已知函数的导函数的图象如图所示,则关于函数,下列说法正确的是()A . 在x=1处取得最大值B . 在区间上是增函数C . 在区间上函数值均小于0D . 在x=4处取得极大值二、填空题 (共4题;共4分)13. (1分)(2012·江苏理) 某学校高一、高二、高三年级的学生人数之比为3:3:4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取________名学生.14. (1分)给出下列命题:①存在实数x,使得sinx+cosx=;②函数y=2sin(2x+)的图象关于点(, 0)对称;③若函数f(x)=ksinx+cosx的图象关于点(, 0)对称,则k=﹣1;④在平行四边形ABCD中,若|+|=|+|,则四边形ABCD的形状一定是矩形.则其中正确的序号是________ (将正确的判断的序号都填上)15. (1分) (2018高三上·天津月考) 已知函数与的图象上存在关于原点对称的点,则实数的取值范围是________.16. (1分)(2017·泰州模拟) 已知点F,A是椭圆C:的左焦点和上顶点,若点P是椭圆C上一动点,则△PAF周长的最大值为________.三、解答题 (共6题;共50分)17. (5分)(2018·南充模拟) 已知椭圆的中心在原点,离心率等于,它的一个长轴端点恰好是抛物线的焦点,(Ⅰ)求椭圆的方程;(Ⅱ)已知,是椭圆上的两点,是椭圆上位于直线两侧的动点.①若直线的斜率为,求四边形面积的最大值.②当运动时,满足,试问直线的斜率是否为定值?请说明理由.18. (5分)“你低碳了吗?”这是某市为倡导建设资源节约型社会而发布的公益广告里的一句话.活动组织者为了解这则广告的宣传效果,随机抽取了100名年龄段在[10,20),[20,30),…,[50,60)的市民进行问卷调查,由此得到样本的频率分布直方图如图所示.(Ⅰ)求随机抽取的市民中年龄段在[30,40)的人数;(Ⅱ)从不小于40岁的人中按年龄段分层抽样的方法随机抽取8人,求[50,60)年龄段抽取的人数;(Ⅲ)从按(Ⅱ)中方式得到的8人中再抽取3人作为本次活动的获奖者,记X为年龄在[50,60)年龄段的人数,求X的分布列及数学期望.19. (15分) (2017高二下·高青开学考) 如图,在五面体ABCDEF中,FA⊥平面ABCD,AD∥BC∥FE,AB⊥AD,M为EC的中点,AF=AB=BC=FE= AD.(1)求异面直线BF与DE所成的角的大小;(2)证明平面AMD⊥平面CDE;(3)求锐二面角A﹣CD﹣E的余弦值.20. (10分)如图,在某商业区周边有两条公路l1和l2 ,在点O处交汇;该商业区为圆心角、半径3km的扇形.现规划在该商业区外修建一条公路AB,与l1 , l2分别交于A,B,要求AB与扇形弧相切,切点T 不在l1 , l2上.(1)设OA=akm,OB=bkm试用a,b表示新建公路AB的长度,求出a,b满足的关系式,并写出a,b的范围;(2)设∠AOT=α,试用α表示新建公路AB的长度,并且确定A,B的位置,使得新建公路AB的长度最短.21. (5分)已知圆F1:(x+1)2+y2=1,圆F2:(x﹣1)2+y2=25,动圆P与圆F1外切并且与圆F2内切,动圆圆心P的轨迹为曲线C.(Ⅰ)求曲线C的方程;(Ⅱ)若曲线C与x轴的交点为A1 , A2 ,点M是曲线C上异于点A1 , A2的点,直线A1M与A2M的斜率分别为k1 , k2 ,求k1k2的值.22. (10分) (2015高三上·平邑期末) 已知函数f(x)=lnx+ (a>0).(1)求函数f(x)在[1,+∞)上的最小值;(2)若存在三个不同的实数xi(i=1,2,3)满足f(x)=ax.(i)证明:∀a∈(0,1),f()>;(ii)求实数a的取值范围及x1•x2•x3的值.参考答案一、选择题: (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共50分)17-1、18-1、19-1、19-2、19-3、20-1、20-2、21-1、22-1、22-2、。

