(完整版)小学六年级数学计算竞赛试题
小学六年级数学竞赛试卷(附答案)

小学六年级数学竞赛试卷(附答案)一、拓展提优试题1.建筑公司建一条隧道,按原速度建成时,使用新设备,使修建速度提高了20%,并且每天的工作时间缩短为原来的80%,结果共用185天建完隧道,若没有新设备,按原速度建完,则需要天.2.如图,边长为12cm的正方形与直径为16cm的圆部分重叠(圆心是正方形的一个顶点),用S1,S2分别表示两块空白部分的面积,则S1﹣S2=cm2(圆周率π取3).3.用底面内半径和高分别是12cm,20cm的空心圆锥和空心圆柱各一个组成如图所示竖放的容器,在这个容器内注入一些细沙,能填满圆锥,还能填部分圆柱,经测量,圆柱部分的沙子高5cm,若将这个容器倒立,则沙子的高度是cm.4.有2013名学生参加数学竞赛,共有20道竞赛题,每个学生有基础分25分,此外,答对一题得3分,不答题得1分,答错一题扣1分,则所有参赛学生得分的总和是数(填“奇”或“偶”).5.图中阴影部分的两段圆弧所对应的圆心分别为点A和点C,AE=4m,点B 是AE的中点,那么阴影部分的周长是m,面积是m2(圆周率π取3).6.某小学的六年级有学生152人,从中选男生人数的和5名女生去参加演出,该年级剩下的男、女生人数恰好相等,则该小学的六年级共有男生名.7.如图,三个同心圆分别被直径AB,CD,EF,GH八等分,那么,图中阴影部分面积与非阴影部分面积之比是.8.甲、乙两家商店出售同一款兔宝宝玩具,每只原售价都是25元,为了促销,甲店先提价10%,再降价20%;乙店则直接降价10%.那么,调价后对于这款兔宝宝玩具,店的售价更便宜,便宜元.9.王涛将连续的自然数1,2,3,…逐个相加,一直加到某个自然数为止,由于计算时漏加了一个自然数而得到错误的结果2012.那么,他漏加的自然数是.10.对任意两个数x,y规定运算“*”的含义是:x*y=(其中m是一个确定的数),如果1*2=1,那么m=,3*12=.11.如图,已知AB=40cm,图中的曲线是由半径不同的三种半圆弧平滑连接而成,那么阴影部分的面积是cm2.(π取3.14)12.若A:B=1:4,C:A=2:3,则A:B:C用最简整数比表示是.13.若将算式9×8×7×6×5×4×3×2×1中的一些“×”改成“÷”使得最后的计算结果还是自然数,记为N,则N最小是.14.如图是甲乙丙三人单独完成某项工程所需天数的统计图,根据图中信息计算,若甲先做2天,接着乙丙两人合作了4天,最后余下的工程由丙1人完成,则完成这项工程共用天.15.如图,将正方形纸片ABCD折叠,使点A、B重合于点O,则∠EFO=度.【参考答案】一、拓展提优试题1.解:(1﹣)÷[(1+20%)×80%]=÷[120%×80%],=,=;185÷(+)=185÷,=180(天).答:按原速度建完,则需要180天.故答案为:180.2.解:3×(16÷2)2﹣122=192﹣144,=48(平方厘米);答:S1﹣S2=48cm2.故答案为:48.3.解:据分析可知,沙子的高度为:5+20÷3=11(厘米);答:沙子的高度为11厘米.故答案为:11.4.解:每人答对x道,不答y道,答错z道题目,则显然x+y+z=20,z=20﹣x﹣y;所以一个学生得分是:25+3x+y﹣z,=25+3x+y﹣(20﹣x﹣y),=5+4x+2y;4x+2y显然是个偶数,而5+4x+2y的和一定是个奇数;2013个奇数相加的和仍是奇数.所以所有参赛学生得分的总和是奇数.故答案为:奇.5.解:阴影部分的周长:4+3×4×2÷4+3×2×2÷4,=4+6+3,=13(米);阴影部分的面积:3×42÷4+3×22÷4﹣2×4,=12+3﹣8,=7(平方米);答:阴影部分的周长是13米,面积是7平方米.故答案为:13、7.6.解:设男生有x人,(1﹣)x=152﹣x﹣5,x+x=147﹣x+x,x=147,x=77,答:该小学的六年级共有男生77名.故应填:77.7.解:由图可知,阴影部分的面积是图中最大圆面积的,非阴影部分的面积是图中最大圆面积的,所以图中阴影部分面积与非阴影部分面积之比是::=1:3;答:图中阴影部分面积与非阴影部分面积之比是1:3.故答案为:1:3.8.