煤制油煤化工知识
煤化工的用途

煤化工的用途煤化工是指将煤作为原料进行化学反应,生产出各种有机化合物的过程。
煤是一种丰富的资源,其含碳量高,因此可以作为化学原料用于制造各种有机化合物。
煤化工在现代工业中扮演着重要的角色,其用途十分广泛。
本文将从以下几个方面详细介绍煤化工的用途。
一、煤制油煤制油是指利用煤进行加氢裂解或加氧裂解等反应,从而得到液体油品。
在这个过程中,使用了催化剂和高温高压条件来促进反应的进行。
煤制油可以生产出各种不同类型的油品,包括汽油、柴油、航空喷气燃料等。
这些产品能够满足不同领域对于能源需求的需求,同时也可以减少对于传统能源资源的依赖。
二、合成氨合成氨是指利用空气中的氮和天然气中的甲烷等原料,在高温高压下进行催化反应而得到的一种无色易挥发液体。
在这个过程中,煤也可以作为原料之一。
合成氨广泛应用于肥料、化纤、医药等领域,是现代化工生产中不可或缺的重要原料。
三、合成甲醇甲醇是一种无色透明的液体,具有很高的溶解性和挥发性。
它可以作为溶剂、燃料以及制造其他有机化合物的原料。
煤可以通过气相催化裂解等反应得到甲烷,而后者又可以被进一步转化为甲醇。
合成甲醇是利用煤进行化学反应的重要途径之一。
四、制备塑料塑料是现代社会中广泛使用的材料之一,它们具有轻便、耐用等特点,在各个领域都有着重要的应用。
然而,塑料大部分都是由石油制造而来。
由于石油资源日益减少,因此寻找新型塑料原材料已经成为了当今科学家们的一个重要任务。
在这个过程中,煤就成为了一个备选方案。
利用煤进行加氢反应或加氧反应可以得到各种不同类型的高分子材料,这些材料可以用于制造塑料。
五、制备合成橡胶橡胶是一种高分子化合物,具有弹性和耐磨损等特点。
在现代工业中,橡胶被广泛应用于轮胎、密封件等领域。
利用煤进行化学反应可以得到各种不同类型的合成橡胶,这些材料可以用于制造各种不同类型的产品。
六、生产有机溶剂有机溶剂是指在常温下能够溶解有机物质的液体。
它们广泛应用于油漆、涂料、清洗剂等领域。
煤炭及煤化工基础知识(学习材料)

煤炭及煤化工基础知识一、煤炭基础知识人们通常把开发煤炭资源的企业称作煤矿,把开采出来的煤矿产品称为煤炭。
我国古代曾称煤炭为石涅,或称石炭。
它是植物遗体埋藏在地下经过漫长复杂的生物化学、地球化学和物理化学作用转化而成的一种固体可燃矿产。
它不仅是工农业和人民生活不可缺少的主要燃料,而且还是冶金、化工、医药等部门的重要原料。
据统计,在我国能源生产和消费构成中,煤炭一直居于主导地位,1995年,生产占75.5%,消费占75.0%。
在国民经济中,工业、农业、交通运输的发展都离不开煤炭。
随着近代科学技术的发展和新工艺、新方法的应用,煤炭的用途和综合利用价值将会越来越大。
可以预计,在未来相当长的时期内,煤炭在我国国民经济中都将占有相当重要的地位。
(一)、煤的形成煤是由植物残骸经过复杂的生物化学作用和物理化学作用转变而成的。
这个转变过程叫做植物的成煤作用。
一般认为,成煤过程分为两个阶段泥炭化阶段和煤化阶段。
前者主要是生物化学过程,后者是物理化学过程。
在泥炭化阶段,植物残骸既分解又化合,最后形成泥炭或腐泥。
泥炭和腐泥都含有大量的腐植酸,其组成和植物的组成已经有很大的不同。
煤化阶段包含两个连续的过程:第一个过程,在地热和压力的作用下,泥炭层发生压实、失水、肢体老化、硬结等各种变化而成为褐煤。
