一元一次方程和不等式组含答案教学内容

合集下载

第2讲 方程(组)与不等式(组)(解析)

第2讲 方程(组)与不等式(组)(解析)

第2讲 方程(组)与不等式(组)知识点1 一元一次方程1.等式及其性质 ⑴ 等式:用等号“=”来表示等量关系的式子叫等式.⑵ 性质:① 如果,那么b ±c ;② 如果,那么bc ;如果,那么b c2. 方程、一元一次方程的解、概念(1) 方程:含有未知数的等式叫做方程;使方程左右两边的值相等的未知数的值,叫做方程的解;求方程解的过程叫做解方程. 方程的解与解方程不同.(2) 一元一次方程:在整式方程中,只含有一个未知数,并且未知数的次数是1,系数不等于0的方程叫做一元一次方程;它的一般形式为ax+b=0. 3. 解一元一次方程的步骤:①去分母;②去;③移;④合并;⑤系数化为1. 4. 一元一次方程的应用:(1)“审”是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的关系,寻找等量关系.(2)“设”就是设未知数,一般求什么就设什么为x ,但有时也可以间接设未知数. (3)“列”就是列方程,即列代数式表示相等关系中的各个量,列出方程,同时注意方程两边是同一类量,单位要统一.(4)“解”就是解方程,求出未知数的值.(5)“检验”就是指检验方程的解是否符合实际意义,当有不符合的解时,及时指出,舍去即可.b a ==±c a b a ==ac ba =()0≠c =c a ()0≠a(6)“答”就是写出答案,注意单位要写清楚.【典例】例1如果3m=3n,那么下列等式不一定成立的是()A.m﹣3=n﹣3B.2m+3=3n+2C.5+m=5+n D.m−3=n −3【解答】解:A、由3m=3n得m=n,两边都减去3得m﹣3=n﹣3,原变形正确,故此选项不符合题意;B、3m=3n两边都加上2得3m+2=3n+2,原变形错误,故此选项符合题意;C、由3m=3n得m=n,两边都加上5得5+m=5+n,原变形正确,故此选项不符合题意;D、由3m=3n得m=n,两边都除以﹣3得m−3=n−3,原变形正确,故此选项不符合题意;故选:B.【方法总结】本题考查了等式的性质,解题的关键是掌握等式的性质:性质1:等式两边同时加上(或减去)同一个代数式,所得结果仍是等式;性质2:等式两边同时乘同一个数(或除以一个不为0的数),所得结果仍是等式.例2解方程:(1)2﹣3(x﹣1)=2(x﹣2);(2).【解答】解:(1)2﹣3(x﹣1)=2(x﹣2),去括号,得2﹣3x+3=2x﹣4,移项,得﹣3x﹣2x=﹣4﹣2﹣3,合并同类项,得﹣5x=﹣9,系数化为1,得x=;(2),去分母,得3(3x+2)=15﹣5(2x﹣1),去括号,得9x+6=15﹣10x+5,移项,得9x+10x=15+5﹣6,合并同类项,得19x=24,系数化为1,得x=.【方法总结】本题考查了解一元一次方程,掌握解一元一次方程的基本步骤是解答本题的关键.例3若方程12﹣3(x+1)=7﹣x的解与关于x的方程6﹣2k=2(x+3)的解相同,求k的值.【解答】解:∵12﹣3(x+1)=7﹣x,∴12﹣3x﹣3=7﹣x,∴2=2x,∴x=1,把x=1代入6﹣2k=2(x+3)得6﹣2k=8,∴k=﹣1.【方法总结】本题考查了同解方程:如果两个方程的解相同,那么这两个方程叫做同解方程.例4若方程2(2x﹣1)=3x+1与关于x的方程2ax=(a+1)x﹣6的解互为倒数,求a的值.【解答】解:解方程①得,x=3,方程②的解为x=,代入得,解得a=﹣17.【方法总结】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.例5我市某区为鼓励毕业大学生自主创业,经过调研决定:在2021年对60名自主创业的大学生进行奖励,共计奖励50万元.奖励标准是:大学生自主创业连续经营一年以上的给予5000元奖励;自主创业且解决3人以上失业人员稳定就业的,再给予1万元奖励.问:该区自主创业大学生中连续经营一年以上的和自主创业且解决3人以上失业人员稳定就业的大学生分别有多少人?