材料的疲劳性能
第五章__材料的疲劳性能(1)分析

疲劳微裂纹形成的三种形式
表面滑移带开裂解释 1)在循环载荷作用下,即使循环应力未超过材料屈服强 度,也会在试样表面形成循环滑移带 2)循环滑移带集中于某些局部区域(高应力或簿弱区) 3)循环滑移带很难去除,即使去除,再次循环加载时, 还会在原处再现 (驻留滑移带)
特征: 1)驻留滑移带一般只在表面形成,深度较浅,随循环次数 的增加,会不断地加宽 2)驻留滑移带在表面加宽过程中,会出现挤出脊和侵入 沟,在这些地方引起应力集中,引发微裂纹
四:疲劳裂纹扩展速率
试验表明:测量疲劳裂纹长度和循环周数的关系如图
疲劳裂纹扩展曲线
Δσ2﹥Δσ1
从图可知: 1)曲线的斜率da/dN(疲劳裂纹扩展速率)在整个过程中 是不断增长的 2)当da/dN无限增大,裂纹将失稳扩展,试样断裂 3)应力增加,裂纹扩展加快,a-N曲线向左上方移动,ac相 应减小 结论:裂纹扩展速率da/dN 和应力水平及裂纹长度有关 根据断裂力学: 可定义应力强度因子幅为
特征 1)疲劳源区比较光滑(受反复挤压,摩擦次数多) 2)表面硬度因加工硬化有所提高 3)可以是一个,也可能有多个疲劳源(和应力状态及 过载程度有关)
疲劳裂纹扩展区
是疲劳裂纹亚临界扩展的区域
特征 1)断口较光滑,分布有贝纹线(或海滩花样),有时还有 裂纹扩展台阶 2)贝纹线是疲劳区的最典型特征,贝纹线是以疲劳源为圆 心的平行弧线,凹侧指向疲劳源,凸侧指向裂纹扩展方向 3)近疲劳源区贝纹线较密,远离疲劳源区贝纹线较疏
5.2 疲劳破坏机理
一:金属材料疲劳破坏机理
疲劳裂纹的萌生
1)在材料簿弱区或高应力区,通过不均匀滑移, 微裂纹形成及长大而完成 2)定义裂纹长度为0.05—0.10mm时为裂纹疲劳 核,对应的循环周期为裂纹萌生期
建筑材料疲劳性能的力学理论分析

建筑材料疲劳性能的力学理论分析建筑材料的疲劳性能是指在长期受到交变应力作用下,材料的抗疲劳能力。
对于建筑结构来说,疲劳是一种常见的力学现象,因此对建筑材料的疲劳性能进行力学理论分析具有重要意义。
疲劳破坏是材料在交变载荷作用下的一种特殊破坏形式,其特点是在载荷作用下,材料内部会发生微观裂纹的扩展,最终导致材料的破坏。
疲劳破坏是一个复杂的过程,涉及到材料的力学性能、微观结构以及外界环境等多个因素。
疲劳破坏的机理可以用疲劳寿命曲线来描述。
疲劳寿命曲线是指在一定应力幅值下,材料所能承受的循环次数与应力幅值之间的关系。
通常情况下,疲劳寿命曲线呈现出S形曲线,即存在一个应力幅值,使得材料的疲劳寿命达到最大值。
当应力幅值小于这个最大值时,材料的疲劳寿命随着应力幅值的增加而增加;当应力幅值大于这个最大值时,材料的疲劳寿命会急剧下降。
疲劳寿命曲线的形状与材料的力学性能有关。
一般来说,材料的强度越高,疲劳寿命曲线的斜率越大,即材料的抗疲劳性能越好。
此外,材料的韧性也对疲劳寿命有影响。
韧性好的材料能够吸收更多的能量,减缓裂纹扩展的速度,从而延长疲劳寿命。
对于建筑材料来说,疲劳性能的分析是非常重要的。
建筑结构往往会受到交变载荷的作用,如风荷载、地震荷载等。
如果材料的疲劳性能不好,容易出现疲劳破坏,从而导致建筑结构的安全问题。
因此,建筑材料的疲劳性能需要在设计和选材过程中充分考虑。
在建筑材料的力学理论分析中,有几个重要的参数需要关注。
首先是疲劳极限。
疲劳极限是指材料在一定循环次数下能够承受的最大应力幅值。
