高一对数指数

合集下载

对数与指数的之间的关系理解和归纳

对数与指数的之间的关系理解和归纳

对数与指数的之间的关系理解和归纳知识点:对数与指数之间的关系理解和归纳一、对数与指数的定义和性质1.对数的定义:对数是幂的指数,用来表示幂的次数。

2.指数的定义:指数是基数的幂,用来表示幂的次数。

3.对数的基本性质:(1)对数的底数必须大于0且不等于1。

(2)对数的真数必须大于0。

(3)对数的值是实数。

4.指数的基本性质:(1)指数的底数必须大于0且不等于1。

(2)指数的值可以是正数、负数或0。

(3)指数的幂是实数。

二、对数与指数的互化关系1.对数与指数的互化公式:(1)如果y=log_a(x),则a^y=x。

(2)如果y=a^x,则log_a(y)=x。

2.对数与指数互化的意义:(1)对数可以用来求解指数方程。

(2)指数可以用来求解对数方程。

三、对数与指数的增长速度1.对数增长速度:对数函数的增长速度逐渐变慢。

2.指数增长速度:指数函数的增长速度逐渐变快。

四、对数与指数的应用1.对数与指数在科学计算中的应用:(1)天文学:计算星体距离。

(2)生物学:计算细菌繁殖。

(3)经济学:计算货币贬值。

2.对数与指数在实际生活中的应用:(1)通信:计算信号衰减。

(2)计算机科学:计算数据压缩率。

(3)物理学:计算放射性物质衰变。

五、对数与指数的图像和性质1.对数图像:对数函数的图像是一条斜率逐渐减小的曲线。

2.指数图像:指数函数的图像是一条斜率逐渐增大的曲线。

3.对数与指数的性质:(1)对数函数的定义域是(0,+∞),值域是R。

(2)指数函数的定义域是R,值域是(0,+∞)。

(3)对数函数和指数函数都是单调函数。

六、对数与指数的关系总结1.对数与指数是幂的两种表示形式,它们之间可以相互转化。

2.对数与指数具有不同的增长速度,对数增长速度逐渐变慢,指数增长速度逐渐变快。

3.对数与指数在科学研究和实际生活中有广泛的应用。

4.对数与指数的图像和性质反映了它们的单调性和变换规律。

通过以上对对数与指数之间关系的理解和归纳,我们可以更好地掌握对数与指数的知识,并在学习和生活中灵活运用。

高一数学指数对数的知识点log

高一数学指数对数的知识点log

高一数学指数对数的知识点log一、指数的基本概念指数是数学中的一个重要概念,它用来表示某个数相乘的次数。

比如2的3次方表示将2相乘3次,即2 * 2 * 2 = 8。

指数可以是正整数、零或负整数。

其中,正整数指数表示乘方,零指数表示1,负整数指数表示倒数。

二、指数的运算规律1. 乘法规律:a的m次方乘以a的n次方等于a的m+n次方。

例如:2的3次方乘以2的4次方等于2的(3+4)次方,即2^3 × 2^4 = 2^7。

2. 除法规律:a的m次方除以a的n次方等于a的m-n次方。

例如:2的5次方除以2的3次方等于2的(5-3)次方,即2^5 ÷ 2^3 = 2^2。

3. 幂的幂规律:(a的m次方)^n = a的(m×n)次方。

例如:(2的3次方)^4 = 2的(3×4)次方,即(2^3)^4 = 2^(3×4)。

4. 乘方表达式求值的顺序:先乘方,后乘除加减。

例如:2的3次方乘以3再减去4,应先计算2^3 = 8,再进行8×3 - 4的运算。

三、对数的基本概念对数是指把一个数与某个基数的幂相等的关系。

对数可以用来简化指数运算,它的表达形式为logₐ(b),其中a为基数,b为真数,log为对数运算符。

四、常见的对数及其性质1. 自然对数:以常数e为底数的对数,表示为ln(x)。

常数e是一个无理数,约等于2.71828。

2. 以10为底的常用对数:表示为log₁₀(x)或简写为log(x)。

例如log₁₀(100) = 2,即10的2次方等于100。

3. 对数的性质:- log(a × b) = log(a) + log(b) 两数相乘的对数等于两数的对数之和。

- log(a ÷ b) = log(a) - log(b) 两数相除的对数等于两数的对数之差。

- log(a^n) = n × log(a) 数的幂数的对数等于幂数与底数的对数的乘积。

高一数学 对数与对数运算

高一数学 对数与对数运算

对数与对数运算第1课时 对 数学习目标 1.了解对数的概念.2.会进行对数式与指数式的互化.3.会求简单的对数值.知识点一 对数的概念思考 解指数方程:3x = 3.可化为3x =123,所以x =12.那么你会解3x =2吗? 答案 不会,因为2难以化为以3为底的指数式,因而需要引入对数概念.梳理 对数的概念:如果a x =N (a >0,且a ≠1),那么数x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数.常用对数与自然对数:通常将以10为底的对数叫做常用对数,以e 为底的对数称为自然对数,log 10N 可简记为lg N ,log e N 简记为ln N .知识点二 对数与指数的关系思考 log a 1(a >0,且a ≠1)等于?答案 设log a 1=t ,化为指数式a t =1,则不难求得t =0,即log a 1=0.梳理 一般地,有对数与指数的关系:若a >0,且a ≠1,则a x =N ⇔log a N =x .对数恒等式:log a N a=N ;log a a x =x (a >0,且a ≠1).对数的性质:(1)1的对数为零;(2)底的对数为1;(3)零和负数没有对数.类型一 对数的概念例1 在N =log (5-b )(b -2)中,实数b 的取值范围是( )A.b <2或b >5B.2<b <5C.4<b <5D.2<b <5且b ≠4 跟踪训练1 求f (x )=log x 1-x 1+x的定义域. 类型二 应用对数的基本性质求值例2 求下列各式中x 的值:(1)log 2(log 5x )=0;(2)log 3(lg x )=1.解 (1)∵log 2(log 5x )=0.∴log 5x =20=1,∴x =51=5.(2)∵log 3(lg x )=1,∴lg x =31=3,∴x =103=1 000.反思与感悟 本题利用对数的基本性质从整体入手,由外到内逐层深入来解决问题.log a N =0⇒N =1;log a N =1⇒N =a 使用频繁,应在理解的基础上牢记.跟踪训练2 若log 2(log 3x )=log 3(log 4y )=log 4(log 2z )=0,则x +y +z 的值为( )A.9B.8C.7D.6类型三 对数式与指数式的互化命题角度1 指数式化为对数式例3 将下列指数式写成对数式:(1)54=625;(2)2-6=164;(3)3a =27;(4)⎝⎛⎭⎫13m =5.73. 