数学分析期末考试题1、2(第二份有答案)

合集下载

《数学分析下册》期末考试卷及参考答案

《数学分析下册》期末考试卷及参考答案

数学分析下册期末模拟试卷及参考答案一、填空题(第1题每空2分,第2,3,4,5题每题5分,共26分)1、已知u =则u x∂=∂ ,u y ∂=∂ ,du = 。

2、设22L y a +=2:x ,则Lxdy ydx -=⎰ 。

3、设L ⎧⎨⎩x=3cost ,:y=3sint.(02t π≤≤),则曲线积分ds ⎰22L(x +y )= 。

4、改变累次积分32dy f dx ⎰⎰3y (x ,y )的次序为 。

5、设1D x y +≤:,则1)Ddxdy ⎰⎰= 。

二、判断题(正确的打“O ”;错误的打“×”;每题3分,共15分) 1、若函数f (x ,y )在点p 00(x ,y )连续,则函数f (x ,y )点p 00(x ,y )必存在一阶偏导数。

( )2、若函数f (x ,y )在点p 00(x ,y ) 可微,则函数f (x ,y )在点p 00(x ,y )连续。

( )3、若函数f (x ,y )在点p 00(x ,y )存在二阶偏导数00(,)xy f x y 和00(,)yx f x y ,则必有 0000(,)(,)xy yx f x y f x y =。

( ) 4、(,)(,)(,)(,)L A B L B A f x y dx f x y dx =⎰⎰。

( ) 5、若函数f (x ,y )在有界闭区域D 上连续,则函数f (x ,y )在D 上可积。

( ) 三、计算题 ( 每小题9分,共45分)1、用格林公式计算曲线积分 (sin 3)(cos 3)x x AOI e y y dx e y dy =-+-⎰ ,其中AO 为由(,0)A a 到(0,0)O 经过圆22x y ax +=上半部分的路线。

、计算三重积分22()Vx y dxdydz +⎰⎰⎰,是由抛物面22z x y =+与平面4z =围成的立体。

、计算第一型曲面积分 SI dS =⎰⎰ ,其中S 是球面2222x y z R ++=上被平面(0)z a a R =<<所截下的顶部(z a ≥)。

数学分析期末考试试题2

数学分析期末考试试题2

数学分析期末考试试题2### 数学分析期末考试试题2一、选择题(每题3分,共15分)1. 函数\( f(x) = \sin x \)在区间[0, \( \pi \)]上的最大值是: - A. 1- B. \( \frac{\pi}{2} \)- C. \( \sqrt{2} \)- D. \( \sqrt{3} \)2. 极限\( \lim_{x \to 0} \frac{\sin x}{x} \)的值是:- A. 0- B. 1- C. \( \frac{1}{2} \)- D. \( \frac{\pi}{2} \)3. 如果\( \int_{0}^{1} f(x) \, dx = 2 \),那么\( \int_{0}^{1} x f(x) \, dx \)的值是:- A. 0- B. 1- C. 2- D. 无法确定4. 函数\( g(x) = x^2 + 3x + 2 \)的导数是:- A. \( 2x + 3 \)- B. \( x^2 + 3 \)- C. \( 2 + 3x \)- D. \( 3x + 2 \)5. 以下哪个序列是收敛的?- A. \( \{ \frac{1}{n} \} \)- B. \( \{ (-1)^n \} \)- C. \( \{ n^2 \} \)- D. \( \{ \frac{1}{n^2} \} \)二、填空题(每题2分,共10分)1. 函数\( f(x) = x^3 - 6x^2 + 11x - 6 \)的极值点是______。

2. 如果\( \lim_{n \to \infty} a_n = L \),则\( \lim_{n \to \infty} \frac{a_1 + a_2 + \ldots + a_n}{n} = \)______。