褐煤的密度比泥炭大,在组成上也发生了显著的变化,碳含量相对增加,腐植酸含量减少,氧含量也减少。
因为煤是一种有机岩,所以这个过程又叫做成岩作用。
第二个过程,是褐煤转变为烟煤和无烟煤的过程。
在这个过程中煤的性质发生变化,所以这个过程又叫做变质作用。
地壳继续下沉,褐煤的覆盖层也随之加厚。
在地热和静压力的作用下,褐煤继续经受着物理化学变化而被压实、失水。
其内部组成、结构和性质都进一步发生变化。
这个过程就是褐煤变成烟煤的变质作用。
烟煤比褐煤碳含量增高,氧含量减少,腐植酸在烟煤中已经不存在了。
烟煤继续进行着变质作用。
由低变质程度向高变质程度变化。
煤制油

煤液化技术煤的液化方法主要分为煤的直接液化和煤的间接液化两大类。
(1)煤直接液化:煤在氢气和催化剂作用下,通过加氢裂化转变为液体燃料的过程称为直接液化。
裂化是一种使烃类分子分裂为几个较小分子的反应过程。
因煤直接液化过程主要采用加氢手段,故又称煤的加氢液化法。
(2)煤间接液化间接液化:是以煤为原料,先气化制成合成气,然后,通过催化剂作用将合成气转化成烃类燃料、醇类燃料和化学品的过程。
煤炭直接液化是把煤直接转化成液体燃料,煤直接液化的操作条件苛刻,对煤种的依赖性强。
典型的煤直接液化技术是在400℃、150个大气压左右将合适的煤催化加氢液化,产出的油品芳烃含量高,硫氮等杂质需要经过后续深度加氢精制才能达到目前石油产品的等级。
一般情况下,一吨无水无灰煤能转化成半吨以上的液化油。
煤直接液化油可生产洁净优质汽油、柴油和航空燃料。
但是适合于大吨位生产的直接液化工艺目前尚没有商业化,主要的原因是由于煤种要求特殊,反应条件较苛刻,大型化设备生产难度较大,使产品成本偏高。
煤直接液化技术研究始于上世纪初的德国,1927年在Leuna建成世界上第一个10万吨/年直接液化厂。
1936~1943年间,德国先后建成11套直接液化装置,1944年总生产能力达到400万吨/年,为德国在第二次世界大战中提供了近三分之二的航空燃料和50%的汽车及装甲车用油。
第二次世界大战结束,美国、日本、法国、意大利及前苏联等国相继开展了煤直接液化技术研究。
50年代后期,中东地区廉价石油的大量开发,使煤直接液化技术的发展处于停滞状态。
1973年,爆发石油危机,煤炭液化技术重新活跃起来。
德国、美国及日本在原有技术基础上开发出一些煤直接液化新工艺,其中研究工作重点是降低反应条件的苛刻度,从而达到降低液化油生产成本的目的。
目前不少国家已经完成了中间放大试验,为建立商业化示范厂奠定了基础。
世界上有代表性的煤直接液化工艺是德国的新液化(IGOR)工艺,美国的HTI工艺和日本的NEDOL工艺。
煤制油

煤制油、煤制烯烃项目汇报材料提纲一、煤制油项目1、煤制油简介:煤制油也称煤液化,是以煤炭为原料生产液体燃料和化工原料的煤化工技术的简称。
通常有两种技术路线,直接液化和间接液化。
2、直接液化:煤直接液化是煤在适当的温度和压力条件下,直接催化加氢裂化,使其降解和加氢转化为液体油品的工艺过程,煤直接液化也称加氢液化。
煤直接液化技术国内外都进行了大量的技术研究,并建设了许多中试装置,但是目前世界上并没有正在商业运行中的工业化装置。
位于内蒙古鄂尔多斯的神华百万吨级直接液化煤制油示范装置2010年5月投产,预计将成为世界上第一个百万吨级的直接液化煤制油商业示范装置。