解 (1)log 5625=4;(2)log 2164=-6; (3)log 327=a ;(4)13log 5.73=m .反思与感悟 指数式化为对数式,关键是弄清指数式各部位的去向:跟踪训练3 (1)如果a =b 2 (b >0,b ≠1),则有( )A.log 2a =bB.log 2b =aC.log b a =2D.log b 2=a (2)将3-2=19,⎝⎛⎭⎫126=164化为对数式. (3)解方程:⎝⎛⎭⎫13m =5.命题角度2 对数式化为指数式例4 求下列各式中x 的值:(1)log 64x =-23;(2)log x 8=6;(3)lg 100=x ; (4)-ln e 2=x ;(5))1log13+22=x . 解 (1)x =2364-=()2334-=4-2=116. (2)因为x 6=8,所以x =()()1111636266822x ==== 2. (3)10x =100=102,于是x =2.(4)由-ln e 2=x ,得-x =ln e 2,即e -x =e 2.所以x =-2.(5)因为)1log 13+22=x , 所以(2-1)x =13+22=1(2+1)2=12+1=2-1, 所以x =1. 反思与感悟 要求对数的值,设对数为某一未知数,将对数式化为指数式,再利用指数幂的运算性质求解. 跟踪训练4 计算:(1)log 927;(2);(3)625.命题角度3 对数恒等式log a N a=N 的应用 例5 (1)求33log 3x +=2中的x . (2)求log log log a b c b c N a⋅⋅的值(a ,b ,c 均为正实数且不等于1,N >0).跟踪训练5 设()5log 2125x -=9,则x = .1.log b N =a (b >0,b ≠1,N >0)对应的指数式是( )A.a b =NB.b a =NC.a N =bD.b N =a 2.若log a x =1,则( )A.x =1B.a =1C.x =aD.x =103.下列指数式与对数式互化不正确的一组是( )A.e 0=1与ln 1=0B.138-=12与log 812=-13C.log 39=2与129=3D.log 77=1与71=74.已知log x 16=2,则x 等于( )A.±4B.4C.256D.25.设10lg x =100,则x 的值等于( )A.10B.0.01C.100D.1 0001.对数概念与指数概念有关,指数式和对数式是互逆的,即a b =N ⇔log a N =b (a >0,且a ≠1,N >0),据此可得两个常用恒等式:(1)log a a b =b ;(2)log a N a =N .2.在关系式a x =N 中,已知a 和x 求N 的运算称为求幂运算;而如果已知a 和N 求x 的运算就是对数运算,两个式子实质相同而形式不同,互为逆运算.课时作业一、选择题1.有下列说法:①零和负数没有对数;②任何一个指数式都可以化成对数式;③以10为底的对数叫做常用对数;④以e 为底的对数叫做自然对数.其中正确命题的个数为( )A.1B.2C.3D.42.已知b =log (a -2)(5-a ),则实数a 的取值范围是( )A.a >5或a <2B.2<a <5C.2<a <3或3<a <5D.3<a <4 3.方程3log 2x =14的解是( ) A.x =19B.x =33C.x = 3D.x =94.下列四个等式: ①lg(lg 10)=0;②lg(ln e)=0;③若lg x =10,则x =10;④若ln x =e ,则x =e 2.其中正确的是( )A.①③B.②④C.①②D.③④ 5.(12)-1+log 0.54的值为( ) A.6 B.72C.0D.37 6.若log a 3=m ,log a 5=n ,则a 2m+n 的值是( ) A.15B.75C.45D.225二、填空题 7.已知f (log 2x )=x ,则f (12)= . 8.= .9.已知log 7[log 3(log 2x )]=0,那么12x-= . .10.设a =log 310,b =log 37,则3a -b = .三、解答题11.(1)先将下列式子改写成指数式,再求各式中x 的值.①log 2x =-25;②log x 3=-13. (2)已知6a =8,试用a 表示下列各式.①log 68;②log 62;③log 26.12.求22+log 23+32log 93-的值.13.设M ={0,1},N ={lg a,2a ,a,11-a },是否存在a 的值,使M ∩N ={1}?四、探究与拓展14.log(n +1+n )等于( ) A.1B.-1C.2D.-215.若集合{x ,xy ,lg(xy )}={0,|x |,y },求log 2(x 2+y 2)的值.对数的运算知识点一 对数运算性质思考 有了乘法口诀,我们就不必把乘法还原成为加法来计算.那么,有没有类似乘法口诀的东西,使我们不必把对数式还原成指数式就能计算?答案 有.例如,设log a M =m ,log a N =n ,则a m =M ,a n =N ,∴MN =a m ·a n =a m +n ,∴log a (MN )=m +n =log a M +log a N .得到的结论log a (MN )=log a M +log a N 可以当公式直接进行对数运算.梳理 一般地,如果a >0,且a ≠1,M >0,N >0,那么:(1)log a (M ·N )=log a M +log a N ;(2)log a M N=log a M -log a N ; (3)log a M n =n log a M (n ∈R ).知识点二 换底公式思考1 观察知识点一的三个公式,我们发现对数都是同底的才能用这三个公式.而实际上,早期只有常用对数表(以10为底)和自然对数表(以无理数e 为底),可以查表求对数值.那么我们在运算和求值中遇到不同底的对数怎么办?答案 设法换为同底.思考2 假设log 25log 23=x ,则log 25=x log 23,即log 25=log 23x ,从而有3x =5,再化为对数式可得到什么结论? 答案 把3x =5化为对数式为:log 35=x ,又因为x =log 25log 23,所以得出log 35=log 25log 23的结论. 