FSK调制解调系统(DOC)

合集下载

FSK-调制与解调-通信报告

FSK-调制与解调-通信报告

实验九FSK调制解调原理实验一、实验目的1、掌握FSK调制的工作原理及电路组成;2、掌握锁相解调FSK的原理和实现方法。

二、实验电路工作原理32K选频输出时钟图9-1 FSK调制解调电原理框图数字频率调制是数据通信中使用较早的一种通信方式。

由于这种调制解调方式容易实现,抗噪声和抗群时延性能较强,因此在无线中低速数据传输通信系统中得到了较为广泛的应用。

数字调频又可称作移频键控(FSK),它是利用载频频率变化来传递数字信息。

(一)FSK调制电路工作原理FSK调制解调电原理框图,如图9-1所示;图9-2是它的调制电路电原理图。

输入的基带信号分成两路,一路控制f1=64KHz的载频,另一路经倒相去控制f2=128KHz的载频。

当基带信号为“1”时,模拟开关1打开,模拟开关2关闭,此时输出f1=64KHz,当基带信号为“0”时,模拟开关1关闭,模拟开关2开通。

此时输出f2=128KHz,于是可在输出端得到已调的FSK信号。

图9-2 FSK调制电路电原理图图9-3 FSK解调电路电原理图(二)FSK 解调电路工作原理FSK 集成电路模拟锁相环解调器由于性能优越,价格低廉,体积小,所以得到了越来越广泛的应用。

解调电路电原理图如图9-3所示。

FSK 集成电路模拟锁相环解调器的工作原理是十分简单的,只要在设计锁相环时,使它锁定在FSK 的一个载频如f1上,对应输出高电平,而对另一载频f2失锁,对应输出低电平,那末在锁相环路滤波器输出端就可以得到解调的基带信号序列。

FSK 锁相环解调器中的集成锁相环选用了HEF4046。

压控振荡器的中心频率设计在128KHz 。

其参数选择要满足环路性能指标的要求。

从要求环路能快速捕捉、迅速锁定来看,低通滤波器的通带要宽些;从提高环路的跟踪特性来看,低通滤波器的通带又要窄些。

因此电路设计应在满足捕捉时间前提下,尽量减小环路低通滤波器的带宽。

当输入信号为64KHz 时,环路失锁。

此时环路对64KHz 载频的跟踪破坏。

FSK调制解调实验报告

FSK调制解调实验报告

FSK调制解调实验报告实验报告:FSK调制解调引言:FSK (Frequency Shift Keying)调制解调是一种将数字信号转换为模拟信号的调制技术,通过改变信号的频率来表示数字信息。