但去年实地考察了解到,该装置现在只能生产30万吨/年成品油,主要靠煤焦油加氢来生产,技术还是不成熟。
国外煤直接液化技术二战期间德国建设了大量煤直接液化和间接液化装置,煤制油成为其油品的主要来源之一。
第二次世界大战结束,美国、日本、法国、意大利及前苏联等国相继开展了煤直接液化技术研究。
目前不少国家已经完成了中间放大试验,为建立商业化示范厂奠定了基础。
典型的煤直接液化工艺主要包括德国IGOR工艺(装置规模200吨/天)、美国HTI工艺(装置规模600吨/天)及日本NEDOL工艺(装置规模150吨/天)。
国内煤直接液化技术我国从20世纪70年代开始开展煤炭直接液化技术研究。
20多年来,北京煤化学研究所对我国上百个煤种进行了直接液化试验研究,并开发出高活性煤直接液化催化剂,同时也进行了煤液化油品的提质加工研究。
1997-2000年,煤炭科学研究总院分别与美国、德国、日本等有关机构合作,完成了神华煤、云南先锋煤和黑龙江依兰煤直接液化示范工厂的初步可行性研究。
2004年1月,以煤直接液化中试为首要研究任务的“神华煤制油研究中心有限公司”正式成立,2004年9月,研究中心第一期工程,占地150亩的煤直接液化中试装置(PDU)正式建成。
2004-2006年:6吨/天的PDU装置进行了3次试验。
【科普】煤化工、煤制油气的 16个基础知识

【科普】煤化工、煤制油气的16个基础知识一、煤化工以煤炭为原料经化学方法将煤炭转化为气体、液体和固体产品或半产品,而后再进一步加工成一系列化工产品或石油燃料的工业,称之为煤化工。
二、元素分析全面测定煤中所含化学成分的分析叫元素分析。
对燃烧有影响的成分包括碳、氢、氧、氮、硫、灰分和水分,各化学元素成分用质量百分数表示。
三、煤的工业分析是利用煤在加热燃烧过程中的失重进行定量分析,测定煤的水分、挥发分、固定碳和灰分的成分。
四、煤里面都含有水分,水分的含量和存在状态与外界条件和煤的内部结构有关。
根据水在煤里面的存在状态,将煤中水分分别称为外在水分、内在水分以及同煤中矿物质结合的结晶水、化合水。
五、在煤的工业分析中测定的水分可分为收到基水分和分析基水分两种。
六、煤的灰分是指煤完全燃烧后剩下来的残渣。
这些残渣几乎全部来自于煤中的矿物质。
煤的组成以有机质为主体,有机质主要由碳、氢、氧、氮、硫5种元素组成。
七、煤的热解-干馏所谓煤的热解,是指在隔绝空气的条件下,煤在不同温度下发生的一系列物理、化学变化的复杂过程。
其结果是生成气体(煤气)、液体(焦油)、固体(半焦或焦炭)等产品。
煤的热解也称为煤的干馏或热分解。
按热解最终温度不同可分为:高温干馏900-1050℃,中温干馏700--800℃,低温干馏500-600℃。
八、煤的铝甑(zeng)低温干馏试验为了评定煤的炼油适合性以及干馏产物,常用铝甑低温干馏试验方法。
要点是:将煤样装在铝甑中,以一定程序加热到510℃,保持一定时间,测定所得的焦油、热解水和半焦和煤气的产率。
评价煤的低温干燥焦油产率时用空气干燥基指标Tarad。
Tarad>12%称为高油煤,Tarad=7-12%称为富油煤,Tarad≤7%称为含油煤。
九、煤气化炉的分类1、我们按气化炉中的流体力学条件分,只有三种:固定床、流化床、气流床。
2、固定床的特点是简单可靠。
气化剂与煤逆流接触,气化过程比较完全,热量利用比较合理,热效率较高。
煤制油技术

谢谢指导
风险挑战