解:甲商店:25×(1+10%)×(1﹣20%),=25×110%×80%,=27.5×0.8,=22(元);乙商店:25×(1﹣10%),=25×90%,=22.5(元);22.5﹣22=0.5(元);答:甲商店便宜,便宜了0.5元.故答案为:甲,0.5.9.解:设这个等差数列和共有n项,则末项也应为n,这个等差数列的和为:(1+n)n÷2=;经代入数值试算可知:当n=62时,数列和=1953,当n=63时,数列和=2016,可得:1953<2012<2016,所以这个数列共有63项,少加的数为:2016﹣2012=4.故答案为:4.10.解:①因为:x*y=(其中m是一个确定的数)且1*2=1所以:=18=m+6m+6=8m+6﹣6=8m=2②3*12===故答案为:2,.11.解:40÷2=20(厘米)20÷2=10(厘米)3.14×202﹣3.14×102÷2×4=1256﹣628=628(平方厘米)答:阴影部分的面积是628平方厘米.故答案为:628.12.解:A:B=1:4=:=(×6):(×6)=10:29C:A=2:3=:=(×15):(×15)=33:55=3:5=6:10这样A的份数都是10,所以A:B:C=10:29:6.故答案为:10:29:6.13.解:根据分析,先分解质因数9=3×3,8=2×2×2,6=2×3,故有:9×8×7×6×5×4×3×2×1=(3×3)×(2×2×2)×7×(3×2)×5×(2×2)×3×2×1,所以可变换为:9×8×7÷6×5÷4÷3×2×1=70,此时N最小,为70,故答案是:70.14.解:依题意可知:甲乙丙的工作效率分别为:,,;甲乙工作总量为:×2+×4=;丙的工作天数为:(1﹣)=3(天);共工作2+4+3=9故答案为:915.解:沿DE折叠,所以AD=OD,同理可得BC=OC,则:OD=DC=OC,△OCD是等边三角形,所以∠DCO=60°,∠OCB=90°﹣60°=30°;由于是对折,所以CF平分∠OCB,∠BCF=30°÷2=15°∠BFC=180°﹣90°﹣15°=75°所以∠EFO=180°﹣75°×2=30°.故答案为:30.。
小学六年级数学竞赛试卷(附答案)图文百度文库

小学六年级数学竞赛试卷(附答案)图文百度文库一、拓展提优试题1.有一口无水的井,用一根绳子测井的深度,将绳对折后垂到井底,绳子的一端高出井口9m;将绳子三折后垂到井底,绳子的一端高出井口2m,则绳长米,井深米.2.有一个温泉游泳池,池底有泉水不断涌出,要想抽干满池的水,10台抽水机需工作8小时,9台抽水机需工作9小时,为了保证游泳池水位不变(池水既不减少,也不增多),则向外抽水的抽水机需台.3.图中阴影部分的两段圆弧所对应的圆心分别为点A和点C,AE=4m,点B 是AE的中点,那么阴影部分的周长是m,面积是m2(圆周率π取3).4.把一个自然数分解质因数,若所有质因数每个数位上的数字的和等于原数每个数位上的数字的和,则称这样的数为“史密斯书数”如:27=3×3×3.3+3+3=2+7,即27是史密斯数,那么,在4,32,58,65,94中,史密斯数有个.5.老师让小明在400米的环形跑道上按照如下规律插上一些旗子做标记:从起点开始,沿着跑道每前进90米就插上一面旗子,直到下一个90米的地方已经插有旗子为止,则小明要准备面旗子.6.从1开始的n个连续的自然数,如果去掉其中的一个数后,余下的各个数的平均数是,那么去掉的数是.7.若A、B、C三种文具分别有38个,78和128个,将每种文具都平均分给学生,分完后剩下2个A,6个B,20个C,则学生最多有人.8.已知自然数N的个位数字是0,且有8个约数,则N最小是.9.若质数a,b满足5a+b=2027,则a+b=.10.如图,设定E、F分别是△ABC的边AB、AC上的点,线段CE,BF交于点D,若△CDF,△BCD,△BDE的面积分别为3,7,7,则四边形AEDF的面积是.11.甲挖一条水渠,第一天挖了水渠总长度的,第二天挖了剩下水渠长度的,第三天挖了未挖水渠长度的,第四天挖完剩下的100米水渠.那么,这条水渠长米.12.将浓度为40%的100克糖水倒入浓度为20%的a克糖水中,得到浓度为25%的糖水,则a=.13.