金融数学的历史回顾

合集下载

从数理经济学到数理金融学的百年回顾

从数理经济学到数理金融学的百年回顾
百年回顾 5

但是上述“数学论证”在数学上是 站不住脚的。这是因为如果方程组不是 线性的,那么方程组中的方程个数与方 程是否有解就没有什么直接关系。 这样,从数学的角度来看,长期来, 瓦尔拉斯的一般经济均衡体系始终没有 坚实的基础。这个问题经过数学家和经 济学家们 80 年的努力,才得以解决。
百年回顾 23

然后,利用每一时刻都可通过股票 和期权的适当组合对冲风险,使得该组 合变成无风险证券,从而就可得到期权 价格与股票价格之间的一个偏微分方程, 其中的参数是时间、期权的执行价格、 债券的利率和股票价格的“波动率”。 出人意料的是这一方程居然还有显式解。 于是布莱克-肖尔斯期权定价公式就这 样问世了。
百年回顾 17

夏普和另一些经济学家,则进一步 在一般经济均衡的框架下,假定所有投 资者都以马科维茨的准则来决策,而导 出全市场的证券组合的收益率是有效的 以及所谓资本资产定价模型 (Capital Asset Pricing Model, CAPM)。这一模 型认为,每种证券的收益率都只与市场 收益率有关。

百年回顾 16

对每一固定收益都求出其最小风险,那么 在风险-收益平面上,就可画出一条曲线,它 称为组合前沿。 马科维茨理论的基本结论是:在证券允许 卖空的条件下,组合前沿是一条双曲线的一支; 在证券不允许卖空的条件下,组合前沿是若干 段双曲线段的拼接。 组合前沿的上半部称为有效前沿。对于有 效前沿上的证券组合来说,不存在收益和风险 两方面都优于它的证券组合。
从数理经济学 到数理金融学 的百年回顾
一般经济均衡理论和数学公理化
百年回顾
2
一般经济均衡理论的创始人
1874 年 1 月, 法国经济学家瓦尔 拉斯 (L. Warlas, 1834~1910) 发表 了他的论文《交换 的数学理论原理》, 首次公开他的一般 经济均衡理论的主 要观点。 百年回顾

从数理经济学到数理金融学的百年回顾

从数理经济学到数理金融学的百年回顾
实证研究
数理经济学在实证研究方面对数理金融学产生了重要影响 ,提供了大量的实证数据和检验方法,帮助金融学家验证 和修正理论。
数理金融学对数理经济学的影响
金融市场实证研究
数理金融学对金融市场的实证研 究为数理经济学提供了新的研究 视角和方法,推动了经济学理论 的发展。
风险管理
数理金融学在风险管理方面的研 究为数理经济学提供了新的思路 和方法,例如风险中性定价和风 险度量。
市场效率的提高
数理金融学的方法有助于提高金融市场的效率,降 低信息不对称和交易成本,促进资本的有效配置。
风险管理的发展
数理金融学为风险管理提供了更精确和科学 的方法和技术,有助于金融机构和投资者更 好地管理风险。
对未来经济发展的影响
经济增长的持续
数理经济学和数理金融学的结合将继续推动经济增长和发展的研究 ,为未来经济发展提供更多有效的政策建议和发展路径。
人工智能与大数据
人工智能和大数据技术的应用将为数理经济学和数理金融学提供新 的研究方法和工具,推动相关领域的技术创新。
04
从数理经济学到数理 金融学的演变对现代 经济的影响
对现代经济学研究的影响
数学模型的应用
数理经济学和数理金融学的演变使得数学模型在经济学研 究中得到广泛应用,提高了经济分析的精确性和预测性。
02
这一时期数理经济学的研究领域不断扩大,开始涉及到微观经
济学、宏观经济学、国际经济学等各个方面。
数理经济学在20世纪的兴起得益于数学和计算机科学的进步,
03
为数理经济学家提供了更强大的分析工具。
数理经济学在现代的演变
现代数理经济学已经从单纯的理论研究扩展到实证研究,强调理论与实践 相结合。
数理经济学的研究方法也在不断演变,包括博弈论、动态规划、微分方程 等新的数学工具的应用。

金融工程与金融数学专业解析

金融工程与金融数学专业解析

金融工程(Financial Engineering)/金融数学(Mathematics of Finance)专业兴起于80年代末90年代初,是综合运用数学、统计学和计算机编程技术来解决金融问题的崭新领域。