FSK调制解调器在通信系统中起着重要的作用,因此,理解FSK调制解调原理并进行实验验证是非常有意义的。

实验目的:1.理解FSK调制解调原理。

2.使用软件(如MATLAB)进行FSK调制解调仿真。

3.通过硬件电路搭建进行FSK调制解调实验。

实验原理:FSK解调:FSK解调器将接收到的数字信号转换为模拟信号,并检测信号的频率以恢复原始的二进制序列。

解调器通过比较两个频率的能量来确定输入信号的频率,然后根据已知的频率对照表将其转换为对应的二进制数字。

实验步骤:1.使用软件(如MATLAB)进行FSK调制仿真:a.设计一个数据源,例如一个随机生成的二进制序列。

b.将二进制序列转换为FSK调制信号,即将0转换为低频率信号,将1转换为高频率信号。

c.添加噪声以模拟真实通信环境。

d.绘制调制后的信号波形。

2.使用软件进行FSK解调仿真:a.使用接收到的调制信号作为输入信号。

b.设计一个解调器来检测信号的频率以恢复原始的二进制序列。

c.绘制解调后的信号波形,并与原始信号进行比较。

3.使用硬件电路进行FSK调制解调测试:a.搭建FSK调制电路,将输入的二进制序列转换为FSK信号。

b.使用示波器观察调制后的信号波形。

c.搭建FSK解调电路,将接收到的调制信号转换为原始的二进制序列。

d.使用示波器观察解调后的信号波形,并与原始信号进行比较。

实验结果与分析:通过软件仿真可以得到调制后的信号波形,并通过解调获得原始的二进制序列。

这些结果可以与原始输入信号进行比较,以验证FSK调制解调的准确性。

通过硬件电路测试,可以观察到调制后的信号波形以及解调后的信号波形,进一步验证了FSK调制解调的可行性。

结论:通过FSK调制解调实验,我们可以更好地理解FSK调制解调的原理,并通过软件仿真和硬件搭建实验来验证其可行性。

FSK调制与解调系统设计

FSK调制与解调系统设计

FSK调制与解调系统设计FSK(Frequency Shift Keying)调制与解调是一种基于频率变化的调制解调技术,广泛应用于无线通信和数据传输系统中。

本文将介绍FSK调制与解调的基本原理和系统设计要点。

1.原理介绍FSK调制是通过改变载波信号的频率来表示数字信号的不同状态。

典型的FSK调制方案有两种:二进制FSK(BFSK)和多级FSK(MFSK)。

在BFSK中,不同的数字0和1被分配给两个不同的频率值,例如0代表低频,1代表高频;在MFSK中,n个数字状态被分配给n个不同的频率值。

随着数字信号的变化,调制后的信号频率也相应变化,从而传输了数字信号的信息。

FSK解调是指将接收到的FSK信号恢复为数字信号的过程。

解调器通过检测信号的频率来确定数字信号的值。

具体过程如下:首先,对接收到的FSK信号进行低通滤波,以去除高频成分。

然后,利用频率判决电路来判断接收到的信号频率,根据预设的频率判决阈值将频率转换为数字信号。

2.系统设计要点(1)选取合适的载波频率:在FSK调制中,载波频率的选择非常重要。

应根据传输环境和要求合理选择载波频率,以确保信号传输的稳定性和可靠性。

(2)设计合理的调制解调电路:调制电路应具有良好的线性特性和较宽的动态范围,以实现准确的调制。

解调电路应具有良好的低通滤波功能和稳定的频率判决电路,以实现准确的解调。

(3)抗噪声设计:在FSK调制解调系统设计中,抗噪声能力是非常关键的。

通过增加前端的信号增益、抑制杂散信号和加入错误检测纠错码等方法,可以提高系统的抗噪声性能。

(4)设计适当的调制解调参数:调制解调参数的选择对系统性能有重要影响。

例如,在BFSK调制中,频率偏移量和数据速率的选择应综合考虑传输距离、噪声干扰和系统复杂度等因素。

(5)误码率性能分析:在系统设计完成后,应进行误码率性能分析,通过误码率曲线来评估系统的可靠性和性能。

总结:。

实验四 FSK调制与解调

实验四  FSK调制与解调

FSK 调制解调一、实验目的1. 掌握FSK 调制器的工作原理及性能测试;2. 学习基于软件无线电技术实现FSK 调制、解调的实现方法。

二、 实验仪器1. RZ9681实验平台 2. 实验模块: ● 主控模块● 基带信号产生与码型变换模块-A2 ● 信道编码与频带调制模块-A4 ● 纠错译码与频带解调模块-A5 3. 信号连接线 4. 100M 四通道示波器三、实验原理3.1 FSK 调制电路工作原理2FSK (二进制频移键控,Frequency Shift Keying )信号是用载波频率的变化来传递数字信息,被调载波的频率随二进制序列0、1状态而变化。

2FSK 信号的产生方法主要有两种:一种采用模拟调频电路来实现;另一种采用键控法来实现,即在二进制基带矩形脉冲序列的控制下通过开关电路对两个不同的独立频率源进行选通,使其在每一个码元期间输出0f 或1f 两个载波之一。

FSK 调制和ASK 调制比较相似,只是把ASK 没有载波的一路修改为了不同频率的载波,如下图所示。

图3.3.2.1 FSK 调制电路原理框图上图中,将基带时钟和基带数据通过两个铆孔输入到可编程逻辑器件中,由可编程逻辑器件根据设置的工作模式,完成FSK 的调制,因为可编程逻辑器件为纯数字运算器件,因此调制后输出需要经过D/A 器件,完成数字到模拟的转换,然后经过模拟电路对信号进行调整输出,加入射随器,便完成了整个调制系统。

