金融数学附答案定稿版

合集下载

金融数学考试及答案

金融数学考试及答案

2011年春季Edited by Foxit PDF EditorCopyright(c)by Foxit Software Company,2003-2009 For Evaluation Only.A2金融数学2011年(以下1-30题为单项选择题。

1-20题每题3分,21-30题每题4分。

每题选对的给分,选错或不选的不给分。

)●1.若风险用方差度量,则下列关于投资组合的风险陈述正确的是()a. 等比例投资于两只股票的组合风险比这两只股票的平均风险小b. 一个完全分散化的投资组合可以消除系统风险c. 相互独立的单个股票的风险决定了该股票在一个完全分散化的投资组合中的风险贡献程度A. 只有a正确B. 只有b 正确C. 只有c正确D. a,c正确E. a,b,c都不正确●2.已知在未来三年中,银行第一年的实际利率为7.5%,第二年按计息两次的名义利率12%计息,第三年按计息四次的名义利率12.5%计息,某人为了在第三年末得到500,000元的款项,第一年初需要存入银行多少()A.365001B. 365389C.366011D.366718E.367282●3.一个一年期欧式看涨期权,其标的资产为一只公开交易的普通股票,已知:a. 股票现价为122元b. 股票年收益率标准差为0.2c. In(股票现价/执行价现价)= 0.2利用Black-scholes期权定价公式计算该期权的价格()A.18B. 20C,22D. 24E.26●4. 已知ām=5,sm=7,则δ=()A.0.0238B.0.0286C.0.0333D.0.0476E.0.0571●5.某投资组合包括两只股票,已知:a. 股票A的期望收益率为10%,年收益率的标准差为Zb. 股票B的期望收益率为20%,年收益率的标准差为1.5Zc. 投资组合的年收益率为12%,年收益率的标准差为Z则股票A和股票B的收益相关系数为()A.0.50B.0.53C.0.56D.0.60E.0.63● 6.已知,0≤t≤15,则(ia)157的值为()A.9.05B. 10.15C. 11.25D. 13.35E.15.35●7.基于某一只股票a. 执行价格为1320,三个月欧式看跌期权价格为81.41b. 股票现价为1300c. 市场连续无风险复利收益率为4%甲购买了这样一个期权,乙签定了一个三个月的多头寸远期合约,若三个月后,甲和乙的利润相等,则三个月后股票价格为()A.1310B. 1297C. 1289D. 1291E.1275●8.某人在未来15年中每年年初向银行存入5000元,前五年的年利率为5.6%,中间五年的年利率下调为3.7%,后五年由于通货膨胀影响,年利率上调至8.9%,则第十五年年末时,这笔款项的积累额为()A.129509B. 129907C.130601D.131037E.131736●9.设标的资产为同一只股票的两个看涨期权A和B,A的执行价格为45,B的执行价格为50,A 的期权价格为6,B期权价格为8。

(完整版)北大版金融数学引论第二章答案

(完整版)北大版金融数学引论第二章答案

版权所有,翻版必究第二章习题答案1.某家庭从子女出生时开始累积大学教育费用5万元。

如果它们前十年每年底存 款1000元,后十年每年底存款1000+X 元,年利率7%。

计算X 。

解:S = 1000s 20¬p7%+Xs 10¬p7%X =50000 − 1000s 20¬p7% s 10¬p7%= 651.722.价值10,000元的新车。

购买者计划分期付款方式:每月底还250元,期限4年。

月结算名利率18%。

计算首次付款金额。

解: 设首次付款为X ,则有10000 = X + 250a 48¬p1.5%解得X = 1489.363.设有n 年期期末年金,其中年金金额为n ,实利率i =1。

试计算该年金的现值。

解:P V = na¬n pi1 − v nn= n 1n=(n + 1)nn 2− n n+2 (n + 1)n4.已知:a¬n p= X ,a 2¬n p= Y 。

试用X 和Y 表示d 。

解: a 2¬n p= a¬n p+ a¬np (1 − d)n则Y − X1d = 1 − ( X ) n5.已知:a¬7p= 5.58238, a 11¬p= 7.88687, a 18¬p= 10.82760。