请你想好一个数,将它加上5,其结果乘以2,再减去4,得到的差除以2,再减去你最初想好的那个数,最后的计算结果是.14.小明把一本书的页码从1开始逐页相加,加到最后,得到的数是4979,后来他发现这本书中缺了一张(连续两个页码).那么,这本书原来有页.15.(15分)二进制是计算机技术中广泛采用的一种数制,其中二进制数转换成十进制数的方法如下:那么,将二进制数 11111011111 转化为十进制数,是多少?【参考答案】一、拓展提优试题1.解:(9×2﹣2×3)÷(3﹣2),=(18﹣6)÷1,=12÷1,=12(米),(12+9)×2,=21×2,=42(米).故答案为:42,12.2.解:设1台抽水机1小时抽1份水,每小时新增水:9×9﹣10×8=1;答:向外抽水的抽水机需1台.3.解:阴影部分的周长:4+3×4×2÷4+3×2×2÷4,=4+6+3,=13(米);阴影部分的面积:3×42÷4+3×22÷4﹣2×4,=12+3﹣8,=7(平方米);答:阴影部分的周长是13米,面积是7平方米.故答案为:13、7.4.解:4=2×2,2+2=4,所以4是史密斯数;32=2×2×2×2×2;2+2+2+2+2=10,而3+2=5;10≠5,32不是史密斯数;58=2×29,2+2+9=13=13;所以58是史密斯数;65=5×13;5+1+3=9;6+5=11;9≠11,65不是史密斯数;94=2×472+4+7=13=9+4;所以94是史密斯数.史密斯数有4,58,94一共是3个.故答案为:3.5.解:400和90的最小公倍数是3600,则3600÷90=40(面).答:小明要准备40面旗子.故答案为:40.6.解:设去掉的数是x,那么去掉一个数后的和是:(1+n)n÷2﹣x=×(n﹣1);显然,n﹣1是7的倍数;n=8、15、22、29、36时,x均为负数,不符合题意.n=43时,和为946,42×=912,946﹣912=34.n=50时,和为1225,49×=1064,1225﹣1064=161>50,不符合题意.答:去掉的数是34.故答案为:34.7.解:38﹣2=36(个)78﹣6=72(个)128﹣20=108(个)36、48和108的最大公约数是36,所以学生最多有36人.故答案为:36.8.解:自然数N的个位数字是0,它一定有质因数5和2,要使N最小,5的个数应最少为1个,而求其它因数最好都是2和3,并且2的个数不能超过2个,其它最好都是3;设这个自然数N=21×51×3a,根据约数和定理,可得:(a+1)×(1+1)×(1+1)=8,(a+1)×2×2=8,a=1;所以,N最小是:2×3×5=30;答:N最小是30.故答案为:30.9.解:依题意可知:两数字和为奇数,那么一定有一个偶数.偶质数是2.当b=2时,5a+2=2027,a=405不符合题意.当a=2时,10+b=2027,b=2017符合题意,a+b=2+2017=2019.故答案为:2019.10.解:连接AD,因△CDF和△BCD的高相等,所以FD:DB=3:7,所△AFD和△ABD的面积比也是3:7,即可把△AFD的面积看作是3份,△ABD的面积看作是7份,S△BCD=7,S△BDE=7所以CD=DE,S△ACD=S△ADE,S△ACD+S△BDE=S△ABD,S△ACD+S△BDE=7份,S△AFD+S△CDF+S△BDE=7份,3份+3+7=7份,则1份=2.5,S四边形AEDF=10份﹣7=10×2.5﹣7=25﹣7=18答:四边形AEDF的面积是18.故答案为:18.11.解:把这条水渠总长度看作单位“1”,则第一天挖的分率为,第二天挖的分率(1﹣)×=,第三天挖的分率为(1﹣)×=,100÷((1﹣﹣﹣)=100÷=350(米)答:这条水渠长350米.故答案为:350.12.解:依题意可知:根据浓度是十字交叉法可知:浓度差的比等于溶液质量比即1:3=100:a,所以a=300克故答案为:30013.解:设这个数是a,[(a+5)×2﹣4]÷2﹣a=[2a+6]÷2﹣a=a+3﹣a=3,故答案为:3.14.解:设这本书的页码是从1到n的自然数,正确的和应该是1+2+…+n=n(n+1),由题意可知,n(n+1)>4979,由估算,当n=100,n(n+1)=×100×101=5050,所以这本书有100页.答:这本书共有100页.故答案为:100.15.解:(11111011111)2=1×210+1×29+1×28+1×27+1×26+0×25+1×24+1×23+1×22+1×21+1×20=1024+512+256+128+64+0+16+8+4+2+1=(2015)10答:是2015.。