-A图3.3.2.2 2FSK 调制信号波形示意图在二进制频移键控中,幅度恒定不变的载波信号的频率随着输入码流的变化而切换(称为高音和低音,代表二进制的1和0)。

通常,FSK 信号的 表达式为:bc bbFSK T t t f f T E S ≤≤∆+=0)22cos(2ππ(二进制1)bc bbFSK T t t f f T E S ≤≤∆-=0)22cos(2ππ(二进制0)其中Δf 代表信号载波的恒定偏移。

FSK调制与解调系统的仿真与分析

FSK调制与解调系统的仿真与分析

FSK调制与解调系统的仿真与分析
FSK(Frequency Shift Keying,频率移键)调制与解调系统是一种常用的数字调制与解调技术,用于将数字信号转换为调制信号,并通过解调器还原出原始信号。

FSK调制与解调系统在无线通信、数据传输等领域具有广泛的应用。

在进行FSK调制与解调系统的仿真与分析时,可以采用MATLAB等软件工具进行模拟实验。

首先,在进行FSK调制时,需要设置载波频率和比特率,并生成数字信息序列。

然后,根据数字信息序列和载波频率,生成对应的调制信号。

调制信号可以通过频谱分析等方法进行分析和评估。

在进行FSK解调时,可以通过对接收到的调制信号进行采样,并使用FFT等方法进行频谱分析,以判断接收到的信号所对应的频率。

接下来,根据接收信号的频率和预先设定的比特率,还原出原始的数字信息序列。

通过比对原始和解调后的数字信息序列,可以评估解调的准确性和误码率等性能指标。

在FSK调制与解调系统的仿真与分析中,需要考虑到多种因素,如信噪比、调制索引、窗函数的选择等。

通过改变这些参数,可以评估FSK系统在不同条件下的性能表现,从而优化系统设计和参数选择。

总之,FSK调制与解调系统的仿真与分析是研究和优化数字调制技术的关键环节,通过合理的模拟实验和性能评估,可以提高FSK系统的可靠性和性能,并应用到实际的通信和数据传输中。