梳理 一般地,对数换底公式:log a b =log c b log c a(a >0,且a ≠1,b >0,c >0,且c ≠1); 特别地:log a b ·log b a =1(a >0,且a ≠1,b >0,且b ≠1).类型一 具体数字的化简求值例1 计算:(1)log 345-log 35;(2)log 2(23×45); (3)lg 27+lg 8-lg 1 000lg 1.2; (4)log 29·log 38.解 (1)log 345-log 35=log 3455=log 39=log 332=2log 33=2. (2)log 2(23×45)=log 2(23×210)=log 2(213)=13log 22=13.(3)原式=)32lg 8lg1012lg 10-=33322lg 321012lg 10⎛⎫⨯÷ ⎪⎝⎭ =3234lg 1012lg 10⨯⎛⎫ ⎪⎝⎭ =32lg 1210lg 1210=32. (4)log 29·log 38=log 2(32)·log 3(23)=2log 23·3log 32=6·log 23·1log 23=6.反思与感悟 具体数的化简求值主要遵循2个原则.(1)把数字化为质因数的幂、积、商的形式.(2)不同底化为同底.跟踪训练1 计算:(1)2log 63+log 64;(2)(lg 25-lg 14)÷12100-; (3)log 43·log 98;(4)log 2.56.25+ln e -130.064.类型二 代数式的化简命题角度1 代数式恒等变换例2 化简log a x 2y 3z. 解 ∵x 2y 3z>0且x 2>0,y >0,∴y >0,z >0. log a x 2y 3z=log a (x 2y )-log a 3z =log a x 2+log a y -log a 3z=2log a |x |+12log a y -13log a z . 反思与感悟 使用公式要注意成立条件,如lg x 2不一定等于2 lg x ,反例:log 10(-10)2=2log 10(-10)是不成立的.要特别注意log a (MN )≠log a M ·log a N ,log a (M ±N )≠log a M ±log a N .跟踪训练2 已知y >0,化简log ax yz .命题角度2 用代数式表示对数例3 已知log 189=a,18b =5,求log 3645.解 方法一 ∵log 189=a,18b =5,∴log 185=b ,于是log 3645=log 1845log 1836=log 18(9×5)log 18(18×2)=log 189+log 1851+log 182=a +b 1+log 18189=a +b 2-a . 方法二 ∵log 189=a,18b =5,∴log 185=b ,于是log 3645=log 1845log 1836=log 18(9×5)log 18(18×2)=log 189+log 1852log 1818-log 189=a +b 2-a. 方法三 ∵log 189=a,18b =5,∴lg 9=a lg 18,lg 5=b lg 18,∴log 3645=lg 45lg 36=lg (9×5)lg 1829=lg 9+lg 52lg 18-lg 9 =a lg 18+b lg 182lg 18-a lg 18=a +b 2-a. 反思与感悟 此类问题的本质是把目标分解为基本“粒子”,然后用指定字母换元.跟踪训练3 已知log 23=a ,log 37=b ,用a ,b 表示log 4256.1.log 513+log 53等于( ) A.0 B.1 C.-1 D.log 51032.设a ,b ,c 均为不等于1的正实数,则下列等式中恒成立的是( )A.log a b ·log c b =log c aB.log a b ·log c a =log c bC.log a (bc )=log a b ·log a cD.log a (b +c )=log a b +log a c3.log 29×log 34等于( )A.14B.12C.2D.4 4.lg 0.01+log 216的值是 .1.换底公式可完成不同底数的对数式之间的转化,可正用、逆用;使用的关键是恰当选择底数,换底的目的是利用对数的运算性质进行对数式的化简.2.运用对数的运算性质应注意:(1)在各对数有意义的前提下才能应用运算性质.(2)根据不同的问题选择公式的正用或逆用.(3)在运算过程中避免出现以下错误:①log a N n =(log a N )n ,②log a (MN )=log a M ·log a N ,③log a M ±log a N =log a (M ±N ).课时作业一、选择题1.下列各式(各式均有意义)不正确的个数为( )①log a (MN )=log a M +log a N ;②log a (M -N )=log a M log a N ;③nm a =1m a n ;④(a m )n =am n ;⑤log an b =-n log a b . A.2 B.3 C.4 D.52.4等于( )A.12B.14C.2D.4 3.化简log 58log 52等于( ) A.log 54 B.3log 52 C.2 D.34.已知lg 2=a ,lg 3=b ,则用a ,b 表示lg 15为( )A.b -a +1B.b (a -1)C.b -a -1D.b (1-a )5.若log 513·log 36·log 6x =2,则x 等于( ) A.9B.19C.25D.1256.计算(log 32+log 23)2-log 32log 23-log 23log 32的值是( ) A.log 26B.log 36C.2D.1 二、填空题7.(log 43+log 83)(log 32+log 92)= .8.(lg 5)2+lg 2·lg 50= .9.已知lg(x +2y )+lg(x -y )=lg 2+lg x +lg y ,则x y= . 10.若3x =4y =36,则2x +1y= . 三、解答题11.若x ·log 32 016=1,求2 016x +2 016-x 的值.12.计算: (1)2123log 3⎛⎫ ⎪⎝⎭+log 0.2514+9log 55-log 31; (2)2lg 2+lg 31+12lg 0.36+13lg 8.13.已知x ,y ,z 为正数,3x =4y =6z,2x =py .(1)求p 的值;(2)求证:1z -1x =12y.四、探究与拓展14.计算⎝⎛⎭⎫-278-23+log 827log 23+(2-3)0-log 31+2lg 5+lg 4-5log 52= .。