金融工程学侧重于衍生金融产品的定价和实际运用,它最关心的是如何利用创新金融工具,来更有效地分配和再分配个体所面临的形形色色的经济风险,以优化它们的风险-收益特征。

在美国知名的高校中,Carnegie Mellon University的Master of Computational Finance开设于1994年,也一直被公认为是量化金融领域的Pioneering Program,常年在QuantNet上排名第一。

自从CMU开设这个项目以后,Financial Mathematics, Quantitative Finance, Mathematics of Finance, Financial Engineering等类似的专业也都陆续出现在Columbia, Chicago, Stanford, UC Berkeley, Cornell, JHU, Wustl, Michigan, NYU, GIT等名校的Graduate Program之中了。

而且像Princeton与MIT这两所名校的Master of Finance的项目,由于对数学、统计学以及计算机技能的高度重视,也使得这两个项目本身都有了金融数学、金融工程的印迹。

虽然这些项目在名称上有所不同,但实际学习的内容是相似的,主要包括数学、统计学、计算机编程、证券衍生物定价、风险分析、金融模型、金融信息分析和一些高级的金融理论等。

金融工程项目课程是极具职业导向的,目标是培养具有相当强的计算机和数学素质,同时具有管理和商务技巧的专业人士,使他们可以在投资银行、商业银行、对冲基金、保险公司、公司财务部门等,从事证券金融衍生产品估价,投资组合管理,风险管理和市场预测等工作。

浅谈金融数学的产生及发展-精选教育文档

浅谈金融数学的产生及发展-精选教育文档

浅谈金融数学的产生及发展一、概述金融数学,又称分析金融学、数理金融学、数学金融学,是20世纪80年代末、90年代初兴起的数学与金融学的交叉学科。

它的研究对象是金融市场上风险资产的交易,其目的是利用有效的数学工具揭示金融学的本质特征,从而达到对具有潜在风险的各种未定权益的合理定价和选择规避风险的最优策略。

它的历史最早可以追朔到1900 年,法国数学家巴歇里埃的博士论文“投机的理论”。

该文中,巴歇里埃首次使用Brown 运动来描述股票价格的变化,这为后来金融学的发展,特别是为现代期权定价理论奠定了理论基础。

不过他的工作并没有得到金融数学界的重视。

直到1952 年马科维茨的博士论文《投资组合选择》提出了均值――方差的模型,建立了证券投资组合理论,从此奠定了金融学的数学理论基础。

在马科维茨工作的基础上,1973年布莱克与斯科尔斯得到了著名的期权定价公式,并赢得了1997念得诺贝尔经济学奖。

它对于一个重要的实际问题提供了令人满意的答案,即为欧式看涨期权寻求公平的价格。

后两次发现推动了数学研究对金融的发展,逐渐形成了一门新兴的交叉学科,金融数学。

金融数学是在两次华尔街革命的基础上迅速发展起来的一门数学与金融学相交叉的前沿学科。

其核心内容就是研究不确定随机环境下的投资组合的最优选择理论和资产的定价理论。

套利、最优与均衡是金融数学的基本经济思想和三大基本概念。

在国际上,这门学科已经有50多年的发展历史,特别是近些年来,在许多专家、学者们的努力下,金融数学中的许多理论得以证明、模拟和完善。

金融数学的迅速发展,带动了现代金融市场中金融产品的快速创新,使得金融交易的范围和层次更加丰富和多样。

这门新兴的学科同样与我国金融改革和发展有紧密的联系,而且其在我国的发展前景不可限量。

二、金融数学的发展早在1990年,法国数学家巴歇里,在他的博士论文“投机的理论”中把股票描述为布朗运动。

这也是第一次给Brown运动以严格的数学描述。

金融数学的理论源泉

金融数学的理论源泉

金融数学理论源泉马克思认为“一种科学只有在成功运用了数学时,才算真正达到了完善的地步。

”这绝对不应该是一个被误解的信号:(金融)经济学家们正在不断地学习和运用更多更新的数学工具来探讨诸如利率结构、动态均衡和资本市场结构等金融学和经济学中一些深层问题。

我们简要回顾一下金融数学的理论源泉:首先是由牛顿和莱布尼兹创立的经典微积分理论,正如马克思高度评价的那样,它是人类思想史和科学史上的丰碑;随后泰勒、拉格朗日和柯西对它做了进一步的完善;其次是由凯莱(Cayley)创立的矩阵代数,它极大地方便了对多个变量的处理。