技术风险 资源问题 投资风险
煤制油有直接液化和 间接液化两种技术路 线,在全球范围内, 大规模工业化生产的 只有南非萨索尔公司 的间接液化技术,美 国、德国、日本均号 称拥有成熟的直接液 化技术,但均未有大 批量工业化生产的例 子。
资源要素主要包括煤 炭资源和水资源。煤 直接液化法生产一吨 油品需要煤炭3~4吨, 煤间接液化法生产一 吨油品需要煤炭5~7 吨。煤制油工艺需要 消耗大量的水,煤直 接液化法生产一吨油 品需要消耗8吨至9吨 水,Sasol公司所采 用的间接液化方式, 耗水量更是直接液化 法的1.5倍。
资源储备
中国2003-2012能源消费结构
中国各种一次能源消费的百分率 (%)
中国总的能源特征是“富煤、少油、有气”,与之对应的是煤炭在能源消费结 构中占主导,然而煤炭的燃烧引起了严重的环境污染,对煤炭的进一步加工处理使 用已迫在眉睫。
中国能源 元化消费的最佳选择。2
神华鄂尔多斯百万吨煤制油项目工艺流程
技术发展
国内发展
中国中科院山西煤化所从20世纪80年代开始进行铁基、 钴基两大类催化剂费-托合成油煤炭间接液化技术研究及 工程开发,完成了2000吨/年规模的煤基合成油工业实验, 5吨煤炭可合成1吨成品油。目前世界上可以通过”煤制 油”技术合成高品质柴油的只有南非等少数国家。山西 煤化所优质清洁柴油的问世,标志着我国已具备了开发 和提供先进成套产业化自主技术的能力,并成为世界上 少数几个拥有可将煤变为高清洁柴油全套技术的国家之 一。
无论是Sasol公司或 者Shell公司技术, 最大优点是成熟可靠, 而缺点是引进费用高, 使项目总体造价可能 大幅度上升(估计 ﹥15%);相反,采用 国内自主研发技术最 大缺点是,工程放大 存在一定风险,放大 倍数越大,风险也越 大,好处是项目总体 造价可以大幅降低。
煤制油技术总结

煤制油技术总结引言煤制油技术是一种将煤炭转化为液体燃料和化工产品的方法。
随着石油资源的减少和能源需求的增加,煤制油技术在能源领域受到了广泛关注和研究。
本文将对煤制油技术的原理、工艺和发展进行总结和分析。
一、煤制油技术的原理煤制油技术的原理是利用煤炭中的有机物质,在高温、高压和催化剂的作用下,通过热解、裂解和氢化等反应,将煤转化为液体燃料和化工产品。
煤制油技术可以分为间接煤液化和直接煤液化两种方法。
1.间接煤液化:间接煤液化是将煤转化为合成气(由CO和H2组成的气体),然后再通过合成气的催化反应,将其转化为石油产品。
间接煤液化的主要步骤包括煤气化、合成气的净化、合成气的催化反应和产品分离等。
2.直接煤液化:直接煤液化是将煤直接转化为液体燃料和化工产品,不经过合成气的步骤。
直接煤液化的主要反应种类有热解、裂解、氢化和重聚等。
二、煤制油技术的工艺流程煤制油技术的工艺流程主要包括原料预处理、煤气化、合成气的净化、合成反应、产品分离和废水处理等环节。
1.原料预处理:将煤炭进行粉碎和筛分,去除杂质和含硫等有害物质。
2.煤气化:将预处理后的煤炭在高温下与氧气或蒸汽进行反应,产生合成气。
煤气化可以采用固定床、流化床或床浆等反应器。
3.合成气的净化:对合成气中的灰尘、硫化物、苯等有害物质进行净化和除尘处理。
4.合成反应:将净化后的合成气经过催化剂的作用,进行一系列的热解、裂解、氢化和重聚等反应,将其转化为液体燃料和化工产品。
5.产品分离:将合成反应产生的产品进行分离和提纯,得到液体燃料和化工产品。
