光电化学综述
光电催化co2还原的文献综述

光电催化co2还原的文献综述【实用版】目录一、引言二、光电催化 CO2 还原的原理与方法1.光电催化反应的基本原理2.光电催化 CO2 还原的方法三、光电催化 CO2 还原的研究进展1.光电催化剂的研究2.光电催化反应器的研究3.光电催化 CO2 还原的性能提升四、光电催化 CO2 还原的挑战与展望1.挑战2.展望五、结论正文一、引言随着全球气候变暖和温室气体排放问题日益严重,如何有效地减少二氧化碳(CO2)排放以及将其转化为有用的碳氢化合物燃料已成为科学家们关注的焦点。
在众多 CO2 转化方法中,光电催化 CO2 还原技术因其在常温常压下进行且能实现人为闭合碳循环的优点,成为了研究的热点和重点。
本文旨在对光电催化 CO2 还原领域的文献进行综述梳理,以期为相关研究提供参考。
二、光电催化 CO2 还原的原理与方法1.光电催化反应的基本原理光电催化反应是一种光激发下的电催化反应,其基本原理是在光照条件下,光激发使催化剂产生电子 - 空穴对,电子和空穴分别向阳极和阴极迁移,形成电流。
在阴极上,CO2 被还原为碳氢化合物,同时在阳极上,氧化反应发生。
2.光电催化 CO2 还原的方法光电催化 CO2 还原的方法主要包括光催化、光电化学催化和光热电化学催化。
这些方法在催化剂、反应器和光源等方面有所不同,但均基于光电催化反应原理。
三、光电催化 CO2 还原的研究进展1.光电催化剂的研究光电催化剂是影响 CO2 还原效率的关键因素。
目前研究中,光催化剂主要包括半导体、金属氧化物和复合材料等。
其中,半导体光催化剂如二氧化钛(TiO2)和硫化镉(CdS)等被广泛研究。
2.光电催化反应器的研究光电催化反应器的设计对反应效率和稳定性具有重要影响。
目前研究中,反应器类型包括平板式、管式、波纹板式等,且有研究表明,反应器的形状和尺寸对光电催化效果有显著影响。
3.光电催化 CO2 还原的性能提升为提高光电催化 CO2 还原的性能,研究者们采取了一系列策略,如催化剂的改性、反应器的优化、光源的选用等。
修饰技术在电化学传感器领域的研究文献综述

修饰技术在电化学传感器领域的研究文献综述目录1. 内容概要 (2)1.1 电化学传感器的概述 (2)1.2 修饰技术在电化学传感器领域的重要性 (4)2. 电化学传感器的发展与种类 (5)2.1 传统电化学传感器 (7)2.2 新型电化学传感器 (8)3. 修饰技术概念与原理 (10)3.1 修饰技术定义与背景 (11)3.2 修饰技术的科学原理 (12)3.3 修饰技术的分类 (13)4. 修饰材料在手机传感中的应用 (14)4.1 金属修饰材料 (16)4.2 半导体修饰材料 (18)4.3 聚合物修饰材料 (19)4.4 纳米材料修饰 (21)5. 修饰电化学传感器在高精确度分析中的应用 (22)5.1 环境污染物检测 (24)5.2 食品色素与药物有效成分分析 (26)5.3 临床医学生物标记物识别 (27)6. 修饰技术在电化学传感器中的瓶颈与挑战 (28)6.1 电极材料的稳定性与耐久性 (29)6.2 修饰材料与检测物质之间的特异性 (30)6.3 芯片制备与集成化难题 (32)7. 修饰技术的未来发展方向 (33)7.1 多元传感器体系的构建 (35)7.2 芯片技术与人工智能融合 (36)7.3 生物传感机制的深入研究 (37)8. 结论与展望 (39)8.1 本综述的关键发现 (40)8.2 未来研究方向与前景分析 (41)1. 内容概要本文综述了修饰技术在电化学传感器领域的研究进展,电化学传感器因其高灵敏度、快速响应和低成本等优点,在生命科学、环境监测、食品安全等领域有着广泛的应用前景。
为了提升电化学传感器的性能,修饰技术的应用已成为研究热点。