FSK调制解调原理

FSK调制解调原理

FSK调制解调原理FSK调制解调是一种常用于数字通信系统中的调制解调方式。

FSK是频移键控调制(Frequency Shift Keying)的简称,它将数字信号转换为离散的频率信号进行传输。

本文将从调制原理、解调原理以及应用等方面进行详细介绍。

一、调制原理对于二进制数字信号,例如“0”和“1”,可以选择两个固定频率的载波信号,分别代表“0”和“1”。

当发送“0”时,使用频率为f1的载波信号,当发送“1”时,使用频率为f2的载波信号。

这样就可以将数字信号转换成两个离散的频率信号进行传输。

二、解调原理FSK解调原理是对接收到的频率信号进行频率判决,将频率转换为数字信号。

常用的解调方法有非相干解调、相干解调和差分相干解调。

1.非相干解调:非相干解调是最简单的解调方法之一,它直接对接收到的信号进行频率测量。

通过比较测量的频率与预定的频率值进行判决,将频率转换成二进制数字信号。

非相干解调简单易于实现,但对信噪比要求较高,容易受到噪声的影响。

2.相干解调:相干解调是一种通过与本地振荡器进行相干性检测的解调方法。

接收到的信号与本地振荡器产生的相干信号进行混频,通过相干滤波器将混频后的信号进行滤波。

相干解调能够提高抗噪性能,但需要本地振荡器与信号的频率一致。

3.差分相干解调:差分相干解调是相干解调的一种改进方法。

它通过将相邻两个相干解调器输出的数字信号进行差分运算,得到差分输入的数字信号。

差分相干解调具有较好的抗噪性能,适用于高噪声环境下的解调。

三、应用1.数字通信系统:FSK调制解调可以用于数字通信系统中,通过频率的变化将数字信号进行传输。

例如,调制解调器、调频广播等。

2.数据传输:FSK调制解调可以用于数据传输中,例如网络通信、无线通信等。

通过不同的频率进行传输,实现数据的传输和接收。

3. RFID技术:FSK调制解调在RFID(Radio Frequency Identification)技术中得到广泛应用。

移频键控FSK调制与解调实验

移频键控FSK调制与解调实验

移频键控FSK调制与解调实验简介移频键控频移键控 (FSK) 是数字通信中一种重要的调制方式,它将数字信息信号调制成由两种不同频率的正弦波组成的高频信号,其中一个频率表示二进制 0,另一个频率则表示二进制 1,然后将这个高频信号传输到接收端,通过解调还原出原始数据。

FSK 可以用于无线电、音频甚至光学信号的传输。

在本文档中,将介绍如何进行移频键控 FSK 调制与解调的实验,通过实验理解FSK 调制与解调原理,并掌握 FSK 信号的产生、发送和解调过程。

实验步骤步骤1:准备工作首先,需要准备一台 FSK 调制解调器和一台示波器,并连接起来。

电源供应和示波器探针的连接应当正确无误。

步骤2:FSK 调制信号产生在第一阶段,需要产生一个双音调信号,即表示二进制 0 和 1 的两种频率。

在此实验中,我们选择使用两个正弦波。

这两个频率theta1 和theta2 需要合理选择,可以根据具体实验需要而定。

在产生双音调信号的输出端,通过移频键控 FSK 调制模块进行调制。

由于移频键控 FSK 调制方案较简单,因此可以使用简单通用的运算放大器组成移频键控 FSK 调制电路。

步骤3:传送 FSK 调制信号通过 FSK 调制的信号输出端,将信号输入到示波器中进行观测,用示波器观测检验 FSK 调制信号的准确性。

步骤4:接收 FSK 调制信号并解调使用 FSK 解调器,并将 FSK 调制信号输入演示信号输入端,将解调信号传输至演示信号输出端,观察解调的准确性。

步骤5:验证解调正确性将演示信号输出端与示波器探针连接,观察解调的准确性。

通过移频键控 FSK 调制与解调的实验,我们深入理解了 FSK 调制与解调原理,并掌握了 FSK 信号的产生、发送和解调过程。

通过本次实验,我们巩固了数字通信学习的基础,为进一步的深入研究奠定了坚实的基础。

通信报告-FSK调制解调

通信报告-FSK调制解调

实验五.FSK传输系统实验121180165赵博睿一.实验内容(一)FSK调制1.将KP03放置在FSK端。

2.测量FSK系统输入码元传输速率。

TPM01为发送码元传输时钟,记为f b。

3.FSK传号频率和空号频率测量KG01放在测试数据,KG02[3:1]=100(1代表跳线插入,0代表跳线拔出),此时FSK调制的输入数据为一周期较长的随机码流,以FSK输入数据TPM02为同步,观察FSK输出波形TPi3。