3. 函数\( h(x) = e^x \)的泰勒展开式在\( x = 0 \)处的前三项是______。

数学分析试卷及答案6套

数学分析试卷及答案6套

f ( x1 ) f ( x2 ) .
g ( x) ,x 0 九. (12 分)设 f ( x) x 且 g (0) g (0) 0 , g (0) 3 , 求 f (0) . 0, x 0
答案参见我的新浪博客:/s/blog_3fb788630100muda.html
lim
h 0
1 h

x
a
[ f (t h) f (t )] dt f ( x) f (a).
六 (10 分 ) 求椭圆区域 R : (a1 x b1 y c1 ) 2 (a2 x b2 y c2 ) 2 1 (a1b2 a2b1 0) 的 面积 A . 七 (10 分) 设 F (t ) f ( x 2 y 2 z 2 ) dx dy dz ,其中 V : x 2 y 2 z 2 t 2 (t 0) ,
四. (12 分)证明函数 f ( x)
五. (12 分)叙述闭区间套定理并以此证明闭区间上连续函数必有界. 六. (10 分)证明任一齐次多项式至少存在一个实数零点. 七. (12 分)确定 a, b 使 lim ( x 2 x 1 ax b) 0 .
x
1 5 八. (14 分)求函数 f ( x) 2 x 3 9 x 2 12 x 在 [ , ] 的最大值与最小值. 4 2
x x0
x x0
1 1 . f ( x) b
三. (10 分)设 an 0 ,且 lim
an l 1 , 证明 lim an 0 . n n a n 1
四. (10 分 ) 证 明 函 数 f ( x) 在 开 区 间 ( a, b) 一 致 连 续 f ( x) 在 ( a, b) 连 续 , 且

数学分析上学期期末考试试题(及答案)

数学分析上学期期末考试试题(及答案)

数学分析上学期期末考试试题(及答案)一、选择题(每小题2分,共20分)1. 下列哪个不是测度论中的重要定理?A. 开集的性质B. 测度的可贸易性C. 有限可加性定理D. 外测度的定义2. 设函数f(x)在[a, b]上可导,下列关于f(x)的结论中正确的是:A. f(x)在[a, b]上一定为增函数B. f(x)在[a, b]上一定为减函数C. f(x)在[a, b]上既可以是增函数也可以是减函数D. f(x)在[a, b]上一定为周期函数3. 以下哪个不是级数收敛的充要条件?A. 极限一致有界B. 积分收敛C. 极限值为零D. 部分和有界4. 若函数序列fn(x)在[a, b]上一致收敛于f(x),则f(x)在[a, b]上一定是A. 递增的B. 递减的C. 周期函数D. 连续函数5. 下列哪个不是积分的线性性质?A. ∫[a, b](f+g)(x)dx = ∫[a, b]f(x)dx + ∫[a, b]g(x)dxB. ∫[a, b]cf(x)dx = c∫[a, b]f(x)dx (c为常数)C. ∫[a, b]f(x)g(x)dx = ∫[a, b]f(x)dx * ∫[a, b]g(x)dxD. ∫[a, b]f(x)dx = -∫[b, a]f(x)dx6. 函数f(x)=|x|/(x^2+9)的不可导点是A. x=-3B. x=3C. x=-3和x=-sqrt(3)D. x=-3和x=sqrt(3)7. 设函数u(x, y)具有二阶连续偏导数,下列哪个条件可以确保u(x, y)为调和函数?A. u_xx + u_yy = 0B. u_xx + u_yy = 1C. u_xx - u_yy = 0D. u_xx - u_yy = 18. 设实数α为2π的有理数倍数,函数f(x)的周期为2π,下列哪个函数一定是f(x)的周期函数?A. f(x + α)B. f(x - α)C. f(-x)D. f(x/2)9. 设f(x)在区间[a, b]上一阶可导,且f(a)=f(b)=0,若存在c∈(a,b)使得f(c)=0,则函数f(x)在[a, b]上的其中一个极值点为A. aB. bC. cD. 以上都可能是10. 函数f(x)对任意的x∈(-∞, +∞)满足f'(x) = f(x),若f(x)在x=0处的值为2,则f(1)的值为A. -1B. 0C. 1D. 2二、填空题(每小题5分,共20分)1. 若函数f(x)可导,则f(x)________是可测的,且__________是可测的。