该文首先简要介绍了常用的电化学传感器类型以及其工作原理,然后重点总结了多种修饰技术,包括纳米材料修饰、生物分子修饰、二维材料修饰等,并对每种技术在电化学传感器中的应用案例进行了详细分析,包括其优势、局限性和未来发展方向。
还对修饰技术带来的性能提升,如灵敏度、选择性、稳定性和耐用性等方面进行了深入探讨。
电化学分析综述

多层管是金属导体,而单层管 是金属性质还是半导体性质取 决于其自身的手性。单层管的 金属性的电流图和Ru(NH3)63+中 的不同电响应的半导体性质在 图9中表示。
石墨烯的构造同样可以改变其自身的电化学表现,有迹象表明: 不同的棱面结构可能会导致不同的电化学性质。除了打开石墨烯的 棱面可以控制棱面的折叠,利用单环、双环或多换也可以。
Ambrosi和他的实验伙伴发现,石墨烯打开边缘位置的ET比率相 比于铁氰化物折叠棱面的ET比率是有显著提升的。
3.3 碳 纳 米 管 (CNTs)
在腺嘌呤中加入磷酸盐缓 冲溶液(PBS),分别放 在(a)EPPG,(b)Au,(c) GC,(d)BPPG,(e)BDD和(f) Pt的环境下,在50mv.s-1扫
描频率下进行循环伏安法 扫描。
令人感到欣喜的是,(a)GC,(b)PBDD,(c)HOPG的基面(d)BPPG,(e)EPPG这 五种电极均放置在PBS溶液中进行循环伏安扫描,最终发现HOPG的氧化峰
碳纳米管在1991年被Iijima 第一次发现,是 碳的同素异型体这个大家族的一名新成员, CNTs是由sp2构型的碳单元构成的,并且呈 现出无缝的六角蜂巢格子构型,直径只有几 纳米,长度也只有几微米。 CNTs可以分为两类,分别命名为单层管 (SWCNTs)和多层管(MWCNTs)。多层管可 以直观的看到其同轴紧密相连的石墨管。
二. 引 言
1.碳质材料展示了许多良好的性质,比如说结构多样性、高度的化学适应 性、廉价、多领域潜力巨大。拥有相当大的电化学惰性,在表面化学和许 多氧化还原反应参与的电活性研究方面发挥着很大作用。
2.许许多多的碳质材料应运而生,在电分析、能量转换及存储方面;在电催 化、光电化学、电致变色和消失方面;在发光二极管装置、电合成领域的 场效应管方面;和在生物技术,污染物的减少、饮用水的净化方面都有很 好的应用前景。
文献综述:有机光电材料的研究现状及挑战

文献综述:有机光电材料的研究现状及挑战有机光电材料是一类具有光电活性的有机材料,其研究涉及到材料科学、物理化学、生物学等多个领域。
近年来,有机光电材料的研究成果越来越丰富,大量的新型有机光电材料不断涌现。
本文将简要综述有机光电材料的研究现状及挑战。
一、有机光电材料的研究现状1. 有机发光材料有机发光材料具有高亮度、高效率、长寿命等优点,广泛应用于显示器、照明、传感器等领域。
目前,有机发光材料的研究主要集中在发展新型的荧光染料和荧光聚合材料,以及探索其在太阳能电池、生物成像、信息存储等领域的应用。
2. 有机光电检测材料有机光电检测材料是另一类研究热点。
随着数字化和智能化的加速发展,光电检测材料已成为高科技领域的关键材料之一。
目前常见的有机光电检测材料有聚合物、小分子、富勒烯等,其在光电器件、生物传感器、光伏器件等领域展现出良好的应用前景。
3. 有机光催化材料有机光催化材料是指通过光催化反应来实现化学反应的材料。
在光催化材料领域,通过改变有机半导体材料的组成、晶体结构等方面来提高材料的光催化性能,从而实现更高效、更经济的应用。
此外,有机光催化材料还可以用于环境修复、污水处理、空气净化等领域。
二、有机光电材料的挑战1. 稳定性问题尽管有机光电材料具有许多优点,但其稳定性问题是限制其广泛应用的主要因素之一。
有机光电材料的稳定性主要受到环境因素(如温度、湿度、氧气)的影响,同时也与其自身的化学结构有关。
因此,如何提高有机光电材料的稳定性是其研究的重要方向。