用光标测量传号频率,记为f1;空号频率,记为f2。

比较f b,f1,f2之间的关系。

计算FSK的中心频率f0,Δf,带宽。

示波器操作技巧:按下水平菜单按钮,选择:“Set Trigger Holdoff”,选择旋钮,可以使波形动态稳定。

4.发端同相支路和正交支路信号的李沙育(x-y)波形观测将示波器设置在(x-y)方式,可从相平面上观察TPi03和TPi04的正交性,其李沙育应为一个圆。

5.正交调制输出信号观察示波器测量TPK03波形,以TPM02为同步。

观察TPK03的包络情况。

正交调制频率频率幅度幅度幅度频率一般调制基带频谱中频频谱带通滤波器6. FSK 调制信号频谱观测利用示波器的FFT 功能查看频谱。

用波器测量中频调制信号(TPK03)。

先将示波器调到125kHz/div ,选择hanning 窗,然后将频谱扩展10倍,旋转水平位移旋钮,观察1.024MHz 频率点附近波形。

先把KG02跳线全部拔除,则FSK 调制输入数据为全1码,观测FSK 信号频谱。

再将KG02[3:1]=100,观测并记录FSK 信号频谱。

注意标明特殊点的频率值和幅值,与步骤2中计算的带宽作比较。

(二)FSK 解调1. 解调基带FSK 信号观测首先用中频电缆连结KO02和JL02(接收端)。

测量FSK 解调基带信号测试点TPJ05的波形,观测时仍用发送数据(TPM02)作同步,比较其两者的对应关系。

(1) 全部拔除KG02跳线,则FSK 调制输入数据为全1码,观察时域和频域波形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程设计说明书课程设计名称:通信专业课程设计课程设计题目: FSK调制解调系统学院名称:信息工程学院专业:班级:学号:姓名:评分:教师:20 13 年 7 月 1 日专业 课程设计任务书20 12-20 13 学年 第 2 学期 第 17 周- 19 周 注:1、此表一组一表二份,课程设计小组组长一份;任课教师授课时自带一份备查。

2、课程设计结束后与“课程设计小结”、“学生成绩单”一并交院教务存档。

题目 FSK 调制解调系统内容及要求1.用分立元件实现相位不连续的2FSK 信号的调制; 2. 提高要求:用锁相环完成2FSK 信号的解调。

门1门2倒相+2FSK 信号调制PD LPFVCO2FSK 信号解调进度安排17周:查找资料,进行系统软件方案设计; 18周:软件的分模块调试;19周:系统联调;设计结果验收,报告初稿的撰写。

学生姓名:指导时间:每周一、二、三、四指导地点:E 楼 610室任务下达 20 13年 6月 17 日任务完成20 13年 7月 5 日考核方式 1.评阅 □ 2.答辩 □ 3.实际操作□ 4.其它□ 指导教师系(部)主任摘要本课程设计主要运用Multisim仿真软件,设计并进行2FSK的调制与解调系统仿真。

在本次课程设计中先根据2FSK调制与解调原理构建调制解调电路,从Multisim工具箱中找出所需各元件,合理设置好参数并运行,用示波器的仿真图形判断2FSK的调制解调系统仿真是否成功。

利用分立元件,将不同频率的方波信号经过振荡器产生正弦波信号,并输入到CD4066模拟开关。

利用1KHz载波信号去控制模拟开关,输出相位不一定连续,频率不同的正弦波信号,从而实现利用基带信号选择不同频率的信号。

关键词:Multisim,2FSK ,调制,解调,模拟开关目录前言 (1)第一章、课程设计及内容 (1)1.1设计任务及主要技术和要求 (1)1.2内容和要求 (1)1.3目的意义 (1)第二章、基本原理 (2)2.1 2FSK信号的调制原理 (3)2.2 2FSK信号的解调原理 (4)第三章、单元电路设计原理及分析 (5)3.1调制单元 (5)3.1.1模拟开关电路 (6)3.1.2振荡电路 (6)3.1.3 2FSK调制电路的整体电路图 (7)第四章、仿真结果 (8)第五章、总结 (10)参考文献 (11)附件1元器件清单 (12)附件2整体仿真电路图 (13)附件3实物图 (14)附件4 PCB封装图 (15)前言数字调频又称移频键控,它是用不同的载波来传送数字信号的。

FSK信号的产生有两种方法:直接调频法和频率键控法。

2FSK信号的产生可利用一个矩形脉冲序列对一个载波进行调频而获得。

这正是频率键控通信方式早期采用的实现方法,也是利用模拟调频法实现数字调频的方法。

2FSK信号的另一产生方法便是采用键控法,即利用受矩形脉冲序列控制的开关电路对两个不同的独立频率源进行选择。

2FSK是利用载频频率变化来传输数字信息。

数字载频信号又可分为相位离散和相位连续两种情形。

若两个振荡频率分别由不同的独立振荡器提供,它们之间的相位互不相关,这就叫相位离散的数字调频信号;若两个振荡频率由同一振荡信号源提供,是对其中一个载频进行分频,这样产生的两个载波就是相位连续的数字调频信号。