【解答】解:50万=500000元,设自主创业且连续经营一年以上的大学生有x人,自主创业且解决3人以上失业人员稳定就业的大学生有(60﹣x)人,根据题意得:5000x +10000(60﹣x )=500000, 解得:x =20,则60﹣x =60﹣20=40(人),答:自主创业且连续经营一年以上的大学生有20人,自主创业且解决3人以上失业人员稳定就业的大学生有40人.【方法总结】本题考查一元一次方程的应用,关键是找到等量关系列出方程.例6两辆汽车从相距80km 的两地同时出发相向而行,甲车的速度比乙车的速度快20km /h ,半小时后两车相遇? (1)两车的速度各是多少? (2)两车出发几小时后相距20km ?【解答】解:(1)设乙车的速度为xkm /h ,则甲车速度为(x +20)km /h , 根据题意得:(x +x +20)×12=80, 解得:x =70, ∴x +20=70+20=90,则甲车速度为90km /h ,乙车速度为70m /h ; (2)设两车出发y 小时相距20km , 当两车没有相遇时相距20km , 根据题意得:(70+90)y +20=80, 解得:y =38;当两车相遇后相距20km , 根据题意得:(70+90)y =80+20, 解得:y =58,综上,两车出发38小时或58小时后相距20km .【方法总结】此题考查了一元一次方程的应用,弄清题意是解本题的关键.【随堂练习】1.在下列方程的变形中,正确的是( ) A .由2x +1=3x ,得2x +3x =1 B .由25x =34,得x =34×52C .由2x =34,得x =32D .由−x+13=2,得﹣x +1=6 【解答】解:A 、由2x +1=3x 得2x ﹣3x =﹣1,原变形错误,故此选项不符合题意; B 、由25x =34得x =34×52,原变形正确,故此选项符合题意;C 、由2x =34得x =38,原变形错误,故此选项不符合题意; D 、由−x+13=2得﹣x ﹣1=6,原变形错误,故此选项不符合题意; 故选:B . 2.解方程:(1)3x +2=4(2x +3); (2)﹣1.【解答】解:(1)去括号得:3x +2=8x +12, 移项得:3x ﹣8x =12﹣2, 合并得:﹣5x =10, 解得:x =﹣2;(2)去分母得:2(5y ﹣9)=3(3y ﹣1)﹣6, 去括号得:10y ﹣18=9y ﹣3﹣6, 移项得:10y ﹣9y =﹣3﹣6+18, 合并得:y =9. 3.某同学在解关于y 的方程﹣=1去分母时,忘记将方程右边的1乘以12,从而求得方程的解为y =10. (1)求a 的值; (2)求方程正确的解.【解答】解:(1)该同学去分母时方程右边的1忘记乘12, 则原方程变为3(3y ﹣a )﹣2(5y ﹣7a )=1, ∵方程的解为y =10,代入得3(30﹣a )﹣2(50﹣7a )=1.解得a=1.(2)将a=1代入方程﹣=1,得﹣=1,解得y=﹣1,即原方程的解为y=﹣1.4.已知关于x的方程2(x﹣1)=3m﹣1与3x﹣2=﹣4的解相同,求m的值.【解答】解:因为关于x的方程2(x﹣1)=3m﹣1与3x﹣2=﹣4的解相同,所以解方程3x﹣2=﹣4,得x=−2 3,把x=−23代入2(x﹣1)=3m﹣1,得2(−23−1)=3m﹣1,解得m=−7 9.5.为加强公民的节水意识,合理利用水资源,某市采用价格调控手段达到节水的目的.该市自来水收费价格如表:每月用水量单价(元)不超过23立方米的部分m超过23立方米的部分m+1.1(1)某用户4月份用水10立方米,共交费26元,求m的值;(2)在(1)的前提下,该用户5月份交水费82元,请问该用户5月份用水多少立方米?【解答】解:(1)依题意得:10m=26,∴m=2.6,答:m的值为2.6;(2)∵23×2.6=59.8<82,∴该用户5月份用水超过23立方米,设该用户5月份用水x立方米,根据题意得:23×2.6+(2.6+1.1)•(x﹣23)=82,解得x=29,答:该用户5月份用水为29立方米.知识点2 一元二次方程1.一元二次方程:在整式方程中,只含一个未知数,并且未知数的最高次数是2的方程叫做一元二次方程.一元二次方程的一般形式是)0(02≠=++a c bx ax .其中2ax 叫做二次项,bx 叫做一次项,c 叫做常数项;a 叫做二次项的系数,b 叫做一次项的系数. 2. 一元二次方程的常用解法:(1)直接开平方法:形如或的一元二次方程,就可用直接开平方的方法.