6.废水处理:处理工艺中产生的废水,通过物理、化学等方法进行处理,达到环保要求后排放或回用。
三、煤制油技术的发展现状煤制油技术作为一种可替代石油资源的方法,已经在世界范围内得到广泛应用和研发。
以下是煤制油技术的一些发展现状:1.国际发展现状:美国、南非、中国等国家在煤制油技术研究和应用方面处于领先地位。
美国的CTL(Coal-to-Liquid)技术已经商业化应用,并取得了良好的经济和环境效益。
煤化工工艺学知识点

1.煤化学工业是以煤为原料经过化学加工实现煤综合利用的工业,简称煤化工。
2.煤化工是以煤为原料,经过化学加工使煤转化为气体、液体和固体燃料以及化学品的过程。
从煤加工过程区分,煤化工包括煤的干馏(含炼焦和低温干馏)、气化、液化和合成化学品等。
3.煤在隔绝空气的条件下,受热分解生成煤气、焦油、粗苯和焦炭的过程,称为煤干馏(又称炼焦、焦化)。
煤低温干馏产品为:半焦、煤气、焦油。
按加热终温不同分为:低.中.高温干馏煤低温干馏产物的产率和组成取决于原料煤性质、干馏炉结构和加热条件。
4.煤低温干馏产品的产率和性质与原料煤的性质、加热条件、加热速度、加热终温以及压力有关。
干馏炉的形式、加热方法和挥发物在高温区的停留时间对产品的产率和性质也有重要影响。
煤加热温度场的均匀性以及气态产物二次热解深度对其也有影响。
5.一般压力增大,焦油产率减少,气态产物产率增加,半焦产率和强度增加。
6.干馏供热方式:内热式和外热式。
7.内热式与外热式相比的优点(1)热载体向煤料直接传热,热效率高,干馏耗热量低。
(2)煤料在干馏不同阶段加热均匀,消除了部分料块过热现象。
(3)内热式炉简化了干馏炉结构。
8.沸腾床干馏炉:将粒度小于6mm的预先干燥过的粉煤连续加入沸腾炉,炉子用燃料气和空气燃烧加热,炉内形成沸腾的焦粉床层,煤料在炉内干馏。
不粘结性煤用螺旋给料器加入,粘结性煤用气流吹入法。
干馏的热量由焦炭、焦油蒸气以及煤气在沸腾层中部分燃烧和燃料气燃烧提供的。
或者不送入燃料气和空气,则送入热烟气。
干馏产物焦粉经过一满流管由炉子排出。
在气体冷却系统中分出焦油、中油以及被燃烧烟气稀释了的干馏煤气。
9.鲁奇三段炉流程:(1)煤在竖式炉中料层下行,热气流逆向通入进行加热。
(2)粉状褐煤和烟煤要预先压块。
(3)煤在移动过程中可分成三段:干燥段,干馏段,焦炭冷却段。
在最上段循环热气流把煤干燥预热到150℃,在中段即干馏段,热气流把煤加热到500-850℃,在下段,焦炭被冷循环气流冷却到100-150℃,最后排出。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
煤制油煤化工知识煤制油煤化工知识现代新型煤制油化工技术是以煤炭为基本原料,经过气化、合成、液化、热解等煤炭利用的技术途径,生产洁净能源和大宗化工产品,如合成气、天然气、柴油、汽油、航空煤油、液化石油气、聚乙烯、聚丙烯、甲醇、二甲醚等。
改变传统的煤炭燃烧、电石、炼焦等以高污染、低效率为特点的传统利用方式。
1、煤炭液化技术之——煤炭直接液化(煤加氢液化, Direct Coal Liquefaction)煤直接液化,将煤在氢气和催化剂作用下通过液化生成粗油,再经加氢精制转变为汽油、柴油等石油燃料制品的过程,因液化过程主要采用加氢手段,故又称煤加氢液化法。