在实际通信系统中,大部分信道不能直接传输基带信号,必须用基带信号对载波波形的参量进行控制,使载波的这些参量随基带信号的变化而变化,即以正弦波作为载波的数字调制系统。

和模拟调制一样,数字调制也有调幅、调频和调相三种基本形式。

调频信号即2FSK信号是数字通信系统使用较早的一种通信方式,由于这种通信方式容易实现,抗噪声和抗衰减性能较强,因此在低速数据传输通信系统中得到了较为广泛的应用。

键控法产生的FSK信号频率稳定度高,并且没有过渡频率,它的转换速度快、波形好。

所以本课设电路利用移频键控法,由函数信号发生器产生两个不同的载波,即为相位不一定连续的数字调频信号,由基带信号对不同频率的载波信号进行选择。

第一章、课程设计及内容1.1设计任务及主要技术和要求(1)根据2FSK的特点,信号源输入以及对应的频率;(2)了解2FSK信号调制;(3)解调器用PLL;1.2内容和要求要求掌握单元电路:正弦振荡器,调制、解调器,VCO掌握调制、解调的基本原理,通过实际方案的分析比较,初步掌握简单实用路的分析方法和工程设计方法。

了解与课程有关的电子电路以及元器件工程技术规范,能按课程设计任务书的技术要求,编写设计说明书,能正确反映设计和实验成果,能正确绘制电路图。

1.3目的意义通过课程设计,使学生加强对高频电子技术电路的理解,学会查询资料,方案比较,以及设计计算等环节。

进一步提高分析解决实际问题的能力,创造一个动手动脑、独立开展实验的机会,锻炼分析,解决高频电子电路问题的实际本领,真正实现由课本知识向实际能力的转化,通过典型电路的设计与制作,加深对基本原理的了解,增强学生的实践能力。

第二章、基本原理2FSK信号波形图如2-1图所示,它是由调制信号去控制载波信号,用载波的频率来传递数字信息,即用所传递的数字消息控制载波的频率。

图2.1 2FSK信号波形图2.1 2FSK信号的调制原理FSK信号的产生有两种方法:直接调频法和频移键控法。

直接调频法是数字基带信号直接奇偶内阁制载波振荡器的振荡频率。

虽然方法简单,但频率稳定度不高,同时转移速度不能太高。

频移键控法有两个独立的振荡器。

数字基带信号控制开关,选择不同频率的高频振荡信号,从而产生FSK调制。

(c)相位连续 (d)相位不连续图2.2 2FSK信号调制方法本设计采用键控法产生2FSK信号,即用一个受基带脉冲控制的开关电路去选择两个独立频率源的振荡作为输出,如图2.3:图2.3 键控法产生2FSK信号原理框图图2.4 频移键控法产生波形移频键控是利用载波的频率变化来传递数字信息,而且振幅不变。

在2FSK中,载波的频率随二进制基带信号的频率在f1、f2两个频点之间变化。

此次课程设计采用开关法产生2FSK信号,则分别由两个独立的频率源产生的信号,故相邻码的相位不一定是连续的,如图2.4。

2.2 2FSK 信号的解调原理2FSK 信号的解调方法有:非相干解调法、相干解调法、鉴频法、过零检测法等。

锁相环路的输出信号频率可以精确地跟踪输入参考信号频率的变化,环路锁定后输入参考信号和输出参考信号之间的稳态相位误差可以通过增加环路增益被控制在所需数值范围内。

这种输出信号频率随输入参考信号频率变化的特性称为锁相环的跟踪特性.利用此特性可以做载波跟踪型锁相环及调制跟踪型锁相环。

为了实现信息的远距离传输,收信端接收到信号后必须进行解调才能恢复出原信号。

所谓的解调就是用携带信息的输出信号,来还原载波信号的参数,载波信号的参数有幅度、频率和位相。

所以,解调有调幅(AM )、调频(FM )和调相(PM )三种。

调幅波的特点是频率与载波信号的频率相等,幅度随输入信号幅度的变化而变化;调频波的特点是幅度与载波信号的幅度相等,频率随输入信号幅度的变化而变化;调相波的特点是幅度与载波信号的幅度相等,相位随输入信号幅度的变化而变化。