数学分析试卷及答案6套

数学分析试卷及答案6套

数学分析-1样题(一)一. (8分)用数列极限的N ε-定义证明1n =.二. (8分)设有复合函数[()]f g x , 满足: (1) lim ()x ag x b →=;(2) 0()x U a ∀∈,有0()()g x U b ∈ (3) lim ()u bf u A →=用εδ-定义证明, lim [()]x af g x A →=.三. (10分)证明数列{}n x :cos1cos 2cos 1223(1)n nx n n =+++⋅⋅⋅+L 收敛. 四. (12分)证明函数1()f x x=在[,1]a (01)a <<一致连续,在(0,1]不一致连续. 五. (12分)叙述闭区间套定理并以此证明闭区间上连续函数必有界. 六. (10分)证明任一齐次多项式至少存在一个实数零点. 七. (12分)确定,a b使lim )0x ax b →+∞-=.八. (14分)求函数32()2912f x x x x =-+在15[,]42-的最大值与最小值.九. (14分)设函数()f x 在[,]a b 二阶可导, ()()0f a f b ''==.证明存在(,)a b ξ∈,使24()()()()f f b f a b a ζ''≥--.数学分析-1样题(二)一. (10分)设数列{}n a 满足: 1a =, 1()n a n N +=∈, 其中a 是一给定的正常数, 证明{}n a 收敛,并求其极限.二. (10分)设0lim ()0x x f x b →=≠, 用εδ-定义证明011lim()x x f x b→=.三. (10分)设0n a >,且1lim1nn n a l a →∞+=>, 证明lim 0n n a →∞=.四. (10分)证明函数()f x 在开区间(,)a b 一致连续⇔()f x 在(,)a b 连续,且lim ()x a f x +→,lim ()x bf x -→存在有限. 五. (12分)叙述确界定理并以此证明闭区间连续函数的零点定理.六. (12分)证明:若函数在连续,且()0f a ≠,而函数2[()]f x 在a 可导,则函数()f x 在a 可导. 七. (12分)求函数()1f x x x ααα=-+-在的最大值,其中01α<<.八. (12分)设f 在上是凸函数,且在(,)a b 可微,则对任意1x ,2x (,)a b ∈, 12x x <,都有12()()f x f x ''≤.九. (12分)设(),0()0,0g x x f x x x ⎧ ≠⎪=⎨⎪ =⎩ 且(0)(0)0g g '==, (0)3g ''=, 求(0)f '.数学分析-2样题(一)一.(各5分,共20分)求下列不定积分与定积分: 1. arctan x x dx ⎰2. xe dx -⎰3.ln 0⎰4.20sin 1cos x xdx xπ+⎰二.(10分)设()f x 是上的非负连续函数, ()0baf x dx =⎰.证明()0f x = ([,])x a b ∈.三. (10分)证明20sin 0xdx xπ>⎰. 四. (15分)证明函数级数(1)nn x x∞=-∑在不一致收敛, 在[0,]δ(其中)一致收敛.五. (10分)将函数,0(),0x x f x x x ππππ+ ≤≤⎧=⎨- <≤⎩展成傅立叶级数.六. (10分)设22220(,)0,0xy x y f x y x y ⎧ +≠⎪=⎨⎪ +=⎩证明: (1) (0,0)x f ', (0,0)y f '存在; (2) (,)x f x y ',(,)y f x y '在(0,0)不连续;(3) (,)f x y 在(0,0)可微.七. (10分)用钢板制造容积为V 的无盖长方形水箱,怎样选择水箱的长、宽、高才最省钢板? 八. (15分)设01σ<<, 证明111(1)n n n σσ∞=<+∑. 数学分析-2样题(二)一. (各5分,共20分)求下列不定积分与定积分:1.(0)a >2.1172815714x x dx x x++⎰3.10arcsin x dx ⎰4.1000π⎰二. (各5分,共10分)求下列数列与函数极限: 1. 221limnn k nn k→∞=+∑2. 20lim1xt xx x e dt e →-⎰三.(10分)设函数在[,]a b 连续,对任意[,]a b 上的连续函数()g x , ()()0g a g b ==,有()()0baf xg x dx =⎰.证明()0f x = ([,])x a b ∈.四. (15分)定义[0,1]上的函数列 证明{()}n f x 在[0,1]不一致收敛. 五. (10分)求幂级数(1)nn n x∞=+∑的和函数.六. (10分)用εδ-定义证明2(,)(2,1)lim (43)19x y x y →+=.七. (12分)求函数22(2)(2)(0)u ax x by y ab =-- ≠的极值.八. (13分)设正项级数1nn a∞=∑收敛,且1()n n a a n N ++≥ ∈.证明lim 0n n na →∞=.数学分析-3样题(一)一 (10分) 证明方程11(, )0F x zy y zx --++=所确定的隐函数(, )z z x y =满足方程.z z xy z xy x y∂∂+=-∂∂二 (10分) 设n 个正数12, , , n x x x L 之和是a ,求函数u =.三 (14分) 设无穷积分() af x dx +∞⎰收敛,函数()f x 在[, )a +∞单调,证明四 (10分) 求函数1220() ln() F y x y dx =+⎰的导数(0).y >五 (14分) 计算六 (10分) 求半径为a 的球面的面积S . 七 (10分) 求六个平面所围的平行六面体V 的体积I ,其中, , , i i i i a b c h 都是常数,且0 (1, 2, 3).i h i >= 八 (12分) 求22C xdy ydx x y -+⎰Ñ,其中C 是光滑的不通过原点的正向闭曲线.九 (10分) 求dS z ∑⎰⎰,其中∑是球面2222x y z a ++=被平面 (0)z h h a =<<所截的顶部. 数学分析-3样题(二)一 (10分) 求曲面2233, , x u v y u v z u v =+=+=+在点(0, 2)对应曲面上的点的切平面与法线方程.二 (10分) 求在两个曲面2221x xy y z -+-=与221x y +=交线上到原点最近的点. 三 (14分) 设函数()f x 在[1, )+∞单调减少,且lim ()0x f x →+∞=,证明无穷积分1() f x dx +∞⎰与级数1001()n f n =∑同时收敛或同时发散.四 (12分) 证明ln (0).ax bx e e bdx a b x a--+∞-=<<⎰五 (12分) 设函数()f x 在[, ]a A 连续,证明 [, ]x a A ∀∈,有六 (10分) 求椭圆区域221112221221: ()() 1 (0)R a x b y c a x b y c a b a b +++++≤-≠的面积A .七 (10分) 设222()() VF t f xy z dx dy dz =++⎰⎰⎰,其中2222: (0)V x y z t t ++≤≥,f 是连续函数,求'()F t .八 (10分) 应用曲线积分求(2sin )(cos )x y dx x y dy ++的原函数. 九 (12分) 计算 Sxyz dx dy ⎰⎰,其中S 是球面2221x y z ++=在0, 0x y ≥≥部分并取球面外侧.。