(2)配方法:用配方法解一元二次方程的一般步骤是:①化二次项系数为1,即方程两边同时除以二次项系数;②移项,使方程左边为二次项和一次项,右边为常数项,③配方,即方程两边都加上一次项系数一半的平方,④化原方程为的形式,⑤如果是非负数,即,就可以用直接开平方求出方程的解.如果n <0,则原方程无解.(3)公式法:一元二次方程的求根公式 .(4)因式分解法:因式分解法的一般步骤是:①将方程的右边化为0;②将方程的左边化成两个一次因式的乘积;③令每个因式都等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解. 3. 一元二次方程根的判别式:关于x 的一元二次方程的根的判别式为=∆. (1)>0一元二次方程有两个不相等的实数根,即242ab b ac -±-.(2)=0一元二次方程有两个相等的实数根,即2ba-. )0(2≥=a a x )0()(2≥=-a a b x ()02≠=++a o c bx ax 2()x m n +=0n ≥20(0)ax bx c a ++=≠221,2440)b b ac x b ac -±-=-≥()002≠=++a c bx ax ac b 42-ac b 42-⇔()002≠=++a c bx ax =2,1x ac b 42-⇔==21x x(3)<0一元二次方程没有实数根.4. 一元二次方程根与系数的关系关于x 的一元二次方程有两根分别为,,那么 a b -,c a. 【典例】例1若关于x 的方程(m +1)x |m |+1+x ﹣3=0是一元二次方程,求m 的值. 【解答】解:∵关于x 的方程(m +1)x |m |+1+x ﹣3=0是一元二次方程, ∴,解得m =1.【方法总结】本题主要考查一元二次方程的定义,一元二次方程的一般形式是:ax 2+bx +c =0(a ,b ,c 是常数且a ≠0),特别要注意a ≠0的条件. 例2解方程:9(x ﹣1)2=16(x +2)2.【解答】解:两边直接开平方,得:3(x ﹣1)=±4(x +2), 即3x ﹣3=4x +8或3x ﹣3=﹣4x ﹣8, 解得:x =﹣11或x =﹣.【方法总结】考查了解一元二次方程﹣直接开平方法.解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x 2=a (a ≥0)的形式,利用数的开方直接求解.(1)用直接开方法求一元二次方程的解的类型有:x 2=a (a ≥0);ax 2=b (a ,b 同号且a ≠0);(x +a )2=b (b ≥0);a (x +b )2=c (a ,c 同号且a ≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”. (2)运用整体思想,会把被开方数看成整体.(3)用直接开方法求一元二次方程的解,要仔细观察方程的特点. 例3用配方法解方程:x 2﹣8x +13=0.ac b 42-⇔()002≠=++a c bx ax 20(0)ax bx c a ++=≠1x 2x =+21x x =⋅21x x移项,得:x2﹣8x=﹣13,配方,得:x2﹣8x+16=﹣13+16,即(x﹣4)2=3,开方,得:x﹣4=±,∴x1=+4,x2=﹣+4.【方法总结】本题考查解一元二次方程—配方法,解答本题的关键是会用配方法解方程.例4若关于x的一元二次方程kx2﹣6x+9=0有实数根,求k的取值范围.【解答】解:根据题意得k≠0且△=(﹣6)2﹣4k×9≥0,解得k≤1且k≠0.【方法总结】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.例5岳池县是电子商务百强县,某商店积极利用网络优势销售当地特产—西板豆豉.已知每瓶西板豆豉的成本价为16元,当销售单价定为20元时,每天可售出80瓶.为了回馈广大顾客,该商店现决定降价销售(销售单价不低于成本价).经市场调查反映:若销售单价每降低0.5元,则每天可多售出20瓶.(1)当销售单价降低1元时,每天的销售利润为360元;(2)为尽可能让利于顾客,若该商店销售西板豆豉每天的实际利润为350元,求西板豆豉的销售单价.【解答】解:(1)(20﹣16﹣1)×[80+20×(1÷0.5)]=360(元).