当应力幅值超过疲劳极限时,材料的疲劳寿命会急剧下降,容易发生疲劳破坏。
其次是疲劳强度系数。
疲劳强度系数是指在一定循环次数下,材料的疲劳寿命与疲劳极限之间的比值。
疲劳强度系数越大,材料的抗疲劳能力越好。
最后是疲劳寿命。
疲劳寿命是指材料在一定应力幅值下能够承受的循环次数。
疲劳寿命越长,材料的抗疲劳能力越好。
为了提高建筑材料的疲劳性能,可以采取一些措施。
材料力学中的材料疲劳性能测试技术

材料力学中的材料疲劳性能测试技术材料疲劳性能是指材料在循环加载下的抗疲劳裂纹扩展能力,是评估材料可靠性和寿命的重要指标。
为了研究材料的疲劳性能,科学家们发展了许多测试技术。
本文将探讨几种主要的材料疲劳性能测试技术。
一、旋转梁疲劳试验旋转梁疲劳试验是材料疲劳性能测试的一种常见方法。
试验时,材料样品被固定在旋转梁上,通过施加交变载荷,观察材料在循环加载下的疲劳裂纹扩展情况。
通过测量材料断裂扭矩和载荷周期,可以确定其疲劳寿命和裂纹扩展速率。
二、拉-推疲劳试验拉-推疲劳试验是一种常用的材料疲劳测试方法。
试验时,材料样品被制成拉杆形状,分为拉伸和推压两个阶段。
在循环加载过程中,通过测量材料的载荷和位移,可以得到材料在拉伸和推压过程中的疲劳性能数据,如疲劳强度、残余强度和疲劳寿命。
三、旋转弯曲疲劳试验旋转弯曲疲劳试验是一种用于测试金属材料疲劳性能的方法。
试验时,材料样品被固定在旋转臂上,通过施加旋转和弯曲载荷,观察材料在循环加载下的裂纹扩展行为。
通过测量载荷和位移,可以计算出材料的疲劳寿命和裂纹扩展速率。
四、交变剪切疲劳试验交变剪切疲劳试验是一种测试材料疲劳性能的方法,适用于各种金属和非金属材料。
试验时,材料样品被固定在剪切试验机上,施加正交变剪切载荷,观察材料在循环加载过程中的裂纹扩展情况。
通过测量载荷和位移,可以确定材料的疲劳寿命和剪切裂纹扩展速率。
五、高温疲劳试验高温疲劳试验是一种用于测试材料在高温环境下的疲劳性能的方法。
试验时,材料样品被置于高温环境中,通过施加交变载荷,观察材料在高温下的疲劳裂纹扩展情况。
通过测量载荷、温度以及裂纹扩展速率,可以确定材料在高温环境下的疲劳寿命和性能。
总结:材料疲劳性能测试技术在材料力学中起着重要的作用。
通过旋转梁疲劳试验、拉-推疲劳试验、旋转弯曲疲劳试验、交变剪切疲劳试验以及高温疲劳试验等方法,可以获得材料的疲劳寿命、裂纹扩展速率等关键性能参数,为材料的设计和使用提供参考依据。
材料性能_ 材料的疲劳性能_7-4 疲劳抗力指标_

(4)材料成分及组织的影响
合金成分:结构钢中碳的作用(间隙固溶 强化,第二相弥散强 化),提高疲劳强度; 夹杂物和缺陷降低疲劳强度;
显微组织:细化晶粒,提高疲劳强度;组 织不同,疲劳强度不同。
dN
(2)疲劳裂纹扩展门槛值
ΔKth是疲劳裂纹不扩展的 临界值,称为疲劳裂纹 扩展门槛值,表示材料阻止裂纹开始疲劳扩展的性能。
根据定义可以建立裂纹不疲劳断裂(无限寿命)的 校核公式:
∆K = Y∆σ a ≤ ∆Kth
若如已知裂纹件的裂纹尺寸 a 和材料的疲劳门槛 值 ΔKth ,即可求得该件无限疲劳寿命的承载能力:
环境介质:使材料表面产生微观腐蚀, 降低疲劳强度。
(2)表面状态和尺寸因素
表面状态:表面缺口导致应力集中,形成疲 劳源,引起疲劳断裂;
尺寸因素:尺寸增大,疲劳强度降低(尺寸 效应)。
(3)表面强化和残余应力
提高表面塑变抗力(强度和硬度),降低 表面拉应力,提高弯曲、扭转载荷下材料的 疲劳强度。