数学分析2期末考试题库

数学分析2期末考试题库

数学分析2期末试题库 《数学分析II 》考试试题(1)一、叙述题:(每小题6分,共18分)1、 牛顿-莱不尼兹公式2、∑∞=1n na收敛的cauchy 收敛原理3、 全微分 二、计算题:(每小题8分,共32分)1、4202sin limx dt t x x ⎰→2、求由曲线2x y =和2y x =围成的图形的面积和该图形绕x 轴旋转而成的几何体的体积。

3、求∑∞=+1)1(n nn n x 的收敛半径和收敛域,并求和4、已知zy x u = ,求yx u∂∂∂2三、(每小题10分,共30分)1、写出判别正项级数敛散性常用的三种方法并判别级数2、讨论反常积分⎰+∞--01dx e x x p 的敛散性3、讨论函数列),(1)(22+∞-∞∈+=x n x x S n 的一致收敛性四、证明题(每小题10分,共20分)1、设)2,1(11,01 =->>+n n x x x n n n ,证明∑∞=1n n x 发散 2、证明函数⎪⎩⎪⎨⎧=+≠++=000),(222222y x y x y x xy y x f 在(0,0)点连续且可偏导,但它在该点不可微。

,一、叙述题:(每小题5分,共10分)1、 叙述反常积分a dx x f ba,)(⎰为奇点收敛的cauchy 收敛原理2、 二元函数),(y x f 在区域D 上的一致连续 二、计算题:(每小题8分,共40分) 1、)212111(lim nn n n +++++∞→ 2、求摆线]2,0[)cos 1()sin (π∈⎩⎨⎧-=-=t t a y t t a x 与x 轴围成的面积3、求⎰∞+∞-++dx x xcpv 211)(4、求幂级数∑∞=-12)1(n nn x 的收敛半径和收敛域 5、),(yxxy f u =, 求y x u ∂∂∂2三、讨论与验证题:(每小题10分,共30分)1、yx y x y x f +-=2),(,求),(lim lim ),,(lim lim 0000y x f y x f x y y x →→→→;),(lim )0,0(),(y x f y x →是否存在?为什么?2、讨论反常积分⎰∞+0arctan dx x xp的敛散性。