答:如果销售单价降低1元,那么每天的销售利润为360元.故答案为:360;(2)设销售单价降低x元,则每瓶的销售利润为20﹣16﹣x=(4﹣x)元,每天的销售量为80+20×=(80+40x)瓶,依题意,得:(4﹣x)(80+40x)=350,解得:x1=1.5,x2=0.5,又∵为尽快减少库存,∴x=1.5,∴20﹣x=18.5,答:西板豆豉的销售单价为18.5元.【方法总结】本题考查了一元二次方程的应用,找准等量关系:每天的销售利润=每瓶的销售利润×日销售量是解决问题的关键.例6在学校劳动基地里有一块长40米、宽20米的矩形试验田,为了管理方便,准备沿平行于两边的方向纵、横开辟三条等宽的小道,如图.已知这块矩形试验田中种植的面积为741平方米,小道的宽为多少米?【解答】解:设小道的宽为x米,则剩余部分可合成长(40﹣x)米,宽(20﹣x)米的矩形,依题意得:(40﹣x)(20﹣x)=741,整理得:x2﹣60x+59=0,解得:x1=1,x2=59.又∵20﹣x>0,∴x<20,∴x=1.答:小道的宽为1米.【方法总结】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.【随堂练习】1.解方程:(1)(x﹣1)2﹣=0;(2)2x2+8x﹣1=0.【解答】解:(1)(x﹣1)2﹣=0,(x﹣1)2=,∴x﹣1=或x﹣1=﹣,解得x1=,x2=﹣;(2)2x2+8x﹣1=0,x2+4x=,x2+4x+4=+4,即(x+2)2=,则x+2=±,∴x1=﹣2+,x2=﹣2﹣.2.已知关于x的方程x2+kx﹣2=0.(1)求证:不论k取何实数,该方程总有两个不相等的实数根;(2)若该方程的一个根为2,求它的另一个根.【解答】解:(1)∵a=1,b=k,c=﹣2,∴b2﹣4ac=k2+8,∵不论k取何实数,k2≥0,∴k2+8>0,即b2﹣4ac>0,∴不论k取何实数,该方程总有两个不相等的实数根;(2)设方程的另一个根为β,∴2β=﹣2,∴β=﹣1,∴另一个根为﹣1.3.惠友超市于今年年初以25元/件的进价购进一批商品.当商品售价为40元/件时,一月份销售了256件.二、三月份该商品十分畅销,销售量持续走高.在售价不变的基础上,三月份的销售量达到了400件.(1)求二、三月份销售量的月平均增长率.(2)从四月份起,商场决定采用降价促销的方式回馈顾客,经调查发现,该商品每件每降价1元,销售量增加5件.当每件商品降价多少元时,商场获利4250元?【解答】解:(1)设二、三这两个月的月平均增长率为x,则256(1+x)2=400,解得:x1=25%,x2=﹣2.25(不合题意,舍去),答:二、三月份销售量的月平均增长率是25%;(2)设降价y元,(40﹣y﹣25)(400+5y)=4250,整理得:y2+65y﹣350=0,解得:y1=5,y2=﹣70(不合题意,舍去),答:当商品降价5元时,商场当月获利4250元.4.如图是一张长20cm、宽13cm的矩形纸板,将纸板四个角各剪去一个边长为xcm的正方形,然后将四周突出部分折起,可制成一个无盖纸盒.(1)这个无盖纸盒的长为(20﹣2x)cm,宽为(13﹣2x)cm;(用含x的式子表示)(2)若要制成一个底面积是144cm2的无盖长方体纸盒,求x的值.【解答】解:(1)∵纸板是长为20cm,宽为13cm的矩形,且纸板四个角各剪去一个边长为xcm的正方形,∴无盖纸盒的长为(20﹣2x)cm,宽为(13﹣2x)cm.故答案为:(20﹣2x);(13﹣2x).(2)依题意,得:(20﹣2x)(13﹣2x)=144,整理,得:2x2﹣33x+58=0,解得:x1=2,x2=14.5(不合题意,舍去).答:x的值为2.知识点3 分式方程1.分式方程:分母中含有未知数的方程叫分式方程.2.解分式方程的一般步骤:(1)去分母,在方程的两边都乘以最简公分母,约去分母,化成整式方程;(2)解这个整式方程;(3)验根,把整式方程的根代入最简公分母中,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去.3. 用换元法解分式方程的一般步骤:① 设辅助未知数,并用含辅助未知数的代数式去表示方程中另外的代数式;② 解所得到的关于辅助未知数的新方程,求出辅助未知数的值;③ 把辅助未知数的值代入原设中,求出原未知数的值;④ 检验作答.4.