组合逻辑电路的设计步骤
组合逻辑电路的设计方法

一.组合逻辑电路的特点 电路任一时刻的输出状态只决定于该时刻各输 入状态的组合,而与电路的原状态无关。
组合电路就是由门电路组合而成,电路中没有记忆单 元,没有反馈通路。
每一个输出变量是全部或部分 输入变量的函数: L1=f1(A1、A2、…、Ai) L2=f2(A1、A2、…、Ai)
如果,要求用与非门实现该逻辑电路, 就应将表达式转换成与非—与非表达式:
画出逻辑图如图所示。
例2:设计一个电话机信号控制电路。电路有I0(火警)、I1(盗警) 和I2(日常业务)三种输入信号,通过排队电路分别从L0、L1、L2输出,
在同一时间只能有一个信号通过。如果同时有两个以上信号出现时,应 首先接通火警信号,其次为盗警信号,最后是日常业务信号。试按照上 述轻重缓急设计该信号控制电路。要求用集成门电路7400(每片含 4个2输入端与非门)实现。
3.组合逻辑电路的特点是,电路任一时刻的输出状态只决定于该时 刻各输入状态的组合,而与电路的原状态无关。组合电路就是由 门电路组合而成,电路中没有记忆单元,没有反馈通路。
4.组合逻辑电路的分析步骤为:写出各输出端的逻辑表达式→化简 和变换逻辑表达式→列出真值表→确定功能。
5.组合逻辑电路的设计步骤为:根据设计求列出真值表→写出逻辑 表达式(或填写卡诺图) →逻辑化简和变换→画出逻辑图
…… Lj=fj(A1、A2、…、Ai)
二、设计过程的基本步骤:
例1:设计一个三人表决电路,结果按“少数服从多数”的原则决定。 解:(1)列真值表:
(2)由真值表写出逻辑表达式:
L ABC ABC ABC ABC
(3)化简。
得最简与—或表达式: L AB BC AC
(4)画出逻辑图。
组合逻辑电路的实验报告

一、实验目的1. 理解组合逻辑电路的基本概念和组成。
2. 掌握组合逻辑电路的设计方法。
3. 学会使用基本逻辑门电路构建组合逻辑电路。
4. 验证组合逻辑电路的功能,并分析其输出特性。
二、实验原理组合逻辑电路是一种数字电路,其输出仅取决于当前的输入,而与电路的先前状态无关。
它主要由与门、或门、非门等基本逻辑门组成。
组合逻辑电路的设计通常遵循以下步骤:1. 确定逻辑功能:根据实际需求,确定电路应实现的逻辑功能。
2. 设计逻辑表达式:根据逻辑功能,设计相应的逻辑表达式。
3. 选择逻辑门电路:根据逻辑表达式,选择合适的逻辑门电路进行搭建。
4. 搭建电路并进行测试:将逻辑门电路搭建成完整的电路,并进行测试,验证其功能。
三、实验设备1. 逻辑门电路芯片:与门、或门、非门等。
2. 连接导线。
3. 逻辑分析仪。
4. 电源。
四、实验内容及步骤1. 设计逻辑表达式以一个简单的组合逻辑电路为例,设计一个4位二进制加法器。
设输入为两个4位二进制数A3A2A1A0和B3B2B1B0,输出为和S3S2S1S0和进位C。
根据二进制加法原理,可以得到以下逻辑表达式:- S3 = A3B3 + A3'B3B2 + A3'B3'B2A2 + A3'B3'B2'B2A1 + A3'B3'B2'B2'B1A0- S2 = A2B2 + A2'B2B1 + A2'B2'B1B0 + A2'B2'B1'B0A0- S1 = A1B1 + A1'B1B0 + A1'B1'B0A0- S0 = A0B0 + A0'B0- C = A3B3 + A3'B3B2 + A3'B3'B2A2 + A3'B3'B2'B2A1 + A3'B3'B2'B2'B1A0 + A2B2 + A2'B2B1 + A2'B2'B1B0 + A2'B2'B1'B0A0 + A1B1 + A1'B1B0 +A1'B1'B0A0 + A0B0 + A0'B02. 选择逻辑门电路根据上述逻辑表达式,选择合适的逻辑门电路进行搭建。
组合电路的设计方法