2. 效率问题尽管有机光电材料的发光效率和光电转换效率较高,但在实际应用中仍存在效率问题。
这主要是由于有机光电材料的载流子传输性能和界面效应等问题引起的。
因此,如何提高有机光电材料的效率也是其研究的重要方向。
3. 制造成本问题有机光电材料的制造成本较高,这也是限制其广泛应用的原因之一。
因此,如何降低有机光电材料的制造成本,如通过改进制造工艺、优化器件结构等方法,也是其研究的重要方向。
光电催化综述

光电催化综述光电催化是一种将光能转换为化学能的多相催化过程,主要涉及光能、电子和离子的转移。
这种技术通过使用光电极(通常是半导体材料)与电解液接触,利用光的照射产生光生电子和空穴,这些电子和空穴在电场的作用下分离并参与氧化还原反应。
光电催化有广阔的应用前景,尤其是在太阳能转化和废水处理领域。
例如,通过使用光电催化技术,可以有效地将太阳光分解水产生氢气和氧气。
在光催化过程中,半导体光催化剂的能带结构起着重要作用,它由填满电子的低能价带和空的高能导带构成,价带和导带之间存在禁带。
当能量大于等于禁带宽度的光照射时,价带上的电子激发跃迁至导带,价带上产生相应的空穴。
这些空穴和电子在电场作用下分离并迁移到粒子表面,产生空穴-电子对。
光电催化的反应过程包括电子和空穴在光催化剂的体内复合、电子和空穴在光催化的表面复合、迁移到光催化剂表面的电子与表面吸附的电子受体反应(即还原过程)、迁移到光催化剂表面的空穴与表面吸附的电子给体反应(即氧化过程)。
其中体相复合和表面复合不利于光催化反应,而还原过程和氧化过程有利于光催化反应。
光电催化的一个重要应用是处理水中的药物和个人护理品。
这种技术通过将光催化法与电化学法相结合,通过在光照下对半导体光阳极施加偏置电压,外加电场有效地抑制了光生电子空穴对的复合,提高了半导体光催化剂的光催化活性。
此外,光电催化在木质素的价值化利用中也发挥了重要作用。
木质素解聚是木质素化学解聚的过程,具有反应速度快、化学结构断裂模式清晰等优点。
尤其在光-电催化过程中,可以在温和条件下产生光/电子,并直接作用于反应底物的特定化学键并使其断裂,或将反应物转化为特定的自由基中间体,促进底物的连续转化。
总的来说,光电催化是一种具有广泛应用前景的技术,其核心在于利用光电极实现光能与化学能的转换。
它涉及到复杂的物理、化学和电学过程,需要进一步的研究和开发以实现更高效和可持续的应用。
硫铟铜光电化学传感

硫铟铜光电化学传感硫铟铜(CuInS2)是一种具有重要光电性能的半导体材料,具有优异的光电化学传感性能。
近年来,随着人们对环境污染、生物医药等领域需求的不断增加,硫铟铜在光电化学传感方面的应用也越来越受到关注。
本文将从硫铟铜的基本性能、光电化学传感的原理、应用领域等方面进行综述。
一、硫铟铜的基本性能硫铟铜是一种具有光电性能的半导体材料,其晶体结构为立方晶系,晶格常数为5.78 。
硫铟铜的能隙为1.5 eV,属于直接带隙半导体,其导电性能较好,具有优异的光电化学性能。
硫铟铜的光电化学性能主要表现在以下几个方面:1. 光吸收性能:硫铟铜具有较强的吸收紫外光和可见光的能力,其光吸收谱范围为300-800 nm。
2. 光致发光性能:硫铟铜具有较强的光致发光性能,其发光波长范围为500-800 nm,可用于制备发光二极管(LED)等器件。
3. 光电化学性能:硫铟铜具有优异的光电化学性能,可用于制备光电化学传感器等器件。
二、硫铟铜光电化学传感的原理硫铟铜光电化学传感的原理是基于硫铟铜对特定物质的化学反应产生电化学信号,实现对物质的检测。
硫铟铜光电化学传感的具体步骤如下:1. 光激发:将硫铟铜暴露在特定波长的光源下,使其吸收光子能量,处于激发态。
2. 氧化还原反应:将待测物质加入硫铟铜溶液中,与硫铟铜发生氧化还原反应,产生电流信号。
反应方程式如下:M + n e- → M(n-)其中,M为待测物质,n为电荷数。