煤直接液化典型的工艺过程主要包括煤的破碎与干燥、煤浆制备、催化剂制备、氢制取、加氢液化、固液分离、液体产品分馏和精制,液化大规模制备氢气通常采用煤气化或者天然气转化。
煤加氢液化的过程基本分为三大步骤。
(1)当温度升至300℃以上时,煤受热分解,即煤的大分子结构中较弱的桥键开始断裂,产生大量以结构单元为基体的自由基碎片,自由基的相对分子质量在数百范围;(2)在具有供氢能力的溶剂环境和较高氢气压力的条件下、自由基加氢得到稳定,成为沥青烯及液化油分子。
能与自由基结合的氢并非是分子氢(H2),而应是氢自由基,即氢原子,或者是活化氢分子,氢原子或活化氢分子的来源有:①煤分子中碳氢键断裂产生的氢自由基;②供氢溶剂碳氢键断裂产生的氢自由基;③氢气中的氢分子被催化剂活化;④化学反应放出的氢。
当外界提供的活性氢不足时,自由基碎片可发生缩聚反应和高温下的脱氢反应,最后生成固体半焦或焦炭;(3)沥青烯及液化油分子被继续加氢裂化生成更小的分子。
一般来讲,煤炭直接液化的用煤要求如下:(1)煤中的灰分要低,一般小于5%,因此原煤要进行洗选,生产出精煤进行液化;(2)煤的可磨性要好;(3)煤中的氢含量越高越好,氧的含量越低越好;(4)煤中的硫分和氮等杂原子含量越低越好,以降低油品加工提质的费用;煤直接液化技术早在19世纪即已开始研究。
1913年德国化学家F.柏吉尼乌斯研究氢压下煤的液化,同年与J.比尔维勒共同取得此项试验的专利权,创造了煤加氢液化历史的开始。
至第二次世界大战后期,德国由煤及低温干馏煤焦油生产液体燃料,总生产能力达到4Mt;二战结束后,随着中东大量廉价石油的开发,煤加氢液化失去了竞争力和继续存在的必要,发展基本停滞。
至1973年和1979年的两次世界石油危机,促使煤炭液化技术的研究开发形成了一个新的高潮,开发了一批新的加工过程,如溶剂精炼煤(SRC)工艺、埃克森(Exxon)供氢溶剂(EDS)工艺、HRI公司氢-煤法(H-COAL)工艺等。
日本在上世纪末,NEDOL开发出了针对褐煤的BCL工艺和针对烟煤的NEDOL工艺。
中国煤加氢液化技术研究始于上世纪70年代末,主要采用了国际合作和跟踪研究的方式。
煤炭科学研究总院先后建立了0.1t/d的NEDOL工艺连续试验装置、德国0.12t/d的新IG 工艺连续试验装置,并完成对中国50多种煤种运转试验研究。
2002年,在国家支持下,神华煤加氢液化项目正式启动,通过借鉴国外煤加氢液化工艺技术特点,在优化创新的基础上,开发成功具有自主知识产权的神华煤加氢液化工艺,并建成6t/d的神华煤加氢液化工艺的PDU中试装置放大试验。
同时,煤炭科学研究总院与神华共同开发成功具有国内自主知识产权的纳米级“863”高效合成煤加氢液化催化剂,建成催化剂放大制备装置。
2004年,神华百万吨级煤直接液化示范工程开始建设,并于2008年底顺利投产运行。
由此,完全依靠国内技术力量的具有自主知识产权的神华煤加氢液化工艺(CDCL)开发成功,其工艺主要特点有:采用高活性铁系液化催化剂、循环溶剂预加氢、强制循环悬浮床反应器、减压蒸馏分离沥青和固体等。
2、煤炭液化技术之——煤炭间接液化(煤基费托合成技术, F-T Coal Liquefaction)煤炭间接液化(煤基费托合成,F-T合成)是首先将煤通过气化制成原料气,然后经过净化、变换获得合成气,合成气通过费托合成反应转化为合成油品,再经过油品加氢提质得到柴油、石脑油等产品。