辽宁省沈阳市2020-2021学年高二上学期期末考试数学理试题

辽宁省沈阳市2020-2021学年高二上学期期末考试数学理试题
5.A
【分析】
画出不等式组表示的可行域,由目标函数求出最优解,再计算目标函数的最大、最小值.
【详解】
不等式组表示的可行域如图阴影部分所示,
由z=3x﹣2y得y x ,
平移直线y x,经过A时, 最大,
由 ,求得A(0,1),
此时z最小,z最小值为3×0﹣2×1=﹣2;
同理,在B点时, 最小,
由 ,求得B(3,﹣2),
由已知2p=16,所以p=8,所以准线方程为y=﹣4,
故选:A.
【点睛】
本题考查抛物线的标准方程,涉及其准线方程的求法,注意分析抛物线的开口方向,属于基础题.
3.B
【分析】
由特称命题的否定为全称命题即可得解.
【详解】
命题p:∃a,b∈R,a2+b2≤0,
则¬p为:∀a,b∈R,a2+b2>0.
故选B.
(1)求椭圆 的方程;
(2)若 的纵坐标为 ,求直线 截椭圆 所得的弦长;
(3)若直线 交直线 于 , 为直线 上一点,且 为原点),证明: 为线段 的中点.
参考答案
1.C
【解析】
【分析】
利用特值可进行排除,由不等式性质可证明C正确.
【详解】
若a=1,b=﹣1,则A,B错误,若c=0,则D错误,
∵a>b,
10.已知双曲线的中心在坐标原点,对称轴为坐标轴,若双曲线的一个焦点坐标为 ,且圆 与双曲线的渐近线相切,则双曲线的方程是
A. B. C. D.
11.设等差数列 的前 项和为 , , ,若 , ,则数列 的最小项是
A.第6项B.第7项C.第12项D.第13项
12.已知 为抛物线 的焦点, 为原点,点 是抛物线准线上一动点,若点 在抛物线上,且 ,则 的最小值为

辽宁省沈阳市 — 高二数学上学期期末考试 理

辽宁省沈阳市 —  高二数学上学期期末考试 理

上学期期末考试高二(14届)数学(理)试题满分:150分 时间:120分钟第1卷(选择题,共60分)一、选择题:(本大题共12小题,每小题5 分,共60分。

在每小题给出的四个选项中,只有一个是符合题目要求。

) 1、不等式2x x <的解集是( )A 、()0,∞-B 、()1,0C 、()+∞,1D 、()()+∞⋃∞-,10,2、设i 为虚数单位,bi a ii+=+-15,则=-b a ( ) A 、1 B 、—5 C 、5 D 、—13、设,p q 是两个命题22:log (||3)0,:6510p x q x x -<-+>,,则p 是q 的( ) A.充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件 D. 既不充分也不必要条件4、5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有( ) A .10种 B .20种 C .25种 D .32种5、二次不等式012>++bx ax 的解集为{x |-1<x <13},则ab 的值为( )A .-5B .5C .- 6D .66、若()x f y =是定义域为{}*∈≤≤=N x x x A ,71,值域为{}1,0=B 的函数,则这样的函数共有( )A 、128个B 、126个C 、72个D 、64个7、当a 为任意实数时,直线024)32(=+-++a y x a 恒过定点P ,则过点P 的抛物线的标准方程是( ) A .y x 322=或x y 212-= B .y x 322-=或x y 212=C .x y 322=或y x 212-= D .x y 322-=或y x 212=8、若多项式()()()1010991010111+++++++=+x a x a x a a x x ,则820a a a +++ =( )A 、509B 、510C 、511D 、10229、若点O 和点F ()0,2-分别是双曲线()012222>=-a by a x 的中心和左焦点,点P 为双曲线右支上的任意一点,则⋅的取值范围为( )A 、[)+∞+,323B 、[)+∞-,323 C 、⎪⎭⎫⎢⎣⎡+∞,47D 、⎪⎭⎫⎢⎣⎡+∞-,4710、如图所示的坐标平面的可行域内(阴影部分,包括边界)若目标函数ay x z +=,取得最小值的最优解有无穷个,则a x y-的最大值是( ) A 、32 B 、52C 、61 D 、4111、设F 1,F 2是双曲线2214y x -=的左、右焦点,若双曲线右支上存在一点P ,使()220OP OF F P +⋅=,且21||||PF PF λ=,则λ的值为( )( )A .13 B .12C .2D .312、以下正确命题的个数为( )①命题“存在00,20xx R ∈≤”的否定是:“不存在00,20xx R ∈>”;②命题:“函数131()()4x f x x =-的零点在区间11(,)43内”是真命题;③某班男生20人,女生30人,从中抽取10个人的样本,恰好抽到4个男生、6个女生,则该抽样中女生被抽到的概率大于男生被抽到的概率;④8(1展开式中不含4x 项的系数的和为1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