3. 电流检测:通过电流检测电路,将产生的电流信号转化为检测信号,实现对待测物质的检测。
三、硫铟铜光电化学传感的应用领域硫铟铜光电化学传感具有广泛的应用领域,主要包括以下几个方面:1. 环境污染监测:硫铟铜光电化学传感可用于检测空气、水等环境中的有害物质,如重金属离子、有机物等。
通过硫铟铜光电化学传感器的使用,可以实现对环境污染的监测和预警。
2. 生物医药检测:硫铟铜光电化学传感可用于检测生物体内的代谢产物、药物等物质。
COD检测方法综述

COD检测方法综述COD(Chemical Oxygen Demand)是用来衡量水体中有机物含量的常用指标,是评价废水处理效果的重要参数之一、COD检测方法的选择和应用对于废水处理和环境保护非常重要。
本文将对COD检测方法进行综述,包括传统的化学氧化法、光度法、电化学法和光电法。
1.化学氧化法:化学氧化法是传统的COD检测方法,常用的氧化剂包括高锰酸钾、二氧化氯等。
其中,高锰酸钾法是最为常用的方法,将高锰酸钾溶液与待测样品反应,通过后续滴定过程来确定氧化剂的消耗量,从而计算COD含量。
然而,高锰酸钾法存在检测结果不稳定、对有机物种类敏感等问题。
2.光度法:光度法是使用光谱仪或分光光度计测量物质溶液的吸光度和浓度之间的关系来确定COD含量。
常用的光度法包括紫外光度法、可见光光度法和近红外光度法等。
紫外光度法在220-360nm范围内测量样品的吸光度,可用于检测COD含量较低的水样,但其对色度和悬浮物有较高的要求。
可见光光度法则通过测量特定波长的光的透过率或吸光度来确定COD含量,适用于不同色度和浑浊度的水样。
近红外光度法可以通过测量在700-2500nm范围内的特定波长来判断COD水平,但其仪器设备较为昂贵。
3.电化学法:电化学法包括电解法和电化学检测法。
电解法通过电解样品溶液来消耗有机物,然后测量所消耗电量来计算COD含量。
电化学检测法则通过在电极表面产生化学反应,测量其电流和电压变化来判断有机物含量。
电化学法具有操作简单、快速、准确的特点,但对样品的预处理要求较高。
4.光电法:光电法是近年来发展的一种COD检测方法,通过结合光学传感技术和电化学分析技术来实现。
光电法包括光电解法和光电光谱法。
光电解法利用氧气电极和光电极共同作用,实现有机物的氧化和光电子表征。
光电光谱法则通过使用特定波长的光源和光谱仪测量光电极的电流变化来确定COD含量。
光电法具有灵敏度高、响应速度快、操作简便等优点。
综上所述,不同的COD检测方法各自具有自己的特点和适用性。
光电催化co2还原的文献综述

光电催化co2还原的文献综述摘要:1.引言2.光电催化CO2 还原的原理3.光电催化CO2 还原的研究进展4.光电催化CO2 还原的应用前景5.结论正文:光电催化CO2 还原的文献综述随着全球气候变化和环境污染问题日益严重,开发可再生能源和减少二氧化碳排放已成为当务之急。
光电催化CO2 还原技术作为一种新型的可再生能源转换技术,具有较高的研究价值和应用前景。
本文综述了光电催化CO2 还原的原理、研究进展及其应用前景。
1.引言二氧化碳(CO2)排放过多会导致全球变暖和温室效应,对生态环境产生严重影响。
光电催化CO2 还原技术利用光电转换产生的电子和空穴,在催化剂的作用下将CO2 还原为碳氢燃料,实现CO2 的资源化利用。
2.光电催化CO2 还原的原理光电催化CO2 还原主要依赖于光电转换器件(如太阳能电池)将光能转化为电能。
在光照条件下,光电转换器件产生电子和空穴,通过外部电路转移到催化剂表面。
在催化剂的作用下,电子和空穴参与CO2 的还原反应,生成碳氢燃料。
3.光电催化CO2 还原的研究进展光电催化CO2 还原技术的研究已取得了显著进展。
从催化剂材料、反应体系和器件结构等方面进行了大量探索。