计算i 。

解:a 18¬p = a¬7p + a 11¬p v 7解得6.证明: 11−v 10=s 10¬p +a ∞¬p。

s 10¬pi = 6.0%北京大学数学科学学院金融数学系第 1 页版权所有,翻版必究证明:s 10¬p + a ∞¬p(1+i)10−1+11 s 10¬p=i(1+i)10−1ii= 1 − v 107.已知:半年结算名利率6%,计算下面10年期末年金的现值:开始4年每半 年200元,然后减为每次100元。

(完整版)金融数学课后习题答案

(完整版)金融数学课后习题答案

(完整版)金融数学课后习题答案第一章习题答案1. 设总量函数为A(t) = t2 + 2t + 3 。

试计算累积函数a(t) 和第n 个时段的利息In 。

解: 把t = 0 代入得A(0) = 3 于是:a(t) =A(t)A(0)=t2 + 2t + 33In = A(n) ? A(n ?1)= (n2 + 2n + 3) ?((n ?1)2 + 2(n ?1) + 3))= 2n + 12. 对以下两种情况计算从t 时刻到n(t < n) 时刻的利息: (1)Ir(0 < r <n); (2)Ir = 2r(0 < r < n).解:(1)I = A(n) ? A(t)= In + In?1 + + It+1=n(n + 1)2t(t + 1)2(2)I = A(n) ? A(t)=Σnk=t+1Ik =Σnk=t+1Ik= 2n+1 ?2t+13. 已知累积函数的形式为: a(t) = at2 + b 。

若0 时刻投入的100 元累积到3 时刻为172 元,试计算:5 时刻投入的100 元在10 时刻的终值。

第1 页解: 由题意得a(0) = 1, a(3) =A(3)A(0)= 1.72a = 0.08,b = 1∴A(5) = 100A(10) = A(0) ? a(10) = A(5) ? a(10)a(5)= 100 × 3 = 300.4. 分别对以下两种总量函数计算i5 和i10 :(1) A(t) = 100 + 5t; (2) A(t) = 100(1 + 0.1)t. 解:(1)i5 =A(5) ? A(4)A(4)=5120≈4.17%i10 =A(10) ? A(9)A(9)=5145≈3.45%(2)i5 =A(5) ? A(4)A(4)=100(1 + 0.1)5 ?100(1 + 0.1)4100(1 + 0.1)4= 10%i10 =A(10) ? A(9)A(9)=100(1 + 0.1)10 ?100(1 + 0.1)9100(1 + 0.1)9= 10%第2 页5.设A(4) = 1000, in = 0.01n. 试计算A(7) 。