辽宁省沈阳市高二上学期期末数学试卷(理科)
姓名:________ 班级:________ 成绩:________
一、选择题: (共12题;共24分)
1. (2分) (2018高一下·河南月考) 甲、乙两人在相同的条件下各打靶6次,每次打靶的情况如图所示(虚线为甲的折线图),则以下说法错误的是()
A . 甲、乙两人打靶的平均环数相等
B . 甲的环数的中位数比乙的大
C . 甲的环数的众数比乙的大
D . 甲打靶的成绩比乙的更稳定
2. (2分) (2018高三上·张家口期末) 若抛物线的焦点坐标,则的值为()
A .
B .
C .
D .
3. (2分) (2015高三上·盘山期末) 有下列说法:
①一支田径队有男女运动员98人,其中男运动员有56人.按男、女比例用分层抽样的方法,从全体运动员中抽出一个容量为28的样本,那么应抽取女运动员人数是12人;
②采用系统抽样法从某班按学号抽取5名同学参加活动,学号为5,27,38,49的同学均选中,则该班学生的人数为60人;
③废品率x%和每吨生铁成本y(元)之间的回归直线方程为,这表明废品率每增加1%,生铁成本大约增加258元;
④为了检验某种血清预防感冒的作用,把500名未使用血清和使用血清的人一年中的感冒记录作比较,提出假设H0:“这种血清不能起到预防作用”,利用2×2列联表计算得K2的观测值k≈3.918,经查对临界值表知P (K2≥3.841)≈0.05,由此,得出以下判断:在犯错误的概率不超过0.05的前提下认为“这种血清能起到预防的作用”.
正确的有()
A . ①④
B . ②③
C . ①③
D . ②④
4. (2分)(2017·武汉模拟) 已知点F1 , F2分别为双曲线 =1(a>0,b>0)的左、右焦点,P 为双曲线右支上的任意一点,若的最小值为9a,则双曲线的离心率为()
A . 2
B . 5
C . 3
D . 2或5
5. (2分)(2017·黑龙江模拟) 已知P是椭圆上任意一点,过椭圆的右顶点A和上顶点B分别作x轴和y轴的垂线,两垂线交于点C,过P作AC,BC的平行线交BC于点M,交AC于点N,交AB于点D,E,矩
形PMCN的面积是S1 ,三角形PDE的面积是S2 ,则 =()
A . 2
B . 1
C .
D .
6. (2分)分别在区间,内各任取一个实数依次为,则的概率是()
A . 0.3
B . 0.667
C . 0.7
D . 0.714
7. (2分) (2020高二下·深圳期中) 下列命题中,真命题是()
A . ;
B . 命题“ ”的否定是“ ”;
C . “ ”是“ ”的充分不必要条件;
D . 函数在区间内有且仅有两个零点.
8. (2分) (2016高二上·清城期中) 抛物线y=ax2的准线方程是y=2,则a的值为()
A .
B . -
C . 8
D . ﹣8
9. (2分)(2016·韶关模拟) 已知点A是双曲线(a,b>0)右支上一点,F是右焦点,若△AOF (O是坐标原点)是等边三角形,则该双曲线离心率e为()
A .
B .
C . 1+
D . 1+
10. (2分) (2019高一下·广东期末) 如图,将边长为的正方形沿对角线折成大小等于
的二面角分别为的中点,若,则线段长度的取值范围为()
A .
B .