数学分析期末考试题真题含答案

数学分析期末考试题真题含答案

数学分析期末考试题真题含答案一、填空题(每小题2分,共10分).________dx x)lnx (f ,)(.12=+=⎰⎰则若c x dx x f .________)x (F ,)(.21cos 2='=⎰-则若dt ex F x t=+-⎰-dx x x x )cos 21(.3112 . .______.41013时收敛满足条件当广义积分p xdxp ⎰-._______u lim )u 12u 1.51nn=+-∞→∞=∑n n n 收敛,则(若 二、单选题(每小题2分,共10分)的一个原函数是则的导函数是若)(,cos )(.1x f x x f ( )(A )x sin 1+; (B )x sin 1-; (C )x cos 1+; (D )x cos 1-. 2.函数)(x f 在],[b a 上可积的必要条件是)(x f 在],[b a 上( ) (A )连续 ; (B )有界; (C ) 无间断点; (D)有原函数.3.下列反常积分收敛的是( ) (A)⎰∞+321dx x ; (B) ⎰∞+3ln dx x x ; (C) ⎰∞+3sin dx xx ; (D) ⎰∞+3ln 1dx x . 4.下列级数收敛的是( )(A)∑∞=11n ne ; (B))11ln(1∑∞=+n n ; (C) ∑∞=2ln 1n n ; (D) )1)1((21n n n n --∑∞=.5.)1ln()(x x f +=的幂级数展开式为( )(A )]1,1(3232-∈•••+++x x x x ; (B )]1,1(3232-∈•••-+-x x x x ; (C ))1,1[3232-∈•••----x x x x ; (D ))1,1[3232-∈•••+-+-x x x x . 三、计算题(每小题8分,共48分);cos 1sin .1dx xx x ⎰++N);n (xdx tan I .2n n ∈=⎰的递推表达式求不定积分0);(,31x .3a >=-⎰∞+a x x d 求设π4.求函数项级数∑∞=1n xnx 的收敛域;5.求幂级数∑∞=+0)12(n n x n 的和函数;.x 9)(.62的幂级数展开成将函数x xx f +=四、讨论与应用题(每小题8分,共16分)1.求由轴y x y ,12-=与23x y =所围成的平面图形的面积,并求此图形绕x 轴旋转一周所成旋转体的体积..)1cos1()1(.211的敛散性讨论级数pn n n ∑∞=--- 五、证明题(每小题8分,共16分)(从以下三题可任选两道题做)1.设)(x f 在[0,1] 连续,试证⎰⎰=πππ00)(sin )2/()(sin dx x f dx x xf .2.设函数序列)}({x f n 在区间],[b a 上一致收敛于)(x f ,且)(x g 在区间],[b a 上有界,证明: 函数序列)}()({x g x f n 在区间],[b a 上一致收敛于)()(x g x f .3.证明若∑∞=12n nx收敛,则∑∞=-11n n nx 发散. 答案一.1.c x +2ln ; 2. x e x sin cos 2-; 3. 1sin 4; 4.32<p ; 5. 1.二.1.D 2.B 3.A 4.D 5.B. 三.1.解:原式dx xdx x x⎰⎰+=2tan 2cos 22 (2分)dx xdx x xd ⎰⎰+=2tan )2(tan (5分)Cx x dx x dx x x x +=+-=⎰⎰2tan 2tan 2tan 2tan . (8分)2.解:dx x x I n n )1(sec tan 22-=⎰- (2分)⎰---=21)(tan tan n n I x xd (4分)),4,3,2(tan 1121 =--=--n I x n n n . (6分)其中.cos ln ,10C x I C x I+-=+= (8分)3.