调频波(经过放大器放大后)与压控振荡器的输出被送入鉴相器,经鉴相器获得变化的相位误差的电压,该误差电压通过低通滤波器被滤出高频成份,从而获得随调制信号频率变化而变化的解调信号,从而实现了解调(鉴频)过程。

其原理框图如图3.图2.5 锁相环解调低通 滤波器鉴相器压控 振荡器调频、调幅信号 解调信号第三章、单元电路设计原理及分析要将NRZ码经过2FSK调制成为2FSK信号,我们采用一个受基带脉冲控制的开关电路去选择两个独立的频率源作为输出。

键控法产生的FSK信频率稳定度可以做得很高并且没有过度频率,它的转换速度快,波形好。

3.1调制单元3.1.1模拟开关电路输入的基带信号由转换开关分成两路,一路控制f1=32KHz的载频,另一路经倒相去控制f2=16KHz的载频。

当基带信号为“1”时,模拟开关1打开,模拟开关2关闭,此时输出f1=32KHz。

当基带信号为“0”时,模拟开关2开通,此时输出f2=16KHz。

于是可在输出端得到2FSK的已调信号。

图3.1 模拟开关电路4066芯片调制电路利用模拟开关CD4066实现输入基波信号控制模拟开关的通断,通过模拟开关把不同频率的载波叠加在一起,实现载波信号控制输入不同频率的信号,从而实现调制。

13脚输入1KHz的方波信号去控制开关,1脚和2脚分别接入输入信号和输出信号。

当13脚输入的是低电平时,输入信号能通过,反之为高电平时,不能通过。

3.1.2振荡电路图3.2 振荡电路在两路震荡电路中,分别输入32KHz,16KHz的方波信号经过三极管放大电路和LC震荡电路产生32KHz,16KHz正玄波。

两路载频分别经发射极、LC选频、发射极再送至模拟开关。

LC选频电路函数:LC=fπ213.1.3 2FSK调制电路的整体电路图图3.3 2FSK调制电路的整体电路图32KHz和16KHz的方波信号分别从电容C1、C5接入,经过振荡器模块中的三极管放大和LC电路产生正玄波信号,之后将产生的正玄波信号分别输入到模拟开关CD4066中,在CD4066另一端输入一个1KHz的基频方波信号,另一路将1KHz的基频方波信号经过反相器74LS04N方向以后的方波信号输入到CD4066的6脚和13脚去控制两路开关,从而实现控制低电平和高电平分别输出不同频率的正玄波信号。

第四章、仿真结果图4.1 Multisim仿真结果如图4.1仿真结果,通过示波器检测原理图中元件CD4066BD-10VS1引脚的输出频率以及波形。

当1KHz的基频方波信号为高电平时,S1端口输出32KHz的正玄波信号,当1KHz的基带信号为低电平时,S1端口输出16KHz的正玄波信号。

图4.2 32KHz输入端口仿真结果如同4.2仿真结果输入,通过示波器检测原理图中元件CD4066BD-10V S3引脚的输出频率以及波形,由分立元件将方波产生的32KHz的正玄波信号,输入S2端口。

图4.3 16KHz 输入端口的仿真结果如同4.3仿真结果输入,通过示波器检测原理图中元件CD4066BD-10V D4引脚的输出频率以及波形,由分立元件将方波产生的16KHz 的正玄波信号,输入D4端口。

图4.4 32KHz 输入端口的频率 图4.5 32KHz 输入模拟开关的频率图4.6 16KHz 输入端口的频率 图4.7 16KHz 输入模拟开关的频率第五章、总结本次课程设计题目是二进制频移键控(2FSK)调制电路的设计,开始时在网上和图书馆查找相关的资料和书籍。

之后翻阅资料了解2FSK的基本工作原理和框架结构,利用Multisim仿真软件设计电路图,修改不同元件的参数。

相关文档
最新文档