qf反映了疲劳过程中材料发生应力重分布 的能力,即降低应力集中的能力。
5、影响疲劳强度的因素
(1)工作条件
载荷条件 • 应力状态、平均应力; • 过载将降低疲劳强度和寿命; • 次载锻炼,可提高疲劳强度; • 间歇效应,对应变时效材料,可提高疲劳强度。
环境温度:温度↑,疲劳强度↓;温度↓, 疲劳强度↑
7-4 疲劳抗力指标
材料的疲劳抗力指标包括疲劳极限、疲 劳裂纹扩展门槛值、过载持久值和疲劳缺口 敏感度等。
1、疲劳极限(强度)
德国人Wohler(维勒)针对火车车轴疲劳进行 研究,得到了循环应力(S)与疲劳循环寿命(N) 之间的关系,称为疲劳曲线(S-N曲线)。
材料的疲劳性能

图5-11
2020/5/4
● 三、 过载持久值及过载损伤界 ●研究意义: ●过去人们一直认为,承受交变载荷作用的机件
按-1确定许用应力是安全的,但是没有考虑特
殊情况。实际上,机件在服役过程中不可避免 地要受到偶然的过载荷作用,如汽车的急刹车、 突然启动等。还有些机件不要求无限寿命,而 是在高于疲劳极限的应力水平下进行有限寿命 的服役。在这些情况下,仅依据材料的疲劳极 限是不能全面准确评定材料的抗疲劳性能的, 所以我们要了解过载持久值和过载损伤界。
2020/5/4
规则周期变动应力(循环应力) 无规则随机变动应力
变动应力如图5-1 所示。
生产中机件正常工作 时,其变动应力多为循 环应力,实验室也容易 模拟,所以研究较多。
应力大小变化
应力大小、方向无规则变化
应力大小、方向都变化
2020/5/4
图5-1 变动应力示意图
σ
r=0 r=–1
r=–∞
1 1
2
2
8
3
3 5 7 9
4
46
5
6
10 12 14
11 13
水平下进行,如图5-8所示。
图5-8 升降法测定疲劳极限示意图
原则是:凡前一个试样达不到规定的循环周次就断裂(用
表示),则后一个试样就在低一级应力水平下进行试验;若
前一个试样在规定循环周次下仍然未断(用 表示),则后一个
试样就在高一级应力水平下进行,如此得到13个以上的有效
●本章主要介绍:
● 金制 属。 疲介 劳绍 的估 基算 本裂 概纹 念形 和成 一寿 般命 规的 律方 。法 疲。 劳 失 效 的 过 程 和 机
2020/5/4
第一节疲劳破坏的一般规律
材料性能与测试第五章 材料的疲劳性能

四、复合材料疲劳破坏的机理
和金属材料相比,复合材料具有良好的 疲劳性能,有以下特点: 1) 有多种疲劳损伤形式:如界面脱粘、分 层、纤维断裂等; 2) 不会发生瞬时的疲劳破坏:常用疲劳过 程中材料弹性模量下降的百分数等判据 3) 较大的应变会使纤维基体变形不协调引 起纤维基体界面开裂形成疲劳源,对应变 尤其是压缩应变特别敏感; 4) 疲劳性能和纤维取向有关:沿纤维方向 好。
由于聚合物为粘弹性材料,具有较大的 应力滞后环,所以在应力循环中部分机械 能转化为热能,温度升高,产生热疲劳失 图5-8 高分子材料的疲劳断口 效。
聚合物疲劳断口有两种特征条纹:疲劳 辉纹(fatigue striation 10微米左右), 疲劳 斑纹(fatigue marking 50微米左右);
按接触和环境情况不同:分大气疲劳、腐蚀疲劳、高温疲劳、接触疲劳、 热疲劳等。
按断裂寿命和应力高低不同:分高周疲劳(Nf﹥105 ,σ﹤σs,也称低应力 疲劳);低周疲劳(Nf=102~105,σ≧ σs,有塑性应变发生, 也称高应 力疲劳.