小学六年级数学竞赛试题附答案

1 小学六年级数学竞赛试题 一、选择题。
(毎小题10分)以下毎题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在毎题的圆括号内。
1.科技小组演示自制机器人,若机器人从点A 向南行走1.2米,再向东行走1米,接着又向南行走1.8米,再向东行走2米,最后又向南行走1米到达B 点,则B 点与A 点的距离是( )米。
(A )3 (B )4 (C )5 (D )72.将等边三角形纸片按图1所示的步骤折3次(图1中的虚线是三边中点的边线),然后沿两边中点的边线剪去一角(图2)。
将剩下的纸展开、铺平,得到的图形是( )。
(A ) (B ) (C ) (D )3.将一个长和宽分别是是1833厘米和423厘米的长方形分割成若干修正在方形,则正方形最少是( )个。
(A )78 (B )7 (C )5 (D )64.已知图3是一个轴对称图形,若将图中某些黑色的图形去掉后,得到一些新的图形,则其中轴对称图形共有( )个。
(A )9 (B )8 (C )7 (D )6 图35.若a=1515…15×333…3,则整数a 的所有位数上的数字和等于( )。
1004个5 2008个3(A )18063 (B )18072 (C )18079 (D )180546.若a=2008200720062005⨯⨯,b=2009200820072006⨯⨯,c=2010200920082007⨯⨯,则有( )。
(A )a>b>c (B )a>c>b (C )a<c<b (D )a<b<c二、填空题。
(毎小题10分,满分40分。
第10题每空5分)7.如图4所示,甲车从A ,乙车从B 同时相向而行,两车第一次相遇后,甲车继续行驶4小时到达B ,而乙车只行驶了1小时就到达A ,甲乙两车的速度比为 。
剪去,不要 图1 图2 甲车乙车 A B图42 8.华杯赛网址是 ,将其中的字母组成如下算式:www+hua+bei+sai+cn=2008.如果每个字母分别代表0~9这十个数字是的一个,相同的字母代表相同的数字,不同的字母代表不同的数字,并且w=8,h=6,a=9,c=7,则三位数bei 的最小值是 。
2024年数学六年级竞赛题目

2024年数学六年级竞赛题目一、填空题(1 - 10题)1. 把一个圆平均分成若干份后,拼成一个近似的长方形,长方形的长是12.56厘米,这个圆的面积是()平方厘米。
解析:把圆拼成近似长方形时,长方形的长近似于圆周长的一半。
圆的周长公式为C = 2π r,那么圆周长的一半就是π r。
已知长方形长12.56厘米,即π r=12.56,r = 12.56÷3.14 = 4厘米。
圆的面积公式S=π r^2,所以圆的面积为3.14×4^2=50.24平方厘米。
2. 六班今天出勤48人,有2人因病请假,今天六班学生的出勤率是()。
解析:出勤率 = 出勤人数÷总人数×100%。
总人数 = 出勤人数+请假人数 = 48 + 2=50人。
则出勤率为48÷50×100% = 96%。
3. 一个直角三角形的两条直角边分别是3厘米和4厘米,这个直角三角形的面积是()平方厘米。
解析:直角三角形面积 = 两条直角边乘积的一半。
所以面积为(1)/(2)×3×4 = 6平方厘米。
4. 从一个边长为10分米的正方形纸里剪一个最大的圆,这个圆的周长是()分米。
解析:在正方形中剪最大的圆,圆的直径等于正方形的边长。
圆的周长公式C=π d,这里d = 10分米,所以周长C = 3.14×10=31.4分米。
5. 12÷()=(())/(25)=0.6=(())/(())(填最简分数)解析:因为12÷() = 0.6,所以括号里的数为12÷0.6 = 20;0.6=(6)/(10)=(3)/(5),(())/(25)=0.6,括号里的数为0.6×25 = 15。