煤基费托合成可分为高温费托合成(350℃)和低温费托合成(250℃),高温合成可以生产石脑油、聚稀烃等多种化工品和燃油,低温合成以柴油等燃油为主。
费托合成产品可以根据市场需要加以调节,生产高附加值、价格高、市场紧缺的化工产品。
相比煤炭直接液化,煤基费托合成工艺用煤取决于煤种与气化工艺的相对适应性,因此具有煤种适应性强的特点。
典型的煤炭间接液化工艺包括煤气化(煤气净化、变换和脱碳)、F-T合成、油品加工等3个“串联”过程。
由煤气化装置产出的粗煤气经除尘、冷却得到净煤气,净煤气经CO宽温耐硫变换和酸性气体(包括H2S和CO2等)脱除,得到成分合格的合成气。
合成气进入合成反应器,在一定温度、压力及催化剂作用下,H2和CO转化为直链烃类(H2/CO在0.8-2之间)、水以及少量的含氧有机化合物。
生成物经三相分离,水相去提取醇、酮、醛等化学品;油相采用常规石油炼制手段(如常、减压蒸馏),根据需要切割出产品馏份,经进一步加工(如加氢精制、临氢降凝、催化重整、加氢裂化等工艺)得到合格的油品或中间产品;气相经冷冻分离及烯烃转化处理得到LPG、聚合级丙烯、聚合级乙烯及中热值燃料气。
煤基费托合成工艺的核心技术——费托合成技术,是1913年,由德国科学家 F.Fisher和H.Tropsc利用碱性铁催化剂,在温度400~455℃、压力10~15Mpa条件下,用一氧化碳与氢气合成了烃类化合物与含氧化合物的混合液体开始的,并根据两位科学家姓名而命名。
其反应过程包括:(1)烃类生成反应;(2)水气变换反应;(3)烷烃生成反应;(4)烯烃生成反应。
由于反应条件的不同,还有甲烷生成反应、醇类生成反应(生产甲醇就需要此反应)、醛类生成反应等等,可采用调节生产工艺条件、改变催化剂等措施满足工艺产品需求。
南非由于特殊的政治、经济环境和能源资源特点,成功地发展了煤炭间接液化合成燃料工业,居世界领先。
目前南非SASOL公司三个工厂年处理煤炭总计达到4590万t(占全国煤炭消费的20%),主要产品为汽油、柴油、蜡、氨、乙烯、丙烯、聚合物、醇、醛、酮等113种,总产量达760万t/a,其中油品占60%左右,提供南非石油产品需求的30%。
南非SASOL 公司的煤基费托合成技术,但基本处于技术封锁。
中国煤基费托合成技术的开发起步晚,以中科院山西煤化所开发的低温浆态床费托合成技术建设的神华内蒙鄂尔多斯、山西潞安、内蒙伊泰三个16~18万t/a示范工程的建设均已建成投运。
3、煤炭气化(Coal Gasification)煤炭气化是现代煤化工的龙头关键单元技术,以生产洁净合成煤气为指主要产品,煤液化技术均离不开煤炭气化技术。
煤在气化炉内,在一定温度及压力下与气化剂(如蒸汽/空气或氧气等)发生气化过程,包括煤的热解、气化和燃烧反应等一系列化学反应,将固体煤转化为含有CO、H2、CH4等可燃气体和CO2、N2等非可燃气体的过程。
煤炭气化三个条件为气化炉、气化剂、原料煤。
煤炭气化过程发生的主要化学反应有:1、水蒸气转化反应:C+H2O=CO+H2-131KJ/mol2、水煤气变换反应:CO+ H2O =CO2+H2+42KJ/mol3、部分氧化反应:C+0.5 O2=CO+111KJ/mol4、完全氧化(燃烧)反应:C+O2=CO2+394KJ/mol5、甲烷化反应:CO+2H2=CH4+74KJ/mol6、Boudouard反应:C+CO2=2CO-172KJ/mol煤炭气化工艺的分类可按压力、气化剂、气化过程供热方式等分类。