9
3、疲劳破坏的特点: (1) 一种潜藏的突发性破坏,呈脆性断裂。 (2) 疲劳破坏属低应力循环延时断裂, 是具有寿命的断裂。 (3) 对缺陷(缺口、裂纹等)具有高度的敏感性。 (4) 疲劳断裂也是裂纹萌生和扩展过程,但因应力水平低,
直至断裂;
④测定应力循环数N,;
(σ1,N1),(σ2,N2)… ⑤绘制σ(σmax)-N(lg N)曲线。
21
图5-10 旋转弯曲疲劳试验机和曲线
图5-11 旋转弯曲疲劳试验机的示意图
试样受铅垂力作用而承受纯弯矩,当电机拖动试样高速 旋转时,试样上的应力值拉压对称交变,使材料承受对 22 称应力疲劳考验。
§3-1 材料的疲劳特性.

通过对大量结构断裂事故分析表明,结构内部裂纹和缺陷的存在是 导致低应力断裂的内在原因。
对于高强度材料,一方面是它的强度高(即许用应力高),另一方 面则是它抵抗裂纹扩展的能力要随着强度的增高而下降。因此,用传统 的强度理论计算高强度材料结构的强度问题,就存在一定的危险性。 断裂力学——是研究带有裂纹或带有尖缺口的结构或构件的强度和 变形规律的学科。准确的说,上述裂纹是指宏观裂纹,即用肉眼或低倍 显微镜能看得见的裂纹。工程中常认为裂纹尺寸大于0.1mm,就称为宏 观裂纹。断裂力学建立了构件的裂纹尺寸、工作应力以及材料抵抗裂纹 扩展能力三者之间的定量关系。
z r s
m s rN N s rm N 0 C
s rN s r (N N D )
有限寿命区间内循环次数N与疲劳极限srN的关系为:
s rN s
m N0 r Nr
K Ns r
式中, sr、N0及m的值由材料试验确定。KN寿命系数.
三、等寿命疲劳曲线(极限应力线图)
材料的疲劳特性
不同应力比时材料的疲劳极限也不相同,可用极限应力线图表示。
第三章 机械零件的强度
§3-1 材料的疲劳特性
§3-2 机械零件的疲劳强度计算 §3-3 机械零件的抗断裂强度 §3-4 机械零件的接触强度
材料的疲劳特性
二、 s-N疲劳曲线 疲劳极限:应力循环特性r一定时,应力经 过N次循环而材料不发生疲劳破坏的最大应 力。 r一定时,极限应力与应力循环次数的关系 曲线称为疲劳曲线。
二、 材料的疲劳曲线
材料的疲劳特性
材料的疲劳特性
疲劳曲线
机械零件的疲劳大多发生在s-N曲线的 CD段,可用下式描述:
m s rN N C ( NC N ND ) D点以后的疲劳曲线呈一水平线,代表着 无限寿命区其方程为:
材料疲劳与耐久性

材料疲劳与耐久性材料的疲劳与耐久性一直是工程材料研究领域的重要议题之一。
随着科学技术的不断进步,人们对于材料疲劳和耐久性的要求也越来越高。
本文将探讨材料的疲劳机理、测试方法以及提高材料耐久性的策略。
第一部分:材料疲劳机理疲劳是指材料在交变或周期性载荷作用下的损伤累积现象。
这种载荷可能是拉伸、压缩、弯曲等力的作用。
疲劳可能导致材料的断裂,特别是在应力集中或缺陷存在的区域。
材料的疲劳机理主要涉及到以下几个方面:1. 微观裂纹生成:在材料受到压力作用下,微观裂纹会逐渐生成并扩展。
2. 裂纹扩展:一旦微观裂纹生成,它们会在接下来的载荷作用下扩展,最终导致材料的断裂。
3. 疲劳寿命:疲劳寿命是指材料在一定载荷下能够承受多少次循环载荷,通常用S-N曲线表示。