指数函数和对数函数知识点总结

指数函数和对数函数知识点总结

指数函数和对数函数知识点总结适用于高一应届学习及高三一轮复习指数函数和对数函数知识点总结及练习题一.指数函数(一)指数及指数幂的运算a am ar as ar s (ar)s ars (ab)r arbr(二)指数函数及其性质1.指数函数的概念:一般地,形如y a(a 0且a 1)叫做指数函数。

xmn二.对数函数(一)对数1.对数的概念:一般地,如果a N(a 0且a 1),那么x叫做以a为底N的对数,记作x logaN,其中a叫做底数,N叫做真数,logaN叫做对数式。

2.指数式与对数式的互化幂值真数xax log指数对数适用于高一应届学习及高三一轮复习3.两个重要对数(1)常用对数:以10为底的对数lgN(2)自然对数:以无理数e 2.***** 为底的对数lnN(二)对数的运算性质(a 0且a 1,M 0,N 0)①logaM logaN logaMN ②logaM logaN loga③logaM nlogaM ④换底公式:logab 关于换底公式的重要结论:①logamb(三)对数函数1.对数函数的概念:形如y logax(a 0且a 1)叫做对数函数,其中x 是自变量。

M Nnlogcb(c 0且c 1)logcannlogab ②logab logba 1 m适用于高一应届学习及高三一轮复习基本初等函数练习题1.已知集合M { 1,1},N {x|12x 1 4,x Z},则M∩N=()2A.{-1,1}B.{0}C.{-1}D.{-1,0} 2.设11b1a() () 1,则()333abaaabbaabaaA.a a bB.a b aC.a a bD.a b a 3.设y1 40.9,y2 80.48,y3 () 1.5,则()12A.y3 y1 y2B.y2 y1 y3C.y1 y3 y2D.y3 y1 y2 4.若()122a 11()3 2a,则实数a的取值范围是()211A.(1,+∞)B.(,+∞)C.(-∞,1)D.(-∞,)221-5.方程3x1=的解为()9A.x=2B.x=-2C.x=1D.x=-1116.已知实数a,b满足等式(a=()b,则下列五个关系式:①0ba;②ab0;③0ab;23④ba0;⑤a=b。