它们以及由它们引申出来的最优化方法已经构成了现代经济学理论的一个有机组成部分。

(主要指库恩-塔克(Kuhn-Tucher)理论,线性规划的但齐格(Dantzig)的单纯形法和贝尔曼(Bellman)的动态规划。

)概率论也是经济数学的一个部分,以随机现象数学规律为研究对象的概率论有着悠久的历史。

早在16、17世纪就有数学家认真地研究掷骰子赌博游戏中,出现的各种概率计算问题。

伯努利和拉普拉斯提出了大数定理,并创建了古典的概率理论。

1933年,柯尔莫格罗夫(Kolmogorov)继博雷尔(Borel)之后认识到概率论不过是测度论的一个特例,通过公理化,为现代概率理论奠定了坚实的数学基础,现代概率论和测度论紧密地结合在了一起。

由此我们离开了古典数学,来到了由勒贝格(Lebesgue)开启的20世纪数学分析的全新领域。

他在1902年出色地把由康托(Cantor)发展的集合论和由波瑞尔和乔丹创立的测度理论融合在一起,创立了测度积分(实分析)理论。

有了以上准备,我们可以着手研究现代金融数学的核心和金融经济学的主要数学工具——随机过程(stochastic process)理论。

从对布朗运动的早期研究到伊藤(Ito)对随机积分的新认识,一整套新的随机微积分原则确立起来;由杜布(Doob)开创并已被广泛应用的鞅(martingale)理论逐渐形成了现代随机过程一般理论的基础;而由亨特(Hunt)和邓肯(Dynkin)正式化的停时(stopping time)理论在20世纪90年代的微观金融学研究中占有日益重要的地位。

金融数学的历史回顾

金融数学的历史回顾

金融数学的历史回顾关于金融数学的起源最早可以追溯到1900年●法国天才Bachelier Louis在Einstein和Wiener(正式建立了Brown运动的数学模型1905年)之前1900年就已经认识了Wiener函数的一些重要性质,即扩散方程和)z<<,并在其博士论文The Theory of0(t(max zX分布)Speculation中首次给出了欧式买权的定价公式。

●1952年Harry M. Markowitz(1927-)(纽约市州立大学,1990年诺贝尔经济学奖获奖者之一)提出投资组合的选择(Portfolio selection)理论。

如果一个投资者为减少风险同时对多种股票进行投资,那么什么样的投资组合最好?均值方差最优投资组合模型。

●1958年Modigliani,F.(1985年诺贝尔经济学奖获奖者之一), Miller,M.H.(1923-2000)(芝加哥大学,1990年诺贝尔经济学奖获奖者之一)提出Modigliani-Miller定理(MMT),他断言,在一定的条件下,公司的市场价值只依赖于它的利润流,而于它的资本结构无关,即与债权与股权之间的比例无关;也于它的分红策略无关,即与债权者与股权者之间的利润分割无关。