第二部分:材料疲劳测试方法为了评估材料的疲劳性能,科学家和工程师发展了各种各样的疲劳测试方法。
以下是一些常用的疲劳测试方法:1. 拉伸-压缩疲劳测试:将材料置于拉伸和压缩载荷之间,通过循环加载和卸载来评估材料的疲劳性能。
2. 弯曲疲劳测试:将材料放置在弯曲装置中,施加循环载荷以模拟实际使用条件下的应力情况。
3. 旋转弯曲疲劳测试:用于评估材料在旋转装置中承受循环载荷时的疲劳性能。
4. 疲劳寿命预测:通过分析材料疲劳寿命的S-N曲线,可以预测材料在实际工作条件下的使用寿命。
第三部分:提高材料耐久性的策略为了提高材料的耐久性和抗疲劳性能,科学家和工程师们采取了一系列策略。
下面是一些常见的策略:1. 材料优化设计:通过选择适当的材料和处理方法,可以使材料在条件限制下具有更好的抗疲劳性能。
2. 表面处理:通过对材料表面进行机械、化学或热处理,可以增强材料的表面硬度和耐疲劳性能。
3. 应力控制:通过合理控制应力分布和应力集中的位置,可以降低材料的疲劳损伤。
4. 增加材料强度:通过增加材料的强度和硬度,可以提高其抗疲劳性能。
5. 定期检测和维护:定期对材料进行检测和维护,可以及早发现并修复潜在的疲劳损伤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
材料的疲劳性能
一、疲劳破坏的变动应力
材料在变动载荷和应变的长期作用下,因累积损伤而引起的断裂现象,称为疲劳。
变动载荷指大小或方向随着时间变化的载荷。
变动载荷在单位面积上的平均值称为变动应力,分为规则周期变动应力(或称循环应力)和无规则随机变动应力两种。
1、表征应力循环特征的参量有:
①最大循环应力:σmax;
②最小循环应力:σmin;
③平均应力:σm=(σmax+σmin)/2;
④应力幅σa或应力范围Δσ:Δσ=σmax-σmin,σa=Δσ/2=(σmax-σmin)/2;
⑤应力比(或称循环应力特征系数):r=σmin/σmax。
2、按平均应力和应力幅的相对大小,循环应力分为:
①对称循环:σm=(σmax+σmin)/2=0,r=-1,大多数旋转轴类零件承受此类应力;
②不对称循环:σm≠0,-1<r<1。
发动机连杆或结构中某些支撑杆、螺栓承受此类应力,σa>σm>0,-1<r<0;
③脉动循环:σm=σa>0,r=0,齿轮的齿根及某些压力容器承受此类应力。
σm=σa<0,r=∞,轴承承受脉动循环压应力;
④波动循环:σm>σa,0<r<1,发动机气缸盖、螺栓承受此种应力;
⑤随机变动应力:循环应力呈随机变化,无规律性,如运行时因道路或者云层的变化,汽车、拖拉机及飞机等的零件,工作应力随时间随机变化。
二、疲劳破坏的概念和特点
1、疲劳破坏概念
在变动应力作用下,材料内部薄弱区域的组织逐渐发生变化和损伤累积、开裂,当裂纹扩展达到一定程度后发生突然断裂的过程,是一个从局部区域开始的损伤积累,最终引起整体破坏的过程。
疲劳破坏是循环应力引起的延时断裂,其断裂应力水平往往低于材料抗拉强度,甚至低于其屈服强度。
机件疲劳失效前的工作时间称为疲劳寿命,疲劳断裂寿命随循环应力不同而改变。
应力高,寿命短;应力低,寿命长。
当应力低于材料的疲劳强度时,寿命可无限长。
疲劳断裂也经历了裂纹萌生和扩展过程。
由于应力水平较低,因此具有较明显的裂纹萌生和稳态扩展阶段,相应的断口上也显示出疲劳源、疲劳裂纹扩展区和瞬时断裂区的特征。