解:令t x =-1,则tdt dx t x 2,12=+=,当+∞→a x :时,+∞→-1:a t (2分)故原式⎰∞+-+=1212a dt t (4分)31arctan 2arctan 21ππ=--==∞+-a t a . (6分)从而,4=a (8分) 4.解:由∑∑∞=∞==111n x n x n x n x. (2分)知,当1>x时, ∑∞=11n x n收敛,因此∑∞=1n xnx 也收敛; (4分)当1≤x时,∑∞=11n x n 发散,因此∑∞=1n xnx 也发散(0≠x ); (6分) 当0=x 时,原级数收敛;故原幂级数的收敛域为0=x 及),1(+∞. (8分)5.解:.)12(lim x x n n n n =+∞→;,1x 级数收敛时当<;)12n (,1x 0n 发散原级数化为时当∑∞=+=;)12n ()1(,1x 0n n 发散原级数化为时当∑∞=+--=故原幂级数的收敛域为)1,1(+-. (4分))1x 1()x 1(x 1x 11)x 1(2x x 11)x 1x (2x x 11)x 2x(x 11)dx nx (2x x 2nx x )12n ()x (s 221n n 1n x 01-n 0n nn n 0n n <<--+=-+-=-+'-=-+'=-+'=+=+=∑∑⎰∑∑∑∞=∞=∞=∞=∞=令 . (8分)6.解:nn n x x x x x f 202)3()1(91)3(191)(∑∞=-=+= (4分))1(21203)1(++∞=∑-=n n n nx (6分)).3,3(,9)1(121--=-∞=∑nn n nx (8分)五.1.解:1>联立可解得与由223x y x 1y =-= 1/2x =故所求图形的面积为31)34(]3)1[(2/1032/1022=-=--=⎰x x dx x x S (4分)2>所求旋转体的体积为dx x dx x V 222/102/1022)3()1(⎰⎰--=ππ (5分)ππ12031)5832(2/1053=--=x x x . (8分) 2.解.2pp n n 121~n 1cos1u -=由于.,n 121,21p 2p1n 故原级数绝对收敛收敛时当∑∞=> (4分) .,n 121)1(,n 121,21p 2p1n 1n 2p 1n 故条件收敛莱布尼茨交错级数条件满足而级数发散时当∑∑∞=-∞=-≤ 故原级数在21p ≤时条件收敛. (8分) 六.1.证明:则令,x t -=π (2分)⎰⎰-=πππ00)sin ()t ()sin (x dt t f dx x f (4分)⎰⎰-=πππ00xf(sinx)dx )sin (dx x f (6分) ⎰⎰=πππ00)sin ()2/()sin (x dx x f dx x f 故. (8分)2.证明:因为)(x g 在闭区间],[b a 上有界.不放设],[,)(b a x M x g ∈∀≤ (2分)又函数序列)}({x f n 在闭区间],[b a 上一致收敛,故对0)(,0>∃>∀εεN 当N n >时,对],[b a x ∈∀,都有Mx f x f n ε<-)()( (6分)于是当N n >时,对],[b a x ∈∀,都有ε<-)()()()(x g x f x g x f n 函数序列)}()({x g x f n 在闭区间],[b a 上一致收敛)()(x g x f . (8分)3.证明:由于)1(2122n x n x n n +≤ (4分),又因为∑∑∑∞=∞=∞=+=+12122121)1(n n n n n nx n x 收敛,故∑∞=12n nn x 收敛,从而,∑∞=1n n n x 绝对收敛. (6分).,11故原级数发散发散而∑∞=n n(8分)一、填空题(每小题3分,共15分)1.已知)(x f 为x 2sin 的原函数,且21)0(=f ,则⎰=dx x f )( 。