金融数学(统计学)期末考试试卷含答案A

金融数学(统计学)期末考试试卷含答案A

安徽师范大学 2016-2017 学年 第一学期数学计算机科学学院2015级统计专业《金融数学》课程期末考试试卷((A 卷) 120分钟 闭卷)题号一二三四五得分得分得分评卷人复核人一、填空题(6小题,每小题3分,共18分)1.如果每月复利一次的年名义利率为6%,则当每个季度贴现一次的名义贴现率为() 时,名义利率与名义贴现率是等价2.设按大小顺序排为( ) . .1,m >()(),,,,m m n n n n na a a a a &&&&3. 某人的活期账户年初余额为2000元,其在4月底存入1000元,又在6月底和8月底分别提取400元和200元,到年底账户余额为2472元,则用资本加权法计算该账户的年利率( ) ..4.() . .&1n i ji a =+5. 半理论法下的,债券的市场价格计算公式为:(),其中;.m t k B +=0,1,...,t n =01k <<6. IBM 股票看涨期权,执行价格75美元,如果市场价格为80美元则多头执行期权,即按75美元买入可立即按80美元卖出股票,每股盈利5美元,则期权的内在价值为( )美元;如果市价为72美元,则不执行期权,期权内在价值为()美元..得分评卷人复核人二、选择题(5小题,每小题4分,共20分)1. 甲从银行借款10万元,每半年末还款一次,共12年,每年计息两次的名利率为4%,到第4年末,银行将这一债权转让给乙,乙的收益率为每年计息两次的名利率为5%,乙所得的利息收入为( )元.A.42287 B. 52870 C.84594 D.69023 E.155712.一笔9.8万元的贷款,每月末还款777元,一直支付到连同最后一次较小的零头付款还清贷款为止,每月计息一次的年名义利率为4.2%,则第7次付款中的本金部分为( )元.A . 399.27 B. 400.27C. 443.19D. 356.73E. 366.733.某人贷款10000元,期限为5年,每年计息两次的名收益率为10%,采用偿债基金法,偿债基金的半年实际利率为4%,借款人在第4次与第5次还款期间的净利息支出等于( )元.A. 641.5B. 283C. 500D. 141.5E. 358.54.面值100元的10年期债券每年计息两次的名息票率为8%,现以90元的价格出售,假设债券的息票只能以每年计息两次的名利率6%的利率再投资,则考虑了再投资利率的年名义收益率为( ).A.6%B.8.52%C.4.3%D. 2.3%E.8% 5. 关于年金的各种递推公式,以下选项中,不正确的选项是:( ).A.B. ||(1)n n i n i s a i =+|1|()1()n n Ia v Ia -=+⋅C. D. E. =×()()()n im m n i i iaa i m=+&&()()1m m n i in i a s a =()|m n a &&na ()1|m s &&得分评卷人复核人三、计算题(3小题,每小题10分,共30分)1. 已知1单位元的投资,投资4年,第1年的实际利率为8%,第2年的实际贴现率为8%,第3年以每季度计息一次的年名义利率为8%,第4年的每半年计息的年名义贴现率为8%.求该投资的年实际利率.2.面值1000元、名息率10%的15年期美式早赎债券,早赎保护期为12年,按面值实施早赎。

金融数学课后答案

金融数学课后答案

金融数学课后答案【篇一:金融数学(利息理论)复习题练习题】购买一张3年期,面值为1000元的国库券,每年末按息票率为8%支付利息,第三年末除支付80元利息外同时偿付1000元的债券面值,如果该债券发行价为900元,请问他做这项投资是否合适? 2.已知:1) 1?i2) 1?由于(1?m)?(1?n)?1?i 由于(1?)?(1?)?1?d3. 假设银行的年贷款利率12%,某人从银行借得期限为1年,金额为100元的贷款。

银行对借款人的还款方式有两种方案:一、要求借款人在年末还本付息;二、要求借款人每季度末支付一次利息年末还本。

试分析两种还款方式有何区别?哪一种方案对借款人有利?4. 设m?1,按从小到大的顺序排列i,i(m)(m)(m)(m)m?(1?i5)(1?i6)?1 求m?? ?(1?d(5)d(6)?1)(1?6) 求m?? 5(5)(6)d(m)mm(n)nm(n)n,d,d(m),?解:由i?d?i?d? i?dd(m?1)?d(m) ? d?d(m) i(m)?d(n) ? d(m)?i(m) i(m?1)?i(m)?i(m)?ii(m)?limd(m)?? 1?i?e??1?? , limm??m???d?d(m)???i(m)?i5. 两项基金x,y以相同的金额开始,且有:(1)基金x以利息强度5%计息;(2)基金y以每半年计息一次的名义利率j计算;(3)第8年末,基金x中的金额是基金y中的金额的1.5倍。

求j.6. 已知年实际利率为8%,乙向银行贷款10,000元,期限为5年,计算下列三种还款方式中利息所占的额度:1)贷款的本金及利息积累值在第五年末一次还清; 2)每年末支付贷款利息,第五年末归还本金; 3)贷款每年年末均衡偿还(即次用年金方式偿还)。

三种还款方式乙方支付的利息相同吗? 请你说明原因?7.某人在前两年中,每半年初在银行存款1000元,后3年中,每季初在银行存款2000元,每月计息一次的年名义利率为12% 计算5年末代储户的存款积累值。

金融数学考试及答案

金融数学考试及答案

当前
• 20.
房 向银 3,000,000 元,分 30 名义利率为 6.6%, 则在第 240 还 后的
还清,每月月 余额为()