高一数学人必修件对数的概念

高一数学人必修件对数的概念

对数性质与运算法则
乘法法则
$log_a (MN)=log_a M + log_a N$。
除法法则
$log_a frac{M}{N}=log_a M - log_a N$。
对数性质与运算法则
指数法则
$log_a M^n=nlog_a M$。
换底法则
$log_b a=frac{log_c a}{log_c b}$,其中$c>0, cneq 1, cneq a, cneq b.$
高一数学人必修件对 数的概念
汇报人:XX
20XX-01-21
目录
• 对数概念引入 • 对数函数及其性质 • 指数方程与对数方程求解 • 幂运算、指数运算和对数运算关系 • 数学知识拓展与应用
01
对数概念引入
指数与对数关系
指数式与对数式的互化
指数式$a^x=N$($a>0$,$a neq 1$)与对数式$log_a N=x$表示的是同一 关系,可以相互转化。
对数性质与运算法则
零负数没有对数
对于任何底数$a>0$且$a neq 1$,零和负数没有对数,即不存 在$x$使得$a^x=0$或$a^x<0$ 。
$1$的对数是零
对于任何底数$a>0$且$a neq 1$,都有$log_a 1=0$。
对数性质与运算法则
• 底数的对数是$1$:对于任何底数$a>0$且$a • eq 1$,都有$\log_a a=1$。
感谢观看
通过复合函数可以构造出更复杂 的对数函数形式,如 $log_a(bx+c)$ 等。
在解决复合函数问题时,需要注 意定义域和值域的变化以及复合 函数的单调性和奇偶性等性质。
03

数学高一指数对数知识点

数学高一指数对数知识点

数学高一指数对数知识点数学是一门抽象而又实用的学科,其中的指数对数知识点在高一阶段有着重要的地位。

本文将重点介绍高一学生应该掌握的指数对数知识点,以帮助同学们更好地理解和应用这一部分内容。

一、指数与对数的基本概念1. 指数的概念在数学中,指数是乘方运算的一种表示方式。

指数可以看作是乘方的幂,用于表示一个数被乘以自身的次数。

例如,2³表示2乘以自身3次,即2的立方。

2. 常见的指数规律指数运算中存在着一些常见的规律,需要学生掌握和灵活运用。

例如,指数相乘的结果等于底数不变,指数相加的结果。

这一规律可以表达为a^m * a^n = a^(m+n)。

3. 对数的概念对数是指数的逆运算。

如果a^x = b,那么称x为以a为底b的对数,记作log_a(b) = x。

对数函数是一个非常重要的数学函数,在实际问题中有着广泛的应用。

二、指数与对数的运算法则1. 指数的运算法则高一阶段,学生需要熟练掌握指数运算法则,包括指数相同、底数相同等情况下的运算规律。

例如,(a^m)^n = a^(m*n),a^(-m) = 1 / a^m等。

这些规律有助于简化复杂的指数运算。

2. 对数的运算法则类似指数,对数也有一些常见的运算法则。

例如,log_a(m * n) = log_a(m) + log_a(n),log_a(m^n) = n * log_a(m)等。

熟练掌握这些法则可以简化对数运算的复杂性。

三、指数与对数方程1. 指数方程指数方程是以指数形式给出的方程,解决指数方程需要运用指数的运算法则和性质。

例如,2^x = 16,可以通过观察得到x = 4为满足方程的解。

2. 对数方程对数方程是以对数形式给出的方程,解决对数方程需要熟悉对数的运算法则和性质。

例如,log_2(x) = 3,可以通过将方程重新转化为指数形式得到x = 2^3 = 8。

四、指数与对数函数1. 指数函数指数函数是以指数形式表示的函数,其中底数为常数,指数为自变量。

高中数学必修1 指数函数与对数函数教案(知识点+例题+练习)

高中数学必修1 指数函数与对数函数教案(知识点+例题+练习)