学历自考模拟试卷-《数学分析II》期末考查试卷【附答案】

学历自考模拟试卷-《数学分析II》期末考查试卷【附答案】

x
3xdx +
y x cos ydy (5 分)
M0M
0
0
= 3 x2 + x sin y (6 分)(说明:原函数可以直接观察得出!) 2
五、应用题(7 分)
一页长方形白纸,要求印刷面积占 Acm2 ,并使所留页边空白为:上部与下部宽度之和为: a + b = h cm,左部与右部宽度之和为: c + d = r cm (A,r,h 为已知数),求页面的长(y)和宽(x), 使它的面积最小.
(3 分)
L = (x − r)(y − h) − A = 0.
于是有
x = r , 1+
y = h , 1+
= − 1+
Ah r
(5
分)
根据问题的实际意义知,此时页面的面积是最小的.(7 分)
x = Ar + r, y = Ah + h. (6 分)
h
r
3
= ar cos , y
= br sin
(3
分),则
D
可表示为: 0
2 , 0 r
1(4
分),所以,
S =
2
d
1abrdr (5 分),所以 S = ab (7 分).
0
0
4、计算第二型曲面积分: I
=
S
1 dxdy ,其中 S 是椭球面 x2
z
a2
+
y2 b2
+
z2 c2
= 1 的外侧
解:由题意,目标函数与约束条件分别为 S = xy 与 x r, y h, (x − r)(y − h) = A. (1 分)作 Lagrange 函数 L = xy + [(x − r)(y − h) − A], (2 分)则有
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、 判断题(每小题2分,共20分)1.开域是非空连通开集,闭域是非空连通闭集. ( )2.当二元函数的重极限与两个累次极限都存在时,三者必相等. ( )3.连续函数的全增量等于偏增量之和. ( )4.xy y x f =),(在原点不可微. ( )5.若),(),(y x f y x f yxxy 与都存在,则),(),(y x f y x f yx xy =. ( ) 6.dy y x xyy )1(sin 21+⎰+∞在)1,0(内不一致收敛. ( ) 7.平面图形都是可求面积的. ( ) 8.学过的各种积分都可以以一种统一的形式来定义. ( ) 9.第二型曲面积分也有与之相对应的“积分中值定理”. ( ) 10.二重积分定义中分割T 的细度T不能用}{max 1i ni σ∆≤≤来代替. ( )二、 填空题(每小题3分,共15分) 1.设)sin(y x e z xy+=,则其全微分=dz .2.设32),,(yzxy z y x f +=,则f 在点)1,1,2(0-P 处的梯度=)(0P grad . 3.设L 为沿抛物线22x y =,从)0,0(O 到)2,1(B 的一段,则⎰=+Lydx xdy. 4.边长为a 密度为b 的立方体关于其任一棱的转动惯量等于 .5.曲面273222=-+z y x 在点(3,1,1)处的法线方程为 . 三、计算题(每小题5分,共20分) 1.求极限xyy x y x )(lim 22)0,0(),(+→.2. 设),(y x z z =是由方程ze z y x=++所确定的隐函数,求xyz .3.设]1,0[]1,0[⨯=A ,求⎰⎰++=A y x ydxdyI 2322)1(. 4.计算抛物线)0()(2>=+a ax y x 与x 轴所围的面积.四、(10分)密度22),,(yx z y x +=ρ的物体V 由曲面222yxz +=与2=z 所围成,求该物体关于z 轴的转动惯量. 五、(10分)求第二类曲面积分⎰⎰++Sdxdy z dzdx y dydz x 222其中S 是球面2222)()()(R c z b y a x =-+-+-并取外侧为正向.六、(第1小题8分,第2小题7分,共15分). 1. 求曲线6222=++z y x ,22yx z +=在点(1,1,2)处的切线方程和法平面方程. 2.证明:22114π=+⎰+∞dx x . 七、(10分)应用积分号下的积分法,求积分)0(ln )1cos(ln 10>>-⎰a b dx xxx x ab . 二、 填空题(每小题3分,共15分) 1.设)sin(y x e z xy+=,则其全微分=dzdy x y x x e dx y x y x y e xyxy )]cos()sin([)]cos()sin([+++++++. 2.设32),,(yz xy z y x f +=,则f在点)1,1,2(0-P 处的梯度=)(0P grad (1,-3,-3). 3.设L 为沿抛物线22x y =,从)0,0(O 到)2,1(B 的一段,则⎰=+Lydx xdy2 . 4.边长为a 密度为b 的立方体关于其任一棱的转动惯量等于b a 532.5.曲面273222=-+z y x 在点(3,1,1)处的法线方程为111193--=-=-z y x . 三、计算题(每小题5分,共20分)1.求极限xyy x y x )(lim 22)0,0(),(+→.解:先求其对数的极限)ln(lim 22)0,0(),(y x xy y x +→. 由于)0,(0ln )ln(2222222+→=+→≤+r r y x r r y x xy 令, 所以)ln(lim 22)0,0(),(y x xy y x +→=0,故xyy x y x )(lim 22)0,0(),(+→=1.2. 设),(y x z z =是由方程ze z y x =++所确定的隐函数,求xyz .解:方程ze z y x =++两边对x ,y求偏导数,得x z e x z z ∂∂=∂∂+1 yze y z z∂∂=∂∂+1 解得11-=∂∂=∂∂ze y z x z 32)1()1()11(-=∂∂⋅--=-∂∂=z z z z z xy e ey z e e e y z 。