, 每
息 12

A. 1678936 B. 1679835 C. 1680733 D. 1681639 E. 1682535
7
• 21. 一

的二叉
下图:
Cuu=10.9731 Cu C0 Cd=0.0440 Cdd=0
T
期 ,S 表
为K的 当前 票 ,r表
b. 50e−rT ≤ P(45, T ) − C (50, T ) + S ≤ 55e−rT c. 45e−rT ≤ P(45, T ) − C (50, T ) + S ≤ 50e−rT

A. B. C. D. E.
的 () 有a 有b 有c 有 a,b 有 a,c
• 7. 基于 a. b. 81.41
票现 为 1300 场连 无风险 利 益率为 4% 月的多头 远期 约, 月后, 乙的利 相
买了这样一 期 , 乙签定了一 等, 则 月后 票 为()
A. 1310 B. 1297 C. 1289 D. 1291 E. 1275
票期望
对一
标的 产为
A. 24.2% B. 25.1% C. 28.4% D. 30.6% E. 33.0%
4
• 12.
每 初 5000 元, 10 , 利率为 利率 6.5%, 得利息的 再投 利率为每 4.5%, 投 者希望在 0 以一 方 获得 在第 10 到 的积累 , 相应的 益率为 8%. 则 投 者 要 ()
A. 365001 B. 365389 C. 366011 D. 366718 E. 367282

2020精算师考试《金融数学》真题模拟及答案(4)

2020精算师考试《金融数学》真题模拟及答案(4)

2020精算师考试《金融数学》真题模拟及答案(4)共28道题1、一项延期1年的定期年金共付款13年,在时刻t时的支付率为t2-1,而在t时的利息率为(1+t)-1,则该年金的现值为()。

(单选题)A. 82.5B. 83C. 83.5D. 84E. 84.5试题答案:E2、(单选题)A. 1.5B. 2.0C. 2.5D. 3.0E. 3.5试题答案:E3、假设前5年的实际利率为5%,接下来5年的实际利率为4.5%,最后5年的实际利率为4%。

则1000元本金15年后的积累值为()元。

(单选题)A. 1935.06B. 1936.06C. 1937.06D. 1938.06E. 1939.06试题答案:A4、某看涨期权的各项参数如下:则用Black-Scholes期权定价模型计算欧式看涨期权的价格为()美元。

(单选题)A. 1.01B. 1.06C. 1.36D. 1.61E. 2.65试题答案:B5、一个面值为1亿美元的互换的剩余期限为10个月。

根据互换条款,6个月LIBOR 利率与固定利率7%(每半年复利一次)在进行交换。

对于所有期限的现金流互换,浮动利率为LIBOR,固定利率卖出买入价的平均值为每年5%(连续复利)。

在2个月前,6个月的LIBOR利率为每年4.6%。

对于支付浮动息方,这一互换的当前价值是()百万美元。

(单选题)A. 2.109B. 2.103C. 2.009D. 2.003E. 1.909试题答案:A6、若A(4)=1000,i n=0.01n,则A(6)=()。

(单选题)A. 1050B. 1113C. 1290D. 1397E. 2163试题答案:B7、有一项期末付年金,其付款额从1开始每年增加1,直到N,然后每年减少1直到1。

则该年金的现值为()。

(单选题)A.B.C.D.E.试题答案:D8、给定年名义利率为10%,本金为1。

则一年支付4次的年名义贴现率d(4)=()。

数理金融习题答案

数理金融习题答案

数理金融习题答案数理金融习题答案数理金融作为一门交叉学科,融合了数学、统计学和金融学的理论与方法,用于解决金融市场中的问题。

在学习数理金融的过程中,习题是不可或缺的一部分,通过解答习题,我们可以更好地理解和应用相关的知识。

下面,我将为大家提供一些数理金融习题的答案,希望能对大家的学习有所帮助。

1. 期权定价模型中的Black-Scholes模型是如何推导出来的?答案:Black-Scholes模型是由Fischer Black和Myron Scholes于1973年提出的,它是一种用于计算欧式期权价格的数学模型。