6. 把(1)/(7)化成小数后,小数点后第2024位上的数字是()。
解析:(1)/(7)=0.1̇42857̇,循环节是142857,共6位数字。
小学六年级数学竞赛试题附答案

1 小学六年级数学竞赛试题一、选择题。
(毎小题10分)以下毎题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在毎题的圆括号内。
1.科技小组演示自制机器人,若机器人从点A 向南行走1.2米,再向东行走1米,接着又向南行走1.8米,再向东行走2米,最后又向南行走1米到达B 点,则B 点与A 点的距离是( )米。
(A )3 (B )4 (C )5 (D )72.将等边三角形纸片按图1所示的步骤折3次(图1中的虚线是三边中点的边线),然后沿两边中点的边线剪去一角(图2)。
将剩下的纸展开、铺平,得到的图形是()。
(A )(B)(C ) (D )3.将一个长和宽分别是是1833厘米和423厘米的长方形分割成若干修正在方形,则正方形最少是( )个。
(A )78 (B )7 (C )5 (D )64.已知图3是一个轴对称图形,若将图中某些黑色的图形去掉后,得到一些新的图形,则其中轴对称图形共有( )个。
(A )9 (B )8 (C )7 (D )6 图35.若a=1515…15×333…3,则整数a 的所有位数上的数字和等于( )。
1004个5 2008个3(A )18063 (B )18072 (C )18079 (D )180546.若a=2008200720062005⨯⨯,b=2009200820072006⨯⨯,c=2010200920082007⨯⨯,则有( )。
(A )a>b>c (B )a>c>b (C )a<c<b (D )a<b<c二、填空题。
(毎小题10分,满分40分。
第10题每空5分)7.如图4所示,甲车从A ,乙车从B 同时相向而行,两车第一次相遇后,甲车继续行驶4小时到达B ,而乙车只行驶了1小时就到达A ,甲乙两车的速度比为 。
图1 图2 甲车乙车 A B图42 8.华杯赛网址是 ,将其中的字母组成如下算式:www+hua+bei+sai+cn=2008.如果每个字母分别代表0~9这十个数字是的一个,相同的字母代表相同的数字,不同的字母代表不同的数字,并且w=8,h=6,a=9,c=7,则三位数bei 的最小值是 。
小学六年级数学竞赛试题及详细答案

小学六年级数学竞赛试题及详细答案一、计算下面各题,并写出简要的运算过程(共15分,每小题5分)二、填空题(共40分,每小题5分)1.在下面的“□”中填上合适的运算符号,使等式成立:(1□9□9□2)×(1□9□9□2)×(19□9□2)=19922.一个等腰梯形有三条边的长分别是55厘米、25厘米、15厘米,并且它的下底是最长的一条边。
那么,这个等腰梯形的周长是_ 厘米。
3.一排长椅共有90个座位,其中一些座位已经有人就座了。
这时,又来了一个人要坐在这排长椅上,有趣的是,他无论坐在哪个座位上都与已经就座的某个人相邻。
原来至少有_ _人已经就座。
4.用某自然数a去除1992,得到商是46,余数是r。
a=_ _,r=_ _。
5.“重阳节”那天,延龄茶社来了25位老人品茶。
他们的年龄恰好是25个连续自然数,两年以后,这25位老人的年龄之和正好是2000。
其中年龄最大的老人今年_ ___岁。
6.学校买来历史、文艺、科普三种图书若干本,每个学生从中任意借两本。
那么,至少__ __个学生中一定有两人所借的图书属于同一种。
7.五名选手在一次数学竞赛中共得404分,每人得分互不相等,并且其中得分最高的选手得90分。
那么得分最少的选手至少得__ __分,至多得__ __分。
(每位选手的得分都是整数)8.要把1米长的优质铜管锯成长38毫米和长90毫米两种规格的小铜管,每锯一次都要损耗1毫米铜管。
那么,只有当锯得的38毫米的铜管为__ __段、90毫米的铜管为_ ___段时,所损耗的铜管才能最少。
三、解答下面的应用题(要写出列式解答过程。
列式时,可以分步列式,可以列综合算式,也可以列方程)(共20分,每小题5分)1.甲乙两个工程队共同修筑一段长4200米的公路,乙工程队每天比甲工程队多修100米。
现由甲工程队先修3天。