3.设]1,0[]1,0[⨯=A ,求⎰⎰++=A y x ydxdyI 2322)1(. 解:先对y 后对x 积分,得到⎰⎰++=10232210)1(y x ydy dx I ⎰+-+=1022)2111(dx x x 3122ln ++= 。

4.计算抛物线)0()(2>=+a ax y x 与x 轴所围的面积.解:曲线ACO 由函数],0[,a x x ax y ∈-=表示,ONA 为直线0=y ,于是⎰=xdy S D ⎰⎰+=ACO ONA xdy xdy dx axax a ⎰-=0)12(2061)2(a dx x ax a =-=⎰。

四、(10分)密度22),,(yx z y x +=ρ的物体V 由曲面222yxz +=与2=z 所围成,求该物体关于z 轴的转动惯量.解:根据物体关于坐标轴的转动惯量的定义,得dV z y x y x J Vz ),,()(22ρ⎰⎰⎰+= 作柱面坐标变换⎪⎩⎪⎨⎧===,,sin ,cos :z z r y r x T θθ有Vr z r J .),,(=θ在xy 坐标面上的投影为}4),{(22≤+=y x y x D , 则V 在T 下的原象为}20,20,22),,{(2πθθ≤≤≤≤≤≤='r z rz r V于是有dz r dr d J r z ⎰⎰⎰=πθ20202242ππ35256)22(22024=-=⎰dr r r 。

五、(10分)求第二类曲面积分⎰⎰++Sdxdy z dzdx y dydz x 222 其中S 是球面2222)()()(R c z b y a x =-+-+-并取外侧为正向. 解:由轮换对称性知,只须计算⎰⎰Sdxdy z 2,由,)()(222b y a x R c z ----±=- 利用极坐标变换可得:⎰⎰Sdxdyz2dxdy b y a x R c dxdyb y a x Rc Rb y a x Rb y a x ))()(())()((222222)()(222222)()(⎰⎰⎰⎰≤-+-≤-+-----------+=dr r R d c R 220204-=⎰⎰ϕπ c R 338π= 最后得到⎰⎰++Sdxdy z dzdx y dydz x 222)(383c b a R ++=π 。

六、(第1小题8分,第2小题7分,共15分). 1. 求曲线6222=++z y x ,22y x z +=在点)2,1,1(0P 处的切线方程和法平面方程. 解:令6),,(222-++=z y x z y x F ,22),,(y x z z y x G --=,- 则两曲面在点)2,1,1(0P 处的法向量为: )2,1,1//()4,2,2()2,2,2())(),(),((00001===P z y x z y x P F P F P F n )1,2,2()1,2,2())(),(),((00002--=--==P z y x y x P G P G P G n 于是曲线的切向量为:)0,1,1//()0,5,5(55122211--=-=--=j i kj i τ 从而切线方程为:21111-=--=-z y x , 法平面方程为:0)1()1()1(1=-⋅-+-⋅y x ,即0=-y x . 2.证明:22114π=+⎰+∞dx x . 证明:设411x t +=,则dt t t dx 4345)1(41----= ,有=+⎰+∞dx x4011dt t t 434110)1(41---⎰ )431,411(41--B =)431,43(41-B = 2243sin 41πππ=⋅=。

七、(10分)应用积分号下的积分法,求积分)0(ln )1cos(ln 10>>-⎰a b dx xxx x a b . 解:令⎪⎪⎩⎪⎪⎨⎧==-<<-=0,01,10,ln )1cos(ln )(x x a b x x x x x x g ab . 则)(x g 在]1,0[上连续,因此有dx x g dx xxx x I ab ⎰⎰=-=1010)(ln )1cos(ln )ln (])1cos(ln [10⎰⎰⎰-==b a ab yy ba x x x dy x dx dy x x 令⎪⎩⎪⎨⎧=≤<=0,010,)1cos(ln ),(x x x xy x f y则),(y x f 在],[]1,0[b a ⨯上连续,所以有dx dy x x y ba ])1(ln cos [10⎰⎰dx x x s co dy yb a ⎰⎰=)1(ln 10 )(cos )1(0tb a t y e x dt t e dy -+-+∞==⎰⎰令 dy y yba ⎰+++=2)1(11 2222ln 2122++++=a a b b 。

相关文档
最新文档