2、疲劳破坏的特点
(1)疲劳破坏和静载或一次性冲击加载破坏比较具有以下特点:
①该破坏为一种潜藏的突发性破坏,在静载下显示韧性或脆性破坏的材料,在疲劳破坏前均不会发生明显的塑性变形,呈脆性断裂,易引起事故造成经济损失;
②疲劳破坏属于低应力循环延时断裂,对于疲劳寿命的预测显得十分重要和必要;
③疲劳对缺陷(缺口、裂纹及组织)十分敏感,即对缺陷具有高度的选择性。
因为缺口或裂纹会引起应力集中,加大对材料的损伤作用;组织缺陷(夹杂、疏松、白点、脱碳等)将降低材料的局部强度。
二者综合更加速疲劳破坏的起始和发展。
④可以按不同方法对疲劳形式分类。
按应力状态分有弯曲疲劳、扭转疲劳、拉压疲劳、接触疲劳及复合疲劳;按应力高低和断裂寿命分有高周疲劳和低周疲劳。
三、疲劳断口的宏观特征
1、典型疲劳断口具有3个特征区:疲劳源、疲劳裂纹扩展区和瞬断区。
(1)疲劳源
疲劳裂纹萌生区,多出现在零件表面,和加工刀痕、缺口、裂纹、蚀坑等相连。
特征是光亮,因为疲劳源区裂纹表面受反复挤压、摩擦
次数多。
疲劳源可以是一个,也可以有多个。
如:单向弯曲,只有一个疲劳源;双向弯曲,可出现两个疲劳源。
(2)疲劳裂纹扩展区(亚临界扩展区)
疲劳裂纹扩展区特征为断口较光滑并分布有贝纹线或裂纹扩展台阶。
贝纹线是疲劳区最典型的特征,是一簇以疲劳源为圆心的平行弧线,凹侧指向疲劳源,凸侧指向裂纹扩展方向。
近疲劳源区贝纹线较细密(裂纹扩展较慢),远疲劳源区贝纹线较稀疏、粗糙(裂纹扩展较快)。
贝纹线区的大小取决于过载程度及材料的韧性,高名义应力或材料韧性较差时,贝纹线区不明显;反之,低名义应力或高韧性材料,贝纹线粗且明显,范围大。
(3)瞬断区
瞬断区是裂纹失稳扩展形成的区域。
该区断口粗糙,脆性材料断口呈结晶状;韧性材料断口在心部平面应变区呈放射状或人字纹状;表面平面应力区则有剪切唇区存在。
瞬断区一般在疲劳源对侧,大小和名义应力、材料性质有关。
高名义应力或脆性材料,瞬断区大;反之,瞬断区小。
四、金属材料疲劳破坏的机理
1、疲劳裂纹的萌生(形核)
裂纹萌生常在材料薄弱区或高应力区,通过不均匀滑移、微裂纹形成及长大而完成。
通常将长0.05-0.10mm的裂纹定为疲劳裂纹核,
对应的循环周期N为裂纹萌生期。
疲劳微裂纹由不均匀滑移和显微开裂引起,主要方式有:表面滑移带开裂,第二相、夹杂物和基体界面或夹杂物本身开裂,晶界或亚晶界处开裂。
在循环载荷作用下,即使循环载荷未超过材料屈服强度,也会在材料表面形成循环滑移带—不均匀滑移,其和静拉伸形成的均匀滑移不同,循环滑移带集中于某些局部区域,用电解抛光法也难以去除,即使去除了,再重新循环加载,还会在原处再现。
称这种永留或再现的循环滑移带为驻留滑移带。
驻留滑移带在表面加宽过程中,会形成挤出脊和侵入沟,从而引起应力集中,形成疲劳微裂纹。
(1)表面易产生疲劳裂纹的原因:
①在许多载荷方式下,如扭转疲劳,弯曲和旋转弯曲疲劳等,表面应力最大。
②实际构件表面多存在类裂纹缺陷,如缺口,台阶,键槽,加工划痕等,这些部位极易由应力集中而成为疲劳裂纹萌生地。
③相比于晶粒内部,自由表面晶粒受约束较小,更易发生循环塑性变形。
④自由表面和大气直接接触,因此,如果环境是破坏过程中的一个因素,则表面晶粒受影响较大。