目前,已成功研制出多种具有较高光电催化还原活性的催化剂,如金属氧化物、金属硫化物和金属碳化物等。
同时,研究者们还在研究高效的光电转换器件结构,以提高整体的光电催化还原性能。
4.光电催化CO2 还原的应用前景光电催化CO2 还原技术具有广泛的应用前景。
首先,该技术可以将太阳能直接转化为化学能,实现可再生能源的转换和利用。
其次,通过该技术可以将CO2 转化为碳氢燃料,减少温室气体排放,有助于减缓全球气候变化。
最后,光电催化CO2 还原技术还可以用于制备高附加值化学品,提高资源利用效率。
5.结论光电催化CO2 还原技术是一种具有前景的可再生能源转换技术。
通过进一步优化催化剂材料、反应体系和器件结构,有望实现高效、低成本的光电催化CO2 还原。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光电化学传感器的应用研究进展摘要:光电化学传感器是基于物质的光电转换特性确定待测物浓度的一类检测装置。
光电化学检测方法灵敏度高、设备简单、易于微型化,已经成为一种极具应用潜力的分析方法。
本文主要介绍光电化学传感器的工作机理、特点和应用,并对有代表性的实验进行了一定的讲述和总结。
关键词:光电化学;传感器一、引言20世纪70年代,人们就开始研究光照下半导体电极的电化学行为,并逐渐发展成为一门新学科——光电化学。
目前,光电化学是当前电化学领域中十分活跃的一个研究方向,它是光伏打电池、光电催化、光解和光电合成等实际应用的基础。
光电化学过程即光作用下的电化学过程,在光照射条件下,物质中电子从基态跃迁到激发态,进而产生电荷传递。
与电化学反应相类似,在光电化学反应体系中也会产生电流的流动。
因此,利用光电化学反应可以把光能转变成化学能或电能,通过其逆过程则可以把化学能或电能转换为光能。
待测物与光电化学活性物质之间的物理、化学相互作用产生的光电流或光电压的变化与待测物的浓度间的关系,是传感器定量的基础。
以光电化学原理建立起来的这种分析方法,其检测过程和电致化学发光正好相反,用光信号作为激发源,检测的是电化学信号。
和电化学发光的检测过程类似,都是采用不同形式的激发和检测信号,背景信号较低,因此,光电化学可能达到与电致化学发光相当的高灵敏度。
由于采用电化学检测,同光学检测相比,其设备价廉。
二、光电化学的概述1、光电化学的工作机理要了解光电化学的工作原理,首先得研究光催化技术。
光催化反应的本质是指在受光的激发后,催化剂表面产生的电子空穴对分别与氧化性物质和还原性物质相互作用的电化学过程。
这里以半导体二氧化钛(TiO)为例介绍一下光电化2学的工作原理。
半导体TiO具有由价带和导带所构成的带隙,价带由一系列填满电子的轨道构2成,而导带是由一系列未填充电子的轨道所构成。
当半导体近表面区在受到能量大于其带隙能量的光辐射时,价带中电子会受到激发跃迁到导带。
由于在半导体中存在着带隙,所激发的电子的驰豫过程比金属中的激发电子要慢得多,高能量的光激发可在半导体中产生电子-空穴对,拥有纳秒(ns)大小的足够寿命。
其中电子居于较高的能量状态,并可作为一个还原剂,而价带中的空穴则具有较高的氧化电势,只要这些电荷载流子具有足够长的寿命,即它们能够被吸附的反应物所捕获,分别进行氧化和还原反应,而不会复合,就有可能被用来作为催化反应的催化剂(图1)。
吸附在TiO2表面的O2会捕获电子,形成超氧离子,从而阻止光生电子与空穴的复合[1],生成的超氧离子在溶液中通过一定的反应形成H 2O2,进而转化为羟基自由基。
Fig.1 The charge reaction of TiO2 under the illumination由于光生电子和空穴是相伴而生,且数量相等,两者接触时必然会发生复合,为了解决这一问题,通过采用外加电压迫使光生电子向对电极方向移动,电子就可能与光生空穴发生分离,减少或避免了发生简单复合的机会,从而发展出了一种新型的技术——光电化学。