学员姓名年级高一辅导科目数学课程类型1对1任课老师班组课题指数函数与对数函数课型□预习课□同步课□复习课□习题课课次11 授课日期及时段教学目标重难点重点:难点:教学及学习方法教学方法:学习方法:教学内容【基础知识网络总结与巩固】本节考点:考点回顾考点一考点二考点三【上节知识回顾】【本节知识要点】1. 指数函数的图象和性质函数y=a x(a>0,且a≠1)图象0<a<1a>1图象特征在x轴上方,过定点(0,1)性质定义域值域单调性函数值变化规律R(0,+∞)减函数增函数当x=0时,y=1当x<0时,y>1;当x>0时,0<y<1当x<0时,0<y<1;当x>0时,y>12.对数函数的图象和性质y =log a xa >10<a <1图象性质定义域:(0,+∞)值域:R过点(1,0),即x =1时,y =0当x >1时,y >0 当0<x <1时,y <0 当x >1时,y <0 当0<x <1时,y >0 在(0,+∞)上是增函数在(0,+∞)上是减函数3.求解与指数函数、对数有关的复合函数问题,首先要熟知指数函数、对数函数的定义域、值域、单调性等相关性质,其次要明确复合函数的构成,涉及值域、单调区间、最值等问题时,都要借助“同增异减”这一性质分析判断,最终将问题归纳为内层函数相关的问题加以解决.【重难点例题启发与方法总结】典型例题剖析例1 求下列函数的定义域 (1)f (x )=1-2log 6x ; (2)y =32x -1-19.【解析】(1)由1-2log 6x ≥0,解得log 6x ≤12⇒0<x ≤6,故所求定义域为(0, 6 ].(2)由32x -1-19≥0,得32x -1≥19=3-2,∵y =3x 为增函数,∴2x -1≥-2,即x ≥-12,此函数的定义域为⎣⎡⎭⎫-12,+∞. 变式训练 函数f (x )=4-x 2+log 2(x -1)的定义域是( ) A .(1,2] B .[1,2] C .(1,+∞) D .[2,+∞)【答案】A【解析】要使函数有意义,则⎩⎨⎧4-x 2≥0x -1>0,即⎩⎪⎨⎪⎧-2≤x ≤2x >1,∴1<x ≤2,即函数的定义域为(1,2], 故选A.例2 (1)已知函数f (x )=(23)|x |-a ,则函数f (x )的单调递增区间为________,单调递减区间为________.2.(2018·湖南衡阳期末)已知集合A ={x |log 12x >-1},B ={x |2x >2},则A ∪B =( )A.⎝⎛⎭⎫12,2B.⎝⎛⎭⎫12,+∞ C .(0,+∞) D .(0,2) 答案:C解析:由A ={x |log 12x >-1}={x |0<x <2},B ={x |2x >2}=⎩⎨⎧⎭⎬⎫x ⎪⎪x >12,则A ∪B =(0,+∞).故选C. 3.(2018·福建福州外国语学校期中)已知函数f (x )=(m 2-m -1)x -5m -3是幂函数,且f (x )是(0,+∞)上的增函数,则m 的值为( )A .2B .-1C .-1或2D .0 答案:B解析:因为函数f (x )=(m 2-m -1)x -5m -3是幂函数,所以m 2-m -1=1,即m 2-m -2=0,解得m =2或m=-1.又因为幂函数在(0,+∞)上单调递增,所以-5m -3>0,即m <-35,所以m =-1,故选B.方法点拨:求有关幂函数的解析式,一般采用待定系数法,即设出解析式后,利用已知条件,求出待定系数.注意幂函数中自变量的系数为1.4.(2018·重庆第一中学一诊模拟)设a =213,b =log 43,c =log 85,则a ,b ,c 的大小关系是( ) A .a >b >c B .a >c >b [来源:学科网]C .b >c >aD .c >b >a [来源:学科网ZXXK] 答案:A解析:由指数函数的性质知a >1,由对数函数的性质得0<b <1,0<c <1.c 可化为log 235;b 可化为log 23,∵(35)6<(3)6,∴b >c ,∴a >b >c ,故选A.5.函数f (x )=a x -1a(a >0,a ≠1)的图象可能是( )答案:D解析:当a >1时,将y =a x 的图象向下平移1a 个单位长度得f (x )=a x -1a的图象,A ,B 都不符合;当0<a <1时,将y =a x 的图象向下平移1a 个单位长度得f (x )=a x -1a 的图象,而1a大于1,故选D.6.若函数y =f (x )的定义域为[2,4],则y =f (log 12x )的定义域是( )A.⎣⎡⎦⎤12,1 B .[4,16] C.⎣⎡⎦⎤116,14 D .[2,4] 答案:C解析:令log 12x =t ,则y =f (log 12x )=f (t ),因为函数y =f (x )的定义域是[2,4],所以y =f (t )的定义域是[2,4],即2≤t ≤4,所以2≤log 12x ≤4,解得116≤x ≤14,所以y =f (log 12x )的定义域是⎣⎡⎦⎤116,14. 7.(2018·武汉二模)设函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x -7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值范围是( )A .(-∞,-3)B .(1,+∞)C .(-3,1)D .(-∞,-3)∪(1,+∞) 答案:C解析:通解 当a <0时,不等式f (a )<1为⎝⎛⎭⎫12a-7<1,即⎝⎛⎭⎫12a <8,即⎝⎛⎭⎫12a <⎝⎛⎭⎫12-3,因为0<12<1,所以a >-3,此时-3<a <0;当a ≥0时,不等式f (a )<1为a <1,所以0≤a <1.故a 的取值范围是(-3,1),故选C.优解 取a =0,f (0)=0<1,符合题意,排除A ,B ,D.8.(2018·怀化二模)已知函数f (n )=log n +1(n +2)(n ∈N *),定义使f (1)·f (2)·f (3)·…·f (k )为整数的k (k ∈N *)叫做企盼数,则在区间[1,2 016]内的企盼数的个数是( )A .8B .9C .10D .11 答案:B解析:因为函数f (n )=log n +1(n +2)(n ∈N *),所以f (1)=log 23,f (2)=log 34,…,f (k )=log k +1(k +2),所以f (1)·f (2)·f (3)·…·f (k )=log 23·log 34·…·log k +1(k +2)=log 2(k +2),若f (1)·f (2)·f (3)·…·f (k )为整数,则k +2=2m ,m ∈Z ,又k ∈[1,2 016],所以k ∈{2,6,14,30,62,126,254,510,1 022},故在区间[1,2 016]内的企盼的个数是9.二、填空题[来源:学科网]9.log 327-log 33+(5-1)0-⎝⎛⎭⎫9412+cos 4π3=________. 答案:0解析:原式=log 3(27÷3)+1-32-12=1+1-32-12=0.10.(2018·江西自主招生)方程log 3(1+2·3x)=x +1的解为________. 答案:0解析:由方程log 3(1+2·3x )=x +1可得1+2·3x =3x +1,化简可得3x =1,故x =0.11.(2018·山西一模,13)已知函数f (x )=x 2-m 是定义在区间[-3-m ,m 2-m ]上的奇函数,则f (m )=________. 答案:-1解析:由题意得m 2-m =3+m ,即m 2-2m -3=0,∴m =3或m =-1.当m =3时,f (x )=x -1,[-3-m ,m 2-m ]为[-6,6],f (x )在x =0处无意义,故舍去.[来源:学科网] 三、解答题12.已知函数f (x )=log 3mx 2+8x +nx 2+1的定义域为R ,值域为[]0,2,求m ,n 的值.解析:由y =f (x )=log 3mx 2+8x +n x 2+1,得3y =mx 2+8x +nx 2+1,即()3y -m ·x2-8x +3y -n =0[来源:学.科.网Z.X.X.K] ∵x ∈R ,∴Δ=64-4(3y -m )(3y -n )≥0,即32y -(m +n )·3y +mn -16≤0由0≤y ≤2,得1≤3y≤9,由根与系数的关系得⎩⎪⎨⎪⎧m +n =1+9mn -16=1×9,解得m =n =5.【课后强化巩固练习与方法总结】1.已知集合M ={}x |y =x -1,N ={x |y =log 2(2-x )},则∁R (M ∩N )等于( ) A .[1,2) B .(-∞,1)∪[2,+∞) C .[0,1] D .(-∞,0)∪[2,+∞)2.已知a =23log 4.1,b =23log 2.7,c =⎝⎛⎭⎫123log 0.1,则( ) A .a >b >c B .b >a >c C .a >c >bD .c >a >b3.函数y =log 12(x 2-3x +2)的递增区间是( )A .(-∞,1)B .(2,+∞)C .(-∞,32)D .(32,+∞)学管签字:学管主任签字:。