2、疲劳裂纹的扩展
疲劳裂纹萌生后开始扩展,第Ⅰ阶段沿着最大切应力方向向内扩展。
大多数微裂纹不继续扩展,成为不扩展裂纹,个别微裂纹可延伸几十μm长。
随即疲劳裂纹进入第Ⅱ阶段,沿垂直拉应力方向向前扩展形成主裂纹,直至最后形成剪切唇为止。
在室温及无腐蚀条件下,第Ⅱ阶段呈穿晶扩展,扩展速率da/dN 随N的增加而增大。
在多数韧性材料的第Ⅱ阶段,断口用电子显微镜可看到韧性条带而脆性材料中可看到脆性条带。
疲劳条带(辉纹)呈略弯曲并相互平行的沟槽状花样,和裂纹扩展方向垂直。
和贝纹线不同,疲劳条带是疲劳断口的微观特征。
疲劳条带形成的原因:裂纹尖端的塑性张开,钝化和闭合钝化,使裂纹向前延续扩展疲劳裂纹的形成和扩展模型。
五、非金属材料疲劳破坏机理
1、陶瓷材料的疲劳破坏机理
静态疲劳相当于金属中的延迟断裂,即在一定载荷作用下,材料耐用应力随时间下降的现象。
动态疲劳在恒定加载条件下,研究材料断裂失效对加载速率的敏感性。
循环疲劳在长期变动应力作用下,材料的破坏行为。
陶瓷材料断口呈现脆性断口的特征。
2、高分子聚合物的疲劳破坏机理
(1)非晶态聚合物
①高循环应力时,应力很快达到或超过材料银纹的引发应力,产生银纹,随后转变成裂纹,扩展后导致材料疲劳破坏。
②中循环应力也会引发银纹,形成裂纹,但裂纹扩展速率较低(机理相同)。
③低循环应力,难以引发银纹,由材料微损伤累积及微观结构变化产生微孔及微裂纹,最终裂纹扩展导致宏观破坏。
(2)结晶态高聚合物或低应力循环的非晶态高聚合物,疲劳过程有以下现象:
①整个过程,疲劳应变软化而不出现硬化。
②分子链间剪切滑移,分子链断裂,结晶损伤,晶体结构变化。
③产生显微孔洞,微孔洞合并成微裂纹,并扩展成宏观裂纹。
④断口呈裂纹扩展形成的肋状形态,断口呈丛生簇状结构(拉拔)。
(3)高聚物的热疲劳
由于聚合物为粘弹性材料,具有较大面积的应力滞后环,所以在应力循环过程中,外力所做的功有相当一部分转化为热能;而聚合物导热性能差,因此温度急剧升高,甚至高于熔点或玻璃化转变温度,从而产生热疲劳。
热疲劳常是聚合物疲劳失效的主要原因。
因此疲劳
循环产生的热量,使聚合物升温,可以修补高分子、的微结构损伤,使机械疲劳裂纹形核困难。
(4)聚合物疲劳断口可观察到两种特征的条纹:
①疲劳辉纹:每周期的裂纹扩展值为10μm(间距)。
聚合物相对分子量较高时,在所有应力强度因子条件下,皆可形成疲劳辉纹。
②疲劳斑纹:对应着不连续、跳跃式的裂纹扩展,间距有50μm。
相对分子量较低时,在较低应力强度因子条件下,易形成疲劳斑纹。
3、复合材料的疲劳破坏机理
(1)复合材料疲劳破坏的特点:
①多种疲劳损伤形式:界面脱粘、分层、纤维断裂、空隙增长等。
②不发生瞬断,其疲劳破坏的标准和金属不同,常以弹性模量下降的百分数1%-2%),共振频率变化(1-2HZ)作为破坏依据。
③聚合物基复合材料,以热疲劳为主,对加载频率感。
④较大的应变引起纤维和基体界面开裂形成疲劳源(纤维、基体的变形量不同)压缩应变使复合材料纵向开裂,故对压缩敏感。
⑤复合材料的疲劳性能和纤维取向有关纤维是主要承载组分,沿纤维方向具有很好的疲劳强度;而沿纤维垂直方向,疲劳强度较低。
对于复合材料,界面结合非常重要,因为基体和纤维的E不同,变形量不同,故界面产生很大的剪切应力。