C .
D .
11. (2分)已知底面边长为的正三棱柱ABC﹣A1B1C1的体积为,若点P为底面A1B1C1的中心,则PA 与平面ABC所成角的大小为()
A .
B .
C .
D .
12. (2分) (2018高二上·宜昌期末) 已知双曲线的右焦点为,
是双曲线C上的点,,连接并延长交双曲线C与点P,连接,若是以为顶点的等腰直角三角形,则双曲线C的渐近线方程为()
A .
B .
C .
D .
二、填空题 (共6题;共7分)
13. (2分)如图甲是某市有关部门根据当地干部的月收入情况调查后画出的样本频率分布直方图.已知图甲中从左到右第一组的频数为4000,在样本中记月收入在[1000,1500],[1500,2000],[2000,2500],[2500,3000],[3000,3500],[3500,4000]的人数依次为A1 , A2 ,…A6 .图乙是统计图甲中月工资收入在一定范围内的人数的程序框图,则样本的容量n=________,图乙输出的S=________,(用数字作答)
14. (1分) (2020高一上·天津月考) 给出下列条件p与q:
① :或;:
② :,:
③ :一个四边形是矩形;:四边形的对角线相等
其中是的必要不充分条件的序号为________.
15. (1分)若抛物线y2=2px(p>0)的准线经过双曲线x2﹣y2=1的一个焦点,则p=________
16. (1分)(2020·南京模拟) 运行如图所示的伪代码,则输出的S的值为________.
17. (1分) (2019高二上·江都月考) 设双曲线的左准线与两条渐近线交于两点,左焦点在以为直径的圆内,则该双曲线的离心率的取值范围为________.
18. (1分) (2018高二上·江苏月考) 已知椭圆内部的一点为A ,F为右焦点,M
为椭圆上一动点,则MA+ MF的最小值为________.
三、解答题 (共4题;共25分)
19. (5分)已知命题p:不等式|x﹣1|>m﹣1的解集为R,命题q:f(x)=﹣(5﹣2m)x是减函数,若p 或q为真命题,p且q为假命题,求实数m的取值范围.
20. (5分)设双曲线C的两个焦点为(﹣, 0),(,0),一个顶点(1,0),求双曲线C的方程,离心率及渐近线方程.
21. (5分) (2019高二上·丽水期末) 如图,在三棱锥中,分别为 , 的中点,
为的中点, .
(Ⅰ)求证:平面;
(Ⅱ)若,,平面平面,求直线与平面所成角的正弦值.
22. (10分)(2019·淮南模拟) 设椭圆的左、右焦点分别为,,上顶点为,过点与垂直的直线交轴负半轴于点,且,过,三点的圆恰好与直线相切.
(1)求椭圆的方程;
(2)过右焦点作斜率为的直线与椭圆交于两点,问在轴上是否存在点,使得以为邻边的平行四边形是菱形?如果存在,求出的取值范围;如果不存在,说明理由.
参考答案一、选择题: (共12题;共24分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
二、填空题 (共6题;共7分)
13-1、
14-1、
15-1、
16-1、
17-1、
18-1、
三、解答题 (共4题;共25分) 19-1、
20-1、
22-1、
22-2、。

相关文档
最新文档