高一数学指数方程和对数方程(教师版)

高一数学指数方程和对数方程(教师版)
10、当且仅当 时,方程有唯一实数解
【课后练习】
1、方程 的解是___________
2、方程 的解是___________________
3、方程 的解是_________________
4、方程 的解集是________________
5、方程组 的解集是______________________
(3)对数方程常常归结为对一元二次方程根的讨论,而讨论的方法,一般有如下三种:利用求根公式,韦达定理及运用二次函数的图像等。
【课堂小练】
1、方程是 的解集是_________________
2、方程 的解集是_________________
3、方程 的解集是_______________
1、 2、 3、
【正解】设 ,则元方程变形为
由公式法知 ,即

4.8
例5、解下列方程:
(1)
(2)
【解】(1)
整理得: (舍去)
所以
经检验, 是原方程的根
(2)两边取以为底的对数,得
整理得,

所以
经检验 都是方程的根
变式练习:解方程
【解】原方程可以化为
即 ,整理得, (舍去)
经检验 是原方程的根
例6、已知关于 的方程 有且只有一个实数解,求实数 的取值范围。
【解】显然 需满足
(1)若上述方程有两个相等实根,则必有
若 ,则实根 (舍去);若 ,则实根为 符合题意
(2)若上述方程有两个不等实根 ,则必有
考虑函数 ,只需
综上所述,实数 的取值范围是
【点拨】此类对数方程形式简单,但综合性很强,往往要归纳为对一元二次方程根的讨论,解题时需注意如下三点:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

指数对数(必修一)一、概念性质1、指数对数的定义域指数:na (0a ≠) 对数:log (01,0)a n a a n >≠>且2、指数运算法则①mnm na a a +⋅= ②mnm na a a -÷= ③()m nmn aa = ④()m m m ab ab =运用指数运算法则,一般从右往左变形。

3、对数运算法则同底公式:①log a bab =②log log log ()a a a M N MN +=③log log log a a aMM N N-= ④log log n aa M n M =不同底公式:①log log log m a m N N a = ②log log mna a nb b m= ③1log log a b b a = (2,3,11题) 4、对数和指数的单调性5、指数函数y=a x 与对数函数y=x a log ,(1,0≠>a a )是互为反函数即b x b a a x log =⇔=它是实现指数式与对数式相互转换的桥梁。

当a>1时,两个函数在定义域内都递增;当0<a<1时,两个函数在定义域内都递减。

(4,5,6,10,填空4题,解答2,3,5)6、通过对比指数、对数、幂数的图像,掌握它们的性质与关联(重要)7、对数与导数的结合考察(解答题7,8) 二、习题巩固 Ⅰ选择题1、下列四类函数中,个有性质“对任意的x >0,y >0,函数f (x )满足f (x +y )=f (x )f (y )”的是()(A )幂函数 (B )对数函数 (C )指数函数 (D )余弦函数 2、设25abm ==,且112a b+=,则m =()(A (B )10 (C )20 (D )1003、则且均为正数设c 。