分式方程的应用:分式方程的应用题与一元一次方程应用题类似,不同的是要注意检验:(1)检验所求的解,是否是所列分式方程的解;(2)检验所求的解,是否为增根.【典例】例1解方程:(1)=﹣2.(2)=.【解答】解:(1)=﹣2,原方程化为:=﹣2,方程两边都乘2(x﹣1),得2x=3﹣4(x﹣1),解得:,检验:当时,2(x﹣1)≠0,所以x=是原分式方程的根,即原分式方程的解是x=;(2)=,原方程化为:=,方程两边都乘(2x+1)(2x﹣1),得2(2x+1)=4,解得:,检验:当时,2x﹣1=0,所以x=是原方程的增根,即原方程无解.【方法总结】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.例2用换元法解方程(xx+1)2+5(x x+1)+6=0时,若设xx+1=t,则原方程可化为关于t的一元二次方程是t2+5t+6=0.【解答】解:把xx+1=t代入方程(x x+1)2+5(x x+1)+6=0,得t2+5t+6=0.故答案为:t2+5t+6=0.【方法总结】此题考查了换元法解分式方程,用换元法解一些复杂的分式方程是比较简单的一种方法,根据方程特点设出相应未知数,解方程能够使问题简单化,注意求出方程解后要验根.例3定义一种新运算“⊗”,规则如下:a⊗b=,(a≠b2),这里等式右边是实数运算,例如:1⊗3==﹣.求x⊗(﹣2)=1中x的值.【解答】解:根据题中的新定义化简得:=1,即=1,去分母得:x﹣4=1,解得:x=5,检验:把x=5代入得:x﹣4≠0,∴分式方程的解为x=5.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验,弄清题中的新定义是解本题的关键.例4疫情过后,为做好复工复产,某工厂用A 、B 两种型号机器人搬运原料.已知A 型机器人每小时搬运的原料比B 型机器人每小时搬运的原料的一半多50千克,且B 型机器人搬运2400千克所用时间与A 型机器人搬运2000千克所用时间相等,求这两种机器人每小时分别搬运多少千克原料.【解答】解:设B 型机器人每小时搬运xkg 原料,则A 型机器人每小时搬运(12x +50)kg原料, 依题意,得:2400x=200012x+50, 解得:x =150,经检验,x =150是原方程的解,且符合题意, ∴12x +50=125.答:A 型机器人每小时搬运125kg 原料,B 型机器人每小时搬运150kg 原料.【方法总结】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键. 例5 2020年春节寒假期间,小伟同学完成数学寒假作业的情况是这样的:原计划每天都做相同页数的数学作业,做了5天后,由于新冠疫情加重,当地加强了防控措施,对外出进行限制,小伟有更多的时间待在家里,做作业的效率提高到原来的2倍,结果比原计划提前6天完成了数学寒假作业,已知数学寒假作业本共有34页,求小伟原计划每天做多少页数学寒假作业?【解答】解:设小伟原计划每天做x 页数学寒假作业,则做作业的效率提高后每天做2x 页的数学寒假作业, 依题意,得:﹣(5+)=6,解得:x =2,经检验,x =2是原方程的解,且符合题意. 答:小伟原计划每天做2页数学寒假作业.本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键. 例6要在规定天数内修筑一段公路,若让甲队单独修筑,则正好在规定天数内按期完成;若让乙队单独修筑,则要比规定天数多8天才完成.现在由乙队单独修筑其中一小段,用去了规定时间的一半,然后甲队接着单独修筑2天,这段公路还有一半未修筑.若让两队共同再修筑2天,能否完成任务?【解答】解:设甲队x 天完成任务,则乙队(x +8)天完成任务, 由题意得:×+=,解得:x =8,检验得:x =8是原方程的根,则2×(+)=<,答:若让两队再共同修筑2天,不能完成任务.【方法总结】此题主要考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.【随堂练习】1.