William F. Sharpe(斯坦佛大学,1934-)资本资产定价理论模型(CAPM)。

Markowitz, Miller, Sharpe 获1990年诺贝尔经济学奖。

●1964年,Sprenkle提出了“股票价格服从对数正态分布”的基本假设,并肯定了股价发生随机漂移的可能性。

同年,Boness将货币时间价值的概念引入到期权定价过程,但他没有考虑期权和标的股票之间风险水平的差异。

●1965年,著名经济学家萨缪尔森(Samuelson)把上述成果统一在一个模型中。

1969年,他又与其研究生Merton合作,提出了把期权价格作为标的股票价格的函数的思想。

谈谈我对金融数学的认识

谈谈我对金融数学的认识

谈谈我对金融数学的认识金融数学是数学与金融学相结合的交叉学科,旨在利用数学工具来描述、建模和分析金融问题。

以下是本人对金融数学的认识,主要包括以下几个方面:一、金融数学概述金融数学是指运用数学方法来研究金融问题,其目的是寻找金融市场的规律和预测未来的趋势。

金融数学的研究范围广泛,包括投资组合优化、衍生品定价、风险管理等方面。

二、金融数学的发展历程金融数学的发展始于20世纪50年代,当时期权定价理论开始发展起来。

随后,越来越多的数学工具被应用于金融领域,如随机过程、随机微分方程等。

随着计算机技术的发展,金融数学在实践中得到了广泛应用,为投资银行、基金公司等金融机构提供了重要的支持。

三、金融数学基础知识金融数学的基础知识包括随机过程与布朗运动、随机积分与随机微分方程、金融市场的数学模型等。

这些知识是理解和分析金融市场的基础。

四、金融衍生品定价理论金融衍生品定价理论是金融数学的核心内容之一,包括欧式期权定价模型、美式期权定价模型和其他衍生品定价模型。

这些模型能够准确地预测衍生品的价值,为投资决策提供了重要的参考。

五、风险管理理论风险管理是金融数学的重要应用之一,包括衡量风险的方法、投资组合优化理论、VaR模型与风险管理等方面。

这些理论和方法可以帮助投资者有效地管理和降低风险。

六、金融数学在实践中的应用金融数学在实践中得到了广泛应用,包括资产定价与投资决策、风险管理实践中的运用等。

通过运用金融数学的方法和模型,投资者可以更加准确地预测市场趋势,优化投资组合,降低风险,提高收益。

同时,金融机构可以利用金融数学的工具来设计创新性的产品和服务,提高市场竞争力。

总之,金融数学是一门涉及多个学科领域的交叉学科,它的发展和应用为金融市场注入了新的活力和动力。

通过学习和掌握金融数学的基本概念、方法和模型,我们可以更好地理解和分析金融市场,为未来的投资和发展提供重要的支持和保障。

金融理论的世纪回顾与展望(一)

金融理论的世纪回顾与展望(一)

金融理论的世纪回顾与展望金融理论的世纪回顾与展望一、金融理论的世纪回顾在20世纪金融理论的发展史上,50年代是一个重要的分水岭。

一般认为,现代金融理论起始于50年代初马柯维茨提出的投资组合理论。

而在此之前已存在的金融理论体系,则被称为是古典经济学中的金融理论。

古典金融理论在凯恩斯主义出现之前,一直是以“货币与实物经济相分离”的古典经济学“两分法”为手段,从实物经济的层面出发,对货币的职能、银行的流动性、信用机制、货币与经济的关系、国际收支平衡、汇率的决定等问题进行探讨,并取得相当成就。

该阶段所出现的影响较大的理论成果有:甘末尔学说(1907年)、费雪的现金交易数量理论(1911年)、马歇尔的现金余额数量论(1923年)、庇古的剑桥方程式(1917年)、哈耶克的中立货币理论(1931年)、莫尔顿的银行可转换性理论(1918年)、勒纳等的弹性理论(30年代)、卡塞尔的购买力平价理论(1922年)、阿夫塔里昂的汇兑心理理论(1927年)、凯恩斯与爱因齐格的利率平价理论(1930年)等。

1936年凯恩斯的《就业利息与货币通论》问世,这不仅在经济发展史上是一个重要的里程碑,称为经济学的一场革命,特别在古典金融理论的发展史上更具有划时代的意义。

凯恩斯将货币视为一种资产,把货币资产融入实际经济中,指出货币对就业、产出、收入等实际经济有着重要而特殊的作用,填平了货币与实物经济之间的“两分”,创立了以货币经济为特征的宏观经济学。

在凯恩斯之后,希克斯与汉森于1949年创立了商品市场与货币市场相结合的is-lm模型,鲍莫尔于1952年提出了平方根定律,弗里德曼于50年代提出现代货币数量论。

50、60年代,由于直接融资的迅速发展,金融市场上金融工具不断创新,新的金融机构不断涌现。

在金融理论方面,不仅出现了商业银行的负债管理理论,而且出现了大量以金融市场为研究对象的微观金融理论。

尤其是,1952年马柯维茨提出了证券组合理论,创立现代金融理论之开端。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

金融数学的历史回顾
关于金融数学的起源最早可以追溯到1900年
●法国天才Bachelier Louis在Einstein和Wiener(正式建立了Brown运动的
数学模型1905年)之前1900年就已经认识了Wiener函数的一些重要性质,即扩散方程和)
z<
<,并在其博士论文The Theory of
0(t
(
max z
X分布)
Speculation中首次给出了欧式买权的定价公式。

●1952年Harry M. Markowitz(1927-)(纽约市州立大学,1990年诺贝尔经济
学奖获奖者之一)提出投资组合的选择(Portfolio selection)理论。

如果一个投资者为减少风险同时对多种股票进行投资,那么什么样的投资组合最好?均值方差最优投资组合模型。

●1958年Modigliani,F.(1985年诺贝尔经济学奖获奖者之一), Miller,M.H.
(1923-2000)(芝加哥大学,1990年诺贝尔经济学奖获奖者之一)提出Modigliani-Miller定理(MMT),他断言,在一定的条件下,公司的市场价值只依赖于它的利润流,而于它的资本结构无关,即与债权与股权之间的比例无关;也于它的分红策略无关,即与债权者与股权者之间的利润分割无关。