A
B
C
Y
0
0
0
0
0
0
1
0
0
1
0
0
0
1
1
0
1
0
0
0
1
0
1
1
1
1
0
1
1
1
1
1
(2)化简得到最简输出逻辑函数
Y ABC ABC ABC AB AC
(3)画逻辑图
B
&
A.
C
&
>=1
Y
2.多输出组合逻辑电路的设计 [例2]设计一个能完成两个一位二进制数相加的
三.组合逻辑电路设计举例
1.单输出组合逻辑电路的设计 [例1]设计一个A、B、C三人表决电路。
当表决某个提案时,多数人同意,提案通过, 同时A具有否决权。用与非门实现。 解:设计步骤 (1)确定输入输出变量,列写真值表
A 同意 “1”,不同意 “0” ;
输入 B 同意 “1”,不同意 “0” ; C 同意 “1”,不同意 “0” ;
组合逻辑电路-半加器。
解:设计步骤 (1)确定输入输出变量,列写真值表
A,B
两个一位二进制数
S
表示二者之和
C进位ABSC0
0
0
0
0
1
1
0
1
0
1
0
1
1
0
1
(2)化简得到最简输出逻辑函数
S AB AB C AB
(3)画逻辑图
A B
=1
S
&
C
(4)检测此电路,证明逻辑功能符合设计要求
用ssi设计组合逻辑电路实验报告

用SSI设计组合逻辑电路实验报告1. 简介组合逻辑电路是一种基本的数字电路,由多个逻辑门组成,它的输出仅取决于当前输入的电平状态。
本实验将使用SSI(Small Scale Integration)电路芯片设计一个组合逻辑电路,实现特定的功能。
2. 实验设备和材料•741G08集成电路芯片•7404集成电路芯片•排针•面包板•电路连接线3. 实验步骤3.1 准备工作1.将741G08芯片插入面包板的位置1。
2.将7404芯片插入面包板的位置2。
3.将排针插入面包板的位置,作为输入和输出引脚。
3.2 电路设计1.连接电源和接地,确保芯片正常工作。
2.使用电路连接线,将输入信号连接到741G08的输入引脚。
3.使用电路连接线,将输出信号连接到7404的输入引脚。
4.使用电路连接线,将7404的输出引脚连接到外部设备或其他电路。
3.3 编程设计根据实验需求,编写相应的逻辑函数表,确定每个逻辑门的输入和输出关系。
4. 实验结果根据实验设定的逻辑函数表,通过输入不同的信号,观察输出信号的变化。
根据实验结果,验证所设计的组合逻辑电路的功能和正确性。
5. 实验分析5.1 采用的电路芯片•741G08芯片:该芯片是一个4输入与门,可以实现多个输入信号的与运算。
•7404芯片:该芯片是一个非门,可以实现输入信号的取反功能。
5.2 电路设计思路本次实验采用了组合逻辑电路的设计思路,根据实验需求设计了逻辑函数表,并通过逻辑门的组合实现了目标功能。
通过实验,我们可以验证组合逻辑电路的设计与实现方法的有效性。
6. 结论本实验通过使用SSI电路芯片,设计了一个组合逻辑电路,并通过编程验证了其正确性和功能。
通过实验我们可以深入理解组合逻辑电路的设计和工作原理,并将其应用于实际的数字电路中。
参考文献1.张三, 李四. 电子电路设计基础. 机械工业出版社, 2018.2.王五, 赵六. 数字电路设计原理. 清华大学出版社, 2017.。
组合逻辑电路设计实验报告

一、实验目的1. 理解组合逻辑电路的基本原理和组成。
2. 掌握组合逻辑电路的设计方法,包括逻辑表达式的推导和门电路的选择。
3. 学习使用逻辑门电路实现基本的逻辑功能,如与、或、非、异或等。
4. 通过实验验证组合逻辑电路的设计和功能。
二、实验原理组合逻辑电路是一种数字电路,其输出仅取决于当前的输入,而与电路的历史状态无关。
常见的组合逻辑电路包括逻辑门、编码器、译码器、多路选择器等。
三、实验设备1. 74LS系列逻辑门芯片(如74LS00、74LS02、74LS04、74LS08等)2. 逻辑电平显示器3. 逻辑电路开关4. 连接线四、实验内容1. 半加器设计(1)设计要求:实现两个一位二进制数相加,不考虑进位。
(2)设计步骤:a. 根据真值表,推导出半加器的逻辑表达式:S = A ⊕ B,C = A ∧ B。
b. 选择合适的逻辑门实现半加器电路。
c. 通过实验验证半加器的功能。
2. 全加器设计(1)设计要求:实现两个一位二进制数相加,考虑进位。
(2)设计步骤:a. 根据真值表,推导出全加器的逻辑表达式:S = A ⊕ B ⊕ Cin,Cout = (A ∧ B) ∨ (B ∧ Cin) ∨ (A ∧ Cin)。
b. 选择合适的逻辑门实现全加器电路。
c. 通过实验验证全加器的功能。
3. 译码器设计(1)设计要求:将二进制编码转换为相应的输出。
(2)设计步骤:a. 选择合适的译码器芯片(如74LS42)。
b. 根据输入编码和输出要求,连接译码器电路。
c. 通过实验验证译码器的功能。
4. 多路选择器设计(1)设计要求:从多个输入中选择一个输出。
(2)设计步骤:a. 选择合适的多路选择器芯片(如74LS157)。
b. 根据输入选择信号和输出要求,连接多路选择器电路。
c. 通过实验验证多路选择器的功能。
五、实验结果与分析1. 半加器实验结果通过实验验证,设计的半加器电路能够实现两个一位二进制数相加,不考虑进位的功能。
实验五组合逻辑电路的设计与测试掌握组合逻辑电路的设计与测试...