用换元法解方程x−1x=3x x−1−2时,设x−1x=y ,换元后化成关于y 的一元二次方程的一般形式为 y 2+2y ﹣3=0 . 【解答】解:x−1x=3x x−1−2时,设x−1x=y ,则原方程化为:y =3y −2, y 2=3﹣2y , y 2+2y ﹣3=0,故答案为:y 2+2y ﹣3=0. 2.解方程: (1)=;(2)﹣3.【解答】解:(1)去分母得:x +2(x ﹣2)=x +2,去括号得:x+2x﹣4=x+2,解得:x=3,检验:把x=3代入得:(x+2)(x﹣2)≠0,∴分式方程的解为x=3;(2)去分母得:1=x﹣1﹣3(x﹣2),去括号得:1=x﹣1﹣3x+6,解得:x=2,检验:把x=2代入得:x﹣2=0,∴x=2是增根,分式方程无解.3.若关于x的方程有增根,则增根是多少?并求方程产生增根时m的值.【解答】解:去分母,得:m+2(x﹣3)=x+3,由分式方程有增根,得到x﹣3=0或x+3=0,即x=±3,把x=3代入整式方程,可得:m=6,把x=﹣3代入整式方程,可得:m=12,综上,可得:方程的增根是x=±3,方程产生增根时m=6或12.4.虎林西苑社区在扎实开展党史学习教育期间,开展“我为群众办实事”活动,为某小区铺设一段全长为720米的排污管道,为减少施工对居民生活的影响,须缩短施工时间,实际施工时每天铺设管道的长度是原计划的1.2倍,结果提前2天完成任务,求原计划每天铺设管道的长度.【解答】解:设原计划每天铺设管道x米.由题意,得:﹣=2,解得x=60.经检验,x=60是原方程的解.且符合题意.答:原计划每天铺设管道60米.5.某所学校有A、B两班师生前往一个农庄参加植树活动.已知A班每天植树量是B班每天植树量的1.5倍,A班植树300棵所用的天数比B班植树240棵所用的天数少2天,求A、B两班每天各植树多少棵?【解答】解:设B班每天植树x棵,那么A班每天植树1.5x棵,依题意,得3001.5x =240x−2,解之得x=20,经检验,x=20是原方程的解则当x=20时,1.5x=30.答:A班每天植树30棵,B班每天植树20棵.知识点4 方程组(1)二元一次方程:含有两个未知数(元)并且未知数的次数是2的整式方程.(2) 二元一次方程组:由2个或2个以上的含有相同未知数的二元一次方程组成的方程组叫二元一次方程组.(3)二元一次方程的解:适合一个二元一次方程的两个未知数的值叫做这个二元一次方程的一个解,一个二元一次方程有无数个解.(4)二元一次方程组的解:使二元一次方程组成立的未知数的值,叫做二元一次方程组的解.(5)①代入消元法、②加减消元法.【典例】例1下列方程中,是二元一次方程的是()A.xy=2B.3x=4y C.x+1y=2D.x2+2y=4【解答】解:A、是二元二次方程,故本选项不符合题意;B、是二元一次方程,故本选项符合题意;C、不是整式方程,故本选项不符合题意;D、是二元二次方程,故本选项不符合题意;故选:B.【方法总结】本题主要考查二元一次方程的定义,二元一次方程需满足三个条件:①首先是整式方程.②方程中共含有两个未知数.③所有未知项的次数都是一次.不符合上述任何一个条件的都不叫二元一次方程.例2解方程组:(1);(2).【解答】解:(1),①+②×2,得11x=﹣11,解得x=﹣1,把x=﹣1代入②,得y=2,故方程组的解为;(2)方程组整理,得,②×2﹣①,得5x=10,解得x=2,把x=2代入②,得6﹣2y=6,解得y=0,故方程组的解为.【方法总结】本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键.例3已知方程组与有相同的解,求m和n值.【解答】解:由已知可得,解得,把代入剩下的两个方程组成的方程组,得,解得m=﹣1,n=﹣4.【方法总结】解答此题的关键是熟知方程组有公共解得含义,考查了学生对题意的理解能力. 例4糖葫芦一般是用竹签串上山楂,再蘸以冰糖制作而成.现将一些山楂分别串在若干根竹签上.如果每根竹签串5个山楂,还剩余4个山楂;如果每根竹签串8个山楂,还剩余7根竹签.这些竹签有多少根?山楂有多少个?【解答】解:设竹签有x 根,山楂有y 个, 由题意得:{5x +4=y 8(x −7)=y ,解得:{x =20y =104,答:竹签有20根,山楂有104个.