按照压力分为常压气化和加压气化,按照是否需要煤炭开采分为地面气化和地下气化,按灰渣排出形态分为固态排渣气化、液态排渣气化、灰团(熔)聚气化等,最常用的是按气化炉内煤料与气化剂的接触方式区分,当前主要的气化技术有:(1)加压固定床气化:在气化过程中,煤由气化炉顶部加入,气化剂由气化炉底部加入,煤料与气化剂逆流接触,相对于气体的上升速度而言,煤料下降速度很慢,甚至可视为固定不动,因此称之为固定床气化。
而实际上,煤料在气化过程中是以很慢的速度向下移动的,比较准确的称其为移动床气化。
固定床气化炉常见有间歇式气化(UGI)和连续式气化(鲁奇Lurgi)2种,气化炉压力(2.5~4.0)MPa;(2)流化床气化:以粒度为0-10mm的小颗粒煤为气化原料,在气化炉内使其悬浮分散在垂直上升的气流中,煤粒在沸腾状态进行气化反应,从而使得煤料层内温度均一,易于控制,提高气化效率。
流化床气化炉常见有温克勒(Winkler)、灰熔聚(U-Gas)、循环流化床(CFB)、加压流化床(PFB是PFBC的气化部分)等;(3)气流床气化:一种并流气化,用气化剂将粒度为100um以下的煤粉带入气化炉内,也可将煤粉先制成水煤浆,然后用泵打入气化炉内。
煤料在高于其灰熔点的温度下与气化剂发生燃烧反应和气化反应,灰渣以液态形式排出气化炉。
干粉进料的主要有K-T (Koppres-Totzek)炉、Shell- Koppres炉、Prenflo炉、Shell炉、GSP炉、ABB-CE炉,湿法煤浆进料的主要有德士古(Texaco)气化炉、Destec炉;(4)熔浴床气化:粉煤和气化剂以切线方向高速喷入一温度较高且高度稳定的熔池内,把一部分动能传给熔渣,使池内熔融物做螺旋状的旋转运动并气化。
目前此气化工艺已不再发展。
煤气化工艺选择原则是:(1)根据煤质选择相适应的煤气化工艺;(2)根据煤气加工的产品及用途选择煤气化工艺;(3)装置规模的大型化。
4、煤制天然气(SNG)煤制天然气属煤化工技术,主要工艺由气化、变换、净化和甲烷化单元工艺组成,因变换、净化技术在国内已成熟可靠,大规模甲烷化技术虽然在国内属新技术,但在国外已有长期工业化应用实例,技术也成熟可靠。
所以,决定SNG项目成败的关键在煤气化技术,高甲烷含量煤气化可大大降低SNG总体工程投资,比如Lurgi和BGL气化技术。
5、煤制甲醇及烯烃、聚烯烃煤制甲醇再转制烯烃(Methanol to Olefins,MTO)和甲醇制丙烯(Methanol to Propylene)是两个重要的新型煤炭C1化工新工艺,是指以煤气化合成气后转化甲醇,再通过MTO/MTP 生产低碳烯烃的化工技术。
该技术是以煤替代石油原料的不足生产烯烃产品。
(1)合成气生产甲醇在甲醇合成反应器内,经过脱硫合成气在一定的温度和压力条件下,CO和H2在催化剂的作用下发生如下的可逆反应,生产甲醇:CO+2H2 CH3OH,ΔH298=-90.8kJ/mol反应气中存在CO2时,还将发生如下反应:CO2+3H2 CH3OH+H2O,ΔH298=-49.5kJ/mol同时CO2和H2还将发生如下反应:CO2+H2 CO+H2O,ΔH298=41.3kJ/mol此外还伴有一些副反应发生,生成少量的烃、醇、醚、酸和酯等化合物。