实验五组合逻辑电路的设计与测试一、实验目的掌握组合逻辑电路的设计与测试方法二、实验原理1、使用中、小规模集成电路来设计组合电路是最常见的逻辑电路。
设计组合电路的一般步骤如图5-1所示。
图5-1 组合逻辑电路设计流程图根据设计任务的要求建立输入、输出变量,并列出真值表。
然后用逻辑代数或卡诺图化简法求出简化的逻辑表达式。
并按实际选用逻辑门的类型修改逻辑表达式。
根据简化后的逻辑表达式,画出逻辑图,用标准器件构成逻辑电路。
最后,用实验来验证设计的正确性。
2、组合逻辑电路设计举例用“与非”门设计一个表决电路。
当四个输入端中有三个或四个为“1”时,输出端才为“1”。
设计步骤:根据题意列出真值表如表5-1所示,再填入卡诺图表5-2中。
由卡诺图得出逻辑表达式,并演化成“与非”的形式Z=ABC+BCD+ACD+ABD=ABC⋅⋅ABC⋅BCDACD根据逻辑表达式画出用“与非门”构成的逻辑电路如图5-2所示。
图5-2 表决电路逻辑图用实验验证逻辑功能在实验装置适当位置选定三个14P插座,按照集成块定位标记插好集成块CC4012。
按图5-2接线,输入端A、B、C、D接至逻辑开关输出插口,输出端Z 接逻辑电平显示输入插口,按真值表(自拟)要求,逐次改变输入变量,测量相应的输出值,验证逻辑功能,与表5-1进行比较,验证所设计的逻辑电路是否符合要求。
三、实验设备与器件1、+5V直流电源2、逻辑电平开关3、逻辑电平显示器4、直流数字电压表3、 CC4011×2(74LS00) CC4012×3(74LS20) CC4030(74LS86)CC4081(74LS08) 74LS54×2(CC4085) CC4001 (74LS02)四、实验内容1、设计用与非门及用异或门、与门组成的半加器电路。
要求按本文所述的设计步骤进行,直到测试电路逻辑功能符合设计要求为止。
2、设计一个一位全加器,要求用异或门、与门、或门组成。
实验五-组合逻辑电路的设计

实验五组合逻辑电路的设计一、试验目的1、掌握组合逻辑电路的设计方法。
2、掌握组合逻辑电路的静态测试方法。
3、熟悉CPLD设计的过程,比较原理图输入和文本输入的优劣。
二、实验的硬件要求1、输入:按键开关(常高)4个;拨码开关4位。
2、输出:LED灯。
3、主芯片:Altera EPM7128SLC84-15。
三、实验内容1、设计一个四舍五入判别电路,其输入为8421BCD码,要求当输入大于或等于5时,判别电路输出为1,反之为0。
2、设计四个开关控制一盏灯的逻辑电路,要求改变任意开关的状态能够引起灯亮灭状态的改变。
(即任一开关的合断改变原来灯亮灭的状态)3、设计一个优先排队电路,其框图如下:排队顺序:A=1 最高优先级B=1 次高优先级C=1 最低优先级要求输出端最多只能有一端为“1”,即只能是优先级较高的输入端所对应的输出端为“1”。
四、实验连线1、四位拨码开关连D3、D2、D1、D0信号对应的管脚。
OUT输出信号管脚接LED灯。
2、四位按键开关分别连K1、K2、K3、K4信号对应的管脚。
OUT输出信号管脚接LED灯。
3、A、B、C信号对应管脚分别连三个按键开关。
输出A_Out、B_Out、C_Out信号对应的管脚分别连三个LED灯。
(具体管脚参数由底层管脚编辑决定)五、参考原理图1、①原理图,如图5-1所示:②AHDL硬件描述语言输入:SUBDESIGN t5_1(d0,d1,d2,d3:INPUT;out: OUTPUT;)BEGINIF( (d3,d2,d1,d0) >= 5 ) THENout=VCC;ELSEout=GND;END IF;END;2、①原理图,如图5-2所示:②AHDL硬件描述语言输入:SUBDESIGN t5_2(k0,k1,k2,k3:INPUT;out: OUTPUT;)BEGINTABLE(k3,k2,k1,k0) => out;B"0000" => GND;B"0001" => VCC;B"0011" => GND;B"0010" => VCC; 图5-2图5-1B"0110" => GND;B"0111" => VCC;B"0101" => GND;B"0100" => VCC;B"1100" => GND;B"1101" => VCC;B"1111" => GND;B"1110" => VCC;B"1010" => GND;B"1011" => VCC;B"1001" => GND;B"1000" => VCC;END TABLE;END;3、①原理图,如图5-3所示:图5-3②AHDL硬件描述语言输入:SUBDESIGN t5_3(a,b,c : INPUT;a_out,b_out,c_out : OUTPUT;)BEGINIF a THENa_out=VCC; b_out=GND; c_out=GND;ELSIF b THENa_out=GND; b_out=VCC; c_out=GND;ELSIF c THENa_out=GND; b_out=GND; c_out=VCC;ELSEa_out=GND;b_out=GND;c_out=GND;END IF;END;六、实验报告要求1、对于原理图设计要求有设计过程。
简述组合逻辑电路的设计过程