余下的路段由甲、乙两队合修,正好花6天时间修完。
问:甲、乙两个工程队每天各修路多少米?2.一个人从县城骑车去乡办厂。
小学六年级数学竞赛计算专题试卷(含答案)1

小学六年级数学竞赛计算专题试卷(含答案)1 学校:___________姓名:___________班级:___________考号:___________一、选择题1.平均每小时有36至45人乘坐游览车,那么3小时中有人乘坐游览车。
A.少于100 B.100与150之间C.150与200之间D.200与250之间2.小马虎做一道减法题,把减数75看成了57,结果算出的差比正确的差()。
A.多18 B.少18 C.无法比较3.4784×5589=()A.56786 B.26737776 C.256476674.小明在做连续自然数1、2、3、4、5、…求和时,把其中一个数多加了一次,结果和为149,那么多加的这个数是()A.13 B.14 C.15 D.165.已知a※b=a×6+b×2,那么6※5=( )。
A.46 B.42 C.306.用循环小数表示7.1÷11的商是()。
A.B.C.D.7.下面各数中,()是最大的。
A.9.171 B.9.171 (171是循环节)C.9.171 (71是循环节)8.11a0.5b c25%d35+=+=+=+,a、b、c、d中最大的是( )A.a B.b C.c D.d 9.下面哪一行和其他三行不一样?()A.3,5,6,7B.3,4,6,7C.0,2,4,6D.7,5,3,4二、填空题10.已知10101010123 (11)100101102110A=++++,则A的整数部分是____。
11.小东在计算除法时,把除数87写成78,结果得到的商是54,余数是8.正确的商是_____,余数是_____.12.小马虎在计算4.26加上一个一位小数的时候,由于错误地把加数的末尾对齐,结果得到4.78,这个一位小数是_____,这道题的正确的结果是_____.13.一本故事书共29页,那么最中间的一页是第________ 页.14.定义一种新运算:3△2=3+33=36,5△4=5+55+555+5555=6170,那么7△6的结果是(_______)。
小学六年级数学竞赛考试试题

小学六年级数学竞赛试题一、计算下面各题,并写出简要的运算过程(共15分,每小题5分)二、填空题(共40分,每小题5分)1.在下面的“□”中填上合适的运算符号,使等式成立:(1□9□9□2)×(1□9□9□2)×(19□9□2)=19922.一个等腰梯形有三条边的长分别是55厘米、25厘米、15厘米,并且它的下底是最长的一条边。
那么,这个等腰梯形的周长是_ _厘米。
3.一排长椅共有90个座位,其中一些座位已经有人就座了。
这时,又来了一个人要坐在这排长椅上,有趣的是,他无论坐在哪个座位上都与已经就座的某个人相邻。
原来至少有_ _人已经就座。
4.用某自然数a去除1992,得到商是46,余数是r。
a=_ _,r=_ _。
5.“重阳节”那天,延龄茶社来了25位老人品茶。
他们的年龄恰好是25个连续自然数,两年以后,这25位老人的年龄之和正好是2000。
其中年龄最大的老人今年_ ___岁。
6.学校买来历史、文艺、科普三种图书若干本,每个学生从中任意借两本。
那么,至少__ __个学生中一定有两人所借的图书属于同一种。
7.五名选手在一次数学竞赛中共得404分,每人得分互不相等,并且其中得分最高的选手得90分。
那么得分最少的选手至少得__ __分,至多得 __ __分。
(每位选手的得分都是整数)8.要把1米长的优质铜管锯成长38毫米和长90毫米两种规格的小铜管,每锯一次都要损耗1毫米铜管。
那么,只有当锯得的38毫米的铜管为__ __段、90毫米的铜管为_ ___段时,所损耗的铜管才能最少。
三、解答下面的应用题(要写出列式解答过程。
列式时,可以分步列式,可以列综合算式,也可以列方程)(共20分,每小题5分)1.甲乙两个工程队共同修筑一段长4200米的公路,乙工程队每天比甲工程队多修100米。
现由甲工程队先修3天。
余下的路段由甲、乙两队合修,正好花6天时间修完。
问:甲、乙两个工程队每天各修路多少米?2.一个人从县城骑车去乡办厂。