b ,a ,,c b a bba 22121log )21(log )21(log 2,,===( ) (A )a<b<c (B )c<b<a (C )c<a<b (D )b<a<c4、函数2()log (31)xf x =+的值域为()(A ) ()0,+∞ (B) )0,+∞⎡⎣ (C) ()1,+∞ (D) )1,+∞⎡⎣5、如果1122log log 0,x y <<那么()(A )1y x << (B) 1x y << (C) 1x y << (D) 1y x << 6、若log m 9<log n 9<0,那么m,n 满足的条件是( )(A )m>n>1 (B )n>m>1 (C )0<n<m<1 (D )0<m<n<1 7、设l g 2x -1=0lo g+lo g ( )(A )-4(B) -2 (C) 1 (D) 38、已知命题p :x x<2;命题q :22log x >1;则命题p 是命题q 的: ( ) (A )充分不必要条件 (B )必要不充分条件(C )充要条件 (D )既不必要也不充分条件9、给出下列结论:①当a <0时,(a 2)32=a 3; ②na n =|a |(n >1,n ∈N *,n 为偶数);③函数f (x )=(x -2) 12-(3x -7)0的定义域是{x |x ≥2且x ≠73}; ④若2x =16,3y=127,则x +y =7.其中正确的是( ) (A )①② (B )②③(C )③④ (D )②④10、若0x <且1xxa b >>,则下列不等式成立的是 (A)01b a <<<(B)01a b <<<(C)1b a <<(D)1a b <<11、若a,b,c ∈R +,则346abc==则( )(A)111c a b=+ (B )221c a b=+ (C )121c a b=+ (D)212c a b=+ 12、若函数()y f x =是函数1xy a a a =>≠(0,且)的反函数,且(2)1f =,则()f x = ()(A )x 2log (B )x21(C )x 21log (D )22-x13、为了得到函数3lg10x y +=的图像,只需把函数lg y x =的图像上所有的点 ( ) (A )向左平移3个单位长度,再向上平移1个单位长度 (B )向右平移3个单位长度,再向上平移1个单位长度 (C )向左平移3个单位长度,再向下平移1个单位长度 (D )向右平移3个单位长度,再向下平移1个单位长度 14、若372log πlog 6log 0.8a b c ===,,,则( )(A )a>b >c (B )b>a >c (C )c>a >b (D )b>c >a15、命题“若函数)1,0(log )(≠>=a a x x f a 在其定义域内是减函数,则02log <a ”的逆否命题是( ) (A )若02log <a ,则函数)1,0(log )(≠>=a a x x f a 在其定义域内不是减函数 (B )若02log ≥a ,则函数)1,0(log )(≠>=a a x x f a 在其定义域内不是减函数 (C )若02log <a ,则函数)1,0(log )(≠>=a a x x f a 在其定义域内是减函数 (D )若02log ≥a ,则函数)1,0(log )(≠>=a a x x f a 在其定义域内是减函数16、若01x y <<<,则( )(A )33y x < (B )log 3log 3x y < (C )44log log x y < (D )11()()44x y<17、定义在R 上的函数()f x 满足()()()2f x y f x f y xy +=++(x y ∈R ,),(1)2f =,则(2)f -等于( ) (A )2 (B )3 (C )6 (D )918、三个数0.760.76,0.7,log 6的大小顺序是( A )A 、60.70.7log 60.76<<B 、60.70.70.76log 6<<C 、0.760.7log 660.7<<D 、60.70.70.7log 66<<Ⅱ、填空1、设f(x)=4x +4-x -(21+x +21-x)+2则f(x)的最小值为 ; 2、当x ∈[-2,0]时,函数y =3x +1-2的值域是__________3、已知函数y =a x +2-2(a >0,a ≠1)的图象恒过定点A (其坐标与a 无关),则定点A 的坐标为____ __4*、若函数)1,0( )(log )(3≠>-=a a ax x x f a 在区间)0,21(-内单调递增,则a 的取值范围是 5、比较3log 2、2log 5和2log 3的大小关系6、若4log 15a<(0a >且1)a ≠,则a 的取值范围是 7、lg25+32lg8+lg5·lg20+lg 22=8、函数xe xf -=11)(的定义域是 .9、函数3)4lg(--=x x y 的定义域是 .10、若函数)2(log )(22a a x x x f ++=是奇函数,则a = .11、若函数f(x) = 1222--+aax x 的定义域为R ,则a 的取值范围为12、若直线y=2a 与函数y=|a x-1|(a >0,且a ≠1)的图象有两个公共点,则a 的取值范围是 .Ⅲ、解答题1、函数y =lg(3-4x +x 2)的定义域为M ,当x ∈M 时,求f (x )=2x +2-3×4x的最值.2、比较下列各题中数的大小 (1)1.08.0-,2.025.1; (2)aa -1 ,a a )1(-(121<<a ); (3)3.07.1, 1.39.0 (4)3.03 ,53)3.0(-,3.02.0,5.02,75)3.0(-3、已知3log 1)(x x f +=,2log 2)(x x g =,试比较)(x f 与)(x g 的大小关系4、已知f (x )=x 2+(2+lg a )x +lg b ,f (-1)=-2且f (x )≥2x 恒成立,求a 、b 的值.5、.若372log πlog 6log 0.8a b c ===,,,则a,b,c 的大小比较为6、已知函数f (x )=2x,g (x )=12|x |+2.(1)求函数g (x )的值域;(2)求满足方程f (x )-g (x )=0的x 的值.7、已知函数f (x )=b ·a x(其中a ,b 为常量,且a >0,a ≠1)的图象经过点A (1,6),B (3,24). (1)求f (x );(2)若不等式(1a )x +(1b)x-m ≥0在x ∈(-∞,1]时恒成立,求实数m 的取值范围。

相关文档
最新文档