简述组合逻辑电路的设计过程
一、引言
组合逻辑电路是数字电路中的一种重要类型,由多个逻辑门组成,用于实现特定的逻辑功能。
其设计过程包括确定逻辑功能、选择逻辑门、布线和验证等步骤。
二、确定逻辑功能
在设计组合逻辑电路前,需要明确电路所需实现的逻辑功能,例如加法器、减法器、比较器等。
这一步骤需要仔细分析问题,并对问题进行逻辑分解,确定所需的逻辑功能。
三、选择逻辑门
根据所需的逻辑功能,选择合适的逻辑门来实现。
常见的逻辑门有与门、或门、非门等。
通过组合这些逻辑门可以构成更复杂的逻辑功能。
四、布线
在选择逻辑门后,需要将它们按照一定的布局方式连接起来。
布线的目标是实现逻辑门之间的信号传输,并确保电路的稳定性和可靠性。
这需要考虑信号延迟、功耗等因素。
五、验证
设计完成后,需要进行验证以确保电路能够按照设计要求正常工作。
验证可以通过仿真软件进行,也可以通过实际制作电路并进行测试来进行。
六、总结
组合逻辑电路的设计过程包括确定逻辑功能、选择逻辑门、布线和验证等步骤。
通过合理的设计与验证,可以保证电路的正确性和稳定性,实现所需的逻辑功能。
设计过程中需要考虑问题细致,合理选择逻辑门,并进行有效的布线与验证,以确保电路的可靠性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
组合逻辑电路的设计步骤
组合逻辑电路是由多个逻辑门组成的电路,其输出仅取决于输入信号的状态,而与时间无关。
组合逻辑电路的设计步骤包括确定逻辑功能、选择逻辑门、绘制逻辑图、验证电路功能和优化电路设计。
一、确定逻辑功能
在设计组合逻辑电路之前,需要明确电路的逻辑功能。
逻辑功能是指电路所要实现的逻辑运算,例如与、或、非、异或等。
在确定逻辑功能时,需要考虑输入信号的数量和类型,以及输出信号的数量和类型。
二、选择逻辑门
根据电路的逻辑功能,选择适当的逻辑门。
逻辑门是实现逻辑运算的基本元件,包括与门、或门、非门、异或门等。
在选择逻辑门时,需要考虑输入信号的数量和类型,以及输出信号的数量和类型。
三、绘制逻辑图
根据电路的逻辑功能和选择的逻辑门,绘制逻辑图。
逻辑图是用逻辑符号和线条表示电路的图形化表示。
在绘制逻辑图时,需要按照逻辑门的输入和输出端口连接线条,以实现逻辑运算。
四、验证电路功能
在绘制逻辑图之后,需要验证电路的功能。
验证电路功能的方法包括手工计算和仿真验证。
手工计算是通过逻辑运算公式计算电路的输出信号,以验证电路的正确性。
仿真验证是通过电路仿真软件模拟电路的运行过程,以验证电路的正确性。
五、优化电路设计
在验证电路功能之后,需要对电路进行优化设计。
电路优化设计的目的是提高电路的性能和可靠性,降低电路的成本和功耗。
电路优化设计的方法包括逻辑简化、布线优化和时序优化等。
逻辑简化是通过逻辑代数和卡诺图等方法简化电路的逻辑表达式,以减少逻辑门的数量和延迟。
布线优化是通过合理布局电路元件和线路,以减少电路的面积和延迟。
时序优化是通过合理选择时钟频率和时序控制信号,以提高电路的时序性能和可靠性。
总结
组合逻辑电路的设计步骤包括确定逻辑功能、选择逻辑门、绘制逻辑图、验证电路功能和优化电路设计。
在设计组合逻辑电路时,需要考虑电路的逻辑功能、输入输出信号的数量和类型,以及电路的性能和可靠性等因素。
通过逻辑简化、布线优化和时序优化等方法,可以提高电路的性能和可靠性,降低电路的成本和功耗。