该模型基于一些假设,如市场无摩擦、无套利机会、股票价格服从几何布朗运动等。

通过对股票价格的随机性建模,我们可以得到一个偏微分方程,即Black-Scholes方程。

通过求解这个方程,我们可以得到期权的理论价格。

2. 什么是马尔科夫链?答案:马尔科夫链是一种随机过程,具有马尔科夫性质。

马尔科夫性质指的是在给定当前状态的情况下,未来状态的概率分布只与当前状态有关,与过去的状态无关。

马尔科夫链可以用状态转移矩阵来描述,矩阵中的元素表示从一个状态转移到另一个状态的概率。

马尔科夫链在金融中的应用很广泛,比如股票价格的模拟和风险管理等领域。

3. 什么是随机过程的鞅性?答案:鞅是一种随机过程,具有平均保持不变的性质。

在数理金融中,我们常常关注鞅性的概念。

一个随机过程被称为鞅,如果它的条件期望在给定当前信息下等于当前值。

鞅性在金融中有很多应用,比如期权定价中的风险中性概率测度和无套利定价等。

4. 如何计算期权的Delta和Gamma?答案:Delta是期权价格对标的资产价格变化的敏感度,可以通过计算期权价格在标的资产价格上的偏导数来得到。

Gamma是Delta对标的资产价格变化的敏感度,可以通过计算Delta在标的资产价格上的偏导数来得到。

这两个指标在期权交易中非常重要,可以帮助我们了解期权价格的变化情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

金融数学附答案精编
W O R D版
IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】
1、给定股票价格的二项模型,在下述情况下卖出看涨期权 S 0 S u S d X r τ 股数
50 60 40 55 0.55 1/2 1000
(1)求看涨期权的公平市场价格。

(2)假设以公平市场价格+0.10美元卖出1000股期权,需要买入多少股股票进行套期保值,无风险利润是多少
(3)
答案:(1)d u d r S S S e S q --=τ0=56.040
6040505.005.0=--⨯⨯e (2)83.2>73.2,τr e S V -∆+∆='00
83.2> τr e S -∆+∆'0 406005--=--=
∆d u S S D U =25.0股 104025.00'-=⨯-=∆-=∆d S D 753.9975.0105.005.0'-=⨯-=∆⨯-e 美元
则投资者卖空1000份看涨期权,卖空250股股票,借入9753美元
所以无风险利润为1.85835.005.0=⨯e 美元
2、假定 S0 = 100,u=1.1,d=0.9,执行价格X=105,利率r=0.05,p=0.85,期权到期时间t=3,请用连锁法则方法求出在t=0时该期权的价格。

(答案见课本46页)
3、一只股票当前价格为30元,六个月期国债的年利率为3%,一投资者购买一份执行价格为35元的六个月后到期的美式看涨期权,假设六个月内股票不派发红利。

波动率σ为0.318.
问题:(1)、他要支付多少的期权费【参考N(0.506)=0.7123;N(0.731)=0.7673 】{提示:考虑判断在不派发红利情况下,利用美式看涨期权和欧式看涨期权的关系}
解析:在不派发红利情况下,美式看涨期权等同于欧式看涨期权!所以利用B—S公式,就可轻易解出来这个题!同学们注意啦,N(d1)=N(-0.506),N(d2)=N(-0.731)。

给出最后结果为0.608
4、若股票指数点位是702,其波动率估计值σ=0.4,指数期货合约将在3个月后到期,并在到期时用美元按期货价格计算,期货合约的价格是715美元。

关于期货的看涨期权时间与期货相同,执行价是740美元,短期利率位7%,问这一期权的理论价格是多少(
N(-0.071922)=0.4721,N(-0.2271922)=0.3936 e-0.07*0.25=0.98265
解:F=715,T-t=0.25,σ=0.4,X=740,r=0.07
F/X=715/740=0.9622,σ(T-t)=0.4*0.5=0.2
d1=ln(0.9662)/0.2+0.2/2=-0.071922
d2=d1-0.2=-0.071922
G=(0.98265)(0.4721*715-0.3936*740)
=45.48美元
5、根据看涨期权bs定价公式证明德尔塔等于N(d1)(答案见课本122页)。

相关文档
最新文档