目前,光电化学主要是以半导体纳米微粒为研究对象(图2)[2],在光照射作用下,半导体微粒会产生电子-空穴对,并且流向粒子表面,与溶液中的氧化剂或还原剂反应,生成相应的产物,使得光生电子和空穴得到有效的分离。
当Fig.2 Photoelectrochemical progress of semiconductor nanoparticles.极化电势大于Eredox 时,则发生氧化反应,产生阳极光电流(Ia);当极化电势小于Eredox 时,则发生还原反应,产生阴极光电流(Ic);当极化电势既不利于氧化反应也不利于还原反应时,电极附近的光生电子或空穴会直接进入到电极里,产生微弱的光电流。
同时,由于半导体微粒的尺寸在纳米范围内,粒子尺寸小于载流子的自由程,因此可以降低光生载流子的复合,提高光能利用效率。
2、光工作电极的制备光电化学反应体系是在传统的光催化反应体系基础上发展而来的,一般有光源系统和三电极体系构成,其中对电极是金属电极,参比电极可以是饱和甘汞电极或氯化银电极,至于工作电极目前应用最多的是TiO2电极。
光电极即工作电极是光电化学体系中最为关键的部件,且需要制备。
半导体TiO2材料的常用制备方法有溶胶凝胶法、水热法、热溶剂法、直接氧化法等。
实验中,我们常用的方法是直接氧化法。
直接氧化法也是制备TiO2纳米材料的一种通用方法,可以采用阳极氧化法或者通过氧化剂氧化钛片制得。
在制备的过程中,通过加入无机盐可以控制TiO2纳米棒的晶相,如:F-和SO42-可以形成锐钛矿型TiO2,Cl-可以形成金红石型TiO2。
目前,阳极氧化法被广泛应用于TiO2纳米管的制备,且随着外加电压的变化,可以得到不同长度的纳米管。
Fig.3 SEM and TEM images of TiO2 nanoparticles (A, B); nanorods (C, D);nanowires (E, F); and nanotubes (G, H).3、光工作电极的修饰一个具有实际应用价值的光电化学体系必须具有光照稳定性,选择性,高效和宽的光谱响应。
而一般的半导体还不能全部满足以上要求,如金属硫化物由于其禁带宽度比较窄,对可见光非常敏感,但不稳定,易被光降解。
而金属氧化物TiO2相当稳定,但是禁带宽度(Eg= 3.2 eV)比较宽,只能在紫外区显示光化学活性。
然而,若对半导体材料TiO2表面进行修饰,如贵金属表面沉积、半导体偶合、表面敏化和金属离子掺杂等方法可以扩展光响应范围至可见区,有效阻止电荷在转移过程的复合,从而改善TiO2光电化学性质。
4、光电化学反应的影响因素(1)外加电压在光电化学反应中,通过恒电位仪施加的电压对光电化学有着重要的作用。
大量的研究结果表明,在没有外加电压仅有光照或无光照仅加电压时,TiO2光电化学体系中所产生的电流非常微弱,说明光电化学反应必须用大于TiO2禁带宽度能量(Eg= 3.2 eV)的光源激发产生电子和空穴,然后利用外加的电压使电子和空穴分离,才能达到光电催化的目的。
一般来说,在光电降解有机物的反应中,存在一个最佳电压值,不同的实验条件下得到的最佳电压值是不同的。
比如,在采用TiO2颗粒膜电极[3],250 W 氙灯或1000 W 卤素灯对4-氯苯酚进行光电催化降解时,选择的外加电压为600 mV(SCE)。
采用TiO2/Pt/玻璃薄膜电极[4],30 W紫外灯对可溶性染料进行光电降解时,采用的最佳电压为800 mV(SCE)。
而Kim等用TiO2薄膜电极和15 W 紫外灯对甲酸进行光电降解时,外加电压达到了2.0 V(SCE)。
(2)pH值的影响在光催化反应中,溶液的pH值对反应动力学的影响较为复杂。
一般认为,改变pH值将改变溶液中TiO2界面电荷性质,因而影响电解质在TiO2表面上的吸附行为。