William F. Sharpe(斯坦佛大学,1934-)资本资产定价理论模型(CAPM)。

Markowitz, Miller, Sharpe 获1990年诺贝尔经济学奖。

●1964年,Sprenkle提出了“股票价格服从对数正态分布”的基本假设,并肯
定了股价发生随机漂移的可能性。

同年,Boness将货币时间价值的概念引入到期权定价过程,但他没有考虑期权和标的股票之间风险水平的差异。

●1965年,著名经济学家萨缪尔森(Samuelson)把上述成果统一在一个模型
中。

1969年,他又与其研究生Merton合作,提出了把期权价格作为标的股票价格的函数的思想。

●1971年Robert C. Merton (1944-哈佛大学教授,数学硕士)首次提出了最优
消费与投资组合问题,用随机动态规划的方法引入金融数学。

Robert C.
Merton,Myron S. Scholes1997获年诺贝尔经济学奖。

●1973年Fisher Black(1938-1995哈佛大学应用数学博士)和Myron S.
Scholes(1944-(斯坦福大学教授,工程学士))在《政治经济学杂志》发表具有划时代意义的“期权定价与公司财务”一文,该论文首次提出了金融
衍生品的期权定价理论,获得了Black-Scholes 期权定价模型。

Robert C. Merton (1944-)进一步完善和系统化这一理论。

1973年在Black 和Scholes 用几何Brown 运动来刻画价格波动规律,用无套利复制的方法建立了欧式期权的定价公式。

两种证券:股票 )(t t t dB dt S dS σμ+= 债券 dt rP dP t t =
欧式看涨期权),m ax (),(K S S T C T T -=0
)()(),()(21d N Ke d xN x t C t T r ---=
t T t T r K x d --++=σσ))(()log(22
11,t T d d --=σ12
在B —S 模型之前,虽然众多学者已经建立了各种各样的期权定价模型,但这些模型几乎不具备任何实用价值,因为它仍或多或少地包含一些主观的参数,如投资者个人对风险的态度、市场均衡价格等。

1973年Robert C. Merton (1944-)在《经济和管理科学》发表题为“理性期权定价理论”论文,后来和Black ,Scholes 合作发表了多篇文章,并对经典的Black-Scholes 模型从多方面做了进一步改进和发展(如股票价格的跳扩散模型)。

他们的工作被称为华尔街的“第二次革命”,B-S 公式被成千上万的投资者每天是用,被誉为有史以来用的最多的数学工具,同时他们开创性的工作也大大推动了数学在经济学金融学的应用和发展(如随机分析,随机控制,随机微分方程,数值计算,优化理论,数理统计,非线性数学等)。

Black-Scholes “期权定价与公司财务”一文的发表过程曾被两次退稿,第一次《政治经济学杂志》主编退稿的理由是:金融内容太多,经济学内容少;《经济与统计评论》退稿时甚至没有说任何理由。

后来《政治经济学杂志》换了主编,在Miller 的推荐(“打招呼”)下,在1973年才得以发表。

而B-S 公式的实证论文在1972年就在《金融学杂志》上发表。

B-S 公式是使用频率最高的数学公式之一,该文的引用率高达一万三千多次(13299次)远远高于其他经济学诺奖的获奖者(如Samuelson 为3993)。

1976年Ross,S.A.(1944- )针对资本资产定价模型(CAMP )提出了一个多因
子模型,即套利定价模型(ATP ),其主要结论是:无套利假设等价于某种等
价概率测度的存在,这使得每一种金融资产对该概率测度的期望收益率都等于无风险证券的收益率。

●Harrison 和Krops(1979), Harrison 和Pliska(1981),奠定了期权定价鞅方法
的理论。

主要结论是,在给定的市场模型下,如果等价鞅测度存在,则市场是无套利的,如果等价鞅测度存在且唯一,则市场是完备的,即市场上的任意未定权益都是可达到的。

完备市场上任意未定权益有唯一无套利定价,即为未定权益的折现价格在等价鞅测度下的数学期望。

完备市场是以理想的市场模型,现实市场多为不完备市场。

●Follmer 和Sondermann(1986)首次用均值方差准则研究了不可达未定权益
(non-attainable claim)的套期保值问题,依此准则,Martin Schweizer (1994),在假定风险资产的价格过程是满足一定形式的半鞅并且未定权益满足F-S分解的条件下,给出了任意未定权益的最优套期保值策略和近似定价。

相关文档
最新文档