但在光电化学反应体系中,由于存在外加阳极偏压,溶液初始pH值对有机物降解动力学的影响更为复杂。
有研究表明[5],在不同的pH值条件下,TiO2电极有不同的伏安特性:当光照射时,极限光电流是溶液pH值的函数,pH值为5时极限光电流最大,在pH值为8时要小一些,pH值为3时最小。
然而,不同pH值条件下光电化学反应的速率常数的大小顺序为:pH8 > pH5 > pH3,原因是由不同的机理造成的。
(3)光强的影响由于TiO2的禁带宽度为3.2 eV,所用的激发光波长必须小于387 nm。
目前用的最多的是人工光源,如:中压汞灯、高压汞灯、紫外线杀菌灯等,而太阳光利用率比较低,一般均小于5%。
研究表明[6],低辐射时,反应速率常数k与光辐射度I存在线性关系,高辐射时,k与I的平方根之间存在线性关系。
一般来说,高强度的灯或集中的太阳光源,其光子效率较差。
这是由于光强过大时,存在中间氧化物在催化剂表面的竞争复合;同时,随着光强的增加,电子与空穴增加,电子与空穴的复合也会增加。
(4)氧气的影响氧气对有机物光电降解的影响主要来自两个方面,第一,氧气是有机物降解反应发生的必要条件,在反应过程中有机物和氧气分别被氧化和还原。
第二,氧气直接影响TiO 2半导体电极的开路电位光电压响应[7],如当半导体电极存在于氧气饱和的0.05 mol L -1的NaOH 溶液中时,光电流响应值比在用N 2饱和的溶液中要小12.5%左右,这是因为当没有氧气存在时,光生电子不会被猝灭,而是向对电极运动,形成较大的光电流;但是当有氧气存在时,绝大部分光生电子被猝灭,流向对电极的相对来说比较少,所以电流也要小得多。
可见,氧气会影响光电化学反应中外电路中电流的大小。
(5)电子接受剂在光催化反应中,电子接受剂是氧,但是对于光电化学反应来说在无氧的条件下也可以有效进行,这说明光电化学反应中的电子接受剂不一定是氧,而可能是H +。
如果是H +充当了光电化学反应中的电子接受剂,阴极上应该有氢气产生。
同时,有研究[8]发现溶液pH 值随时间不断升高,这也证明光电化学反应中有氢气产生。
因为在对电极上发生析氢后,溶液中H +减少,pH 值增加。
当光电化学反应在氧气饱和的溶液中进行时,溶液pH 值也会随时间不断升高,但与N 2饱和的溶液相比较,pH 值的增加要小一些,说明氧气和H +都是电子接受剂。
根据上面的分析我们可以知道,在光电化学反应降解有机物过程中,留在阳极上的空穴具有强的氧化能力,与水分子反应生成羟基游离基等氧化能力极强的氧化剂,使有机物氧化。
而在无氧条件下时,具有很强还原能力的光生电子在阴极上同H +反应放出氢气。
因此,光电化学方法不仅能消除有机污染物,同时还能产生大量洁净的氢能源,目前在这方面的研究还不多。
二、光电化学的应用研究光电化学分析是在电化学方法基础上发展起来的一种新型的检测方法,该方法利用光和电两种方式作为信号的产生和检测,由于两者不会相互干扰,背景低,因此与电化学分析方法相比光电化学具有更高的灵敏度。
近年来,随着新型半导体材料以及相关技术的不断涌现,光电化学半导体生物传感器得到了迅猛的发展,已经在微型化、集成化等方面显现出其独特的优越性,在生命科学、药物动力学、环境监测和食品等领域具有广阔的应用前景[9,10]。
下面主要介绍了基于半导体生物传感器的光电分析方法应用研究。
目前,光电化学分析方法已经在DNA杂交(图4)[11,12]、免疫检测[13]、配体受体结合[14]等方面得到了广泛的应用。
Liang等[15]通过光电化学分析方法成功检测了溶液中化学损伤的DNA,并利用光电化学生物传感器研究了Fenton 试剂对DNA的氧化损伤,以及氧化苯乙烯与DNA的加合物[16]。
随后,他们[17]将葡萄糖氧化酶组装到传感器表面,模拟生物体内Fenton反应对DNA的损伤。