【方法总结】本题考查了二元一次方程组的应用以及二元一次方程组的解法;根据题意列出方程组是解题的关键.例5中药是我国的传统医药,其独特的疗效体现了我们祖先的智慧,并且在抗击新冠疫情中,中医药发挥了重要的作用.现某种药材种植基地欲将一批150吨的重要中药材运往某药品生产厂,现有甲、乙两种车型供运输选择,每辆车的运载能力(假设每辆车均满载)和运费如下表所示:车型 甲 乙 运载量(吨/辆) 10 12 运费(元/辆)700720若全部中药材用甲、乙两种车型一次性运完,需支付运费9900元,问甲、乙两种车型各需多少辆?【解答】解:设甲种车型需x 辆,乙种车型需y 辆, 根据题意得:,解得:,答:甲种车型需9辆,乙种车型需5辆.【方法总结】本题考查了二元一次方程组的应用,找准等量关系,列出二元一次方程组是解题的关键.【随堂练习】1.如果3x 3m﹣2n﹣4y n﹣m+12=0是关于x 、y 的二元一次方程,那么m 、n 的值分别为( ) A .m =2,n =3 B .m =2,n =1C .m =﹣1,n =2D .m =3,n =4【解答】解:∵3x 3m ﹣2n﹣4y n﹣m+12=0是关于x 、y 的二元一次方程,∴{3m −2n =1n −m =1, 解得:{m =3n =4,故选:D .2.如果方程组{ax −by =134x −5y =41与{ax +by =32x +3y =−7有相同的解,则a ,b 的值是( )A .{a =2b =1B .{a =2b =−3C .{a =52b =1D .{a =4b =−5【解答】解:由已知得方程组{4x −5y =412x +3y =−7,解得{x =4y =−5,代入{ax −by =13ax +by =3,得到{4a +5b =134a −5b =3,解得{a =2b =1.故选:A .3.解方程组:.【解答】解:,①+②×2得:13x =26,即x =2, 把x =2代入②得:y =4, 则方程组的解为.4.列二元一次方程组解应用题:小颖家离学校1880米,其中有一段为上坡路,另一段为下坡路.她跑步去学校共用了16分钟,已知小颖在上坡路上的平均速度是80米/分钟,在下坡路上的平均速度是200米/分钟.求小颖上坡、下坡各用了多长时间?【解答】解:设小颖上坡用了x 分钟,下坡用了y 分钟, 依题意得:{x +y =1680x +200y =1880,解得:{x =11y =5.答:小颖上坡用了11分钟,下坡用了5分钟.5.某市要在A ,B 两景区安装爱心休闲椅,它有长条椅和弧形椅两种类型,其中每条长条椅可以同时供3人使用,每条弧形椅可以同时供5人使用.(列二元一次方程组解答) (1)市政府现在要为B 景区购买长条椅120条,弧形椅80条,若购买一条长条椅和一条弧形椅的价格共360元,为B 景区购买共花费了32800元,求长条椅和弧形椅的单价分别为多少元?(2)现决定从某公司为A 景区采购两种爱心休闲椅共400条,且正好可让1400名游客同时使用,求A 景区采购的长条椅和弧形椅分别为多少条? 【解答】解:(1)设长条椅的单价为x 元,弧形椅的单价为y 元, 依题意得:,解得:.答:长条椅的单价为100元,弧形椅的单价为260元. (2)设A 景区采购长条椅m 条,弧形椅n 条, 依题意得:,解得:.答:A 景区采购长条椅300条,弧形椅100条.知识点5不等式(组)1. 用不等号连接起来的式子叫不等式;使不等式成立的未知数的值叫做不等式的解;一些使不等式成立的未知数的值叫做不等式的解集.求一个不等式的解的过程或证明不等式无解的过程叫做解不等式.2.不等式的基本性质:(1)若<,则+<; (2)若>,>0则> (或> ); (3)若>,<0则 < (或< ). 3.一元一次不等式:只含有一个未知数,且未知数的次数是一次且系数不等于0的不等式,称为一元一次不等式;一元一次不等式的一般形式为ax >b 或;解一元一次不等式的一般步骤:去分母、去括号 、移项、合并同类项、系数化为1.4.一元一次不等式组:几个含有相同未知数的一元一次不等式合在一起就组成一个一元一次不等式组.一般地,几个不等式的解集的公共部分,叫做由它们组成的不等式组的解集. 5.由两个一元一次不等式组成的不等式组的解集有四种情况:(已知)的解集是,即“小小取小”;的解集是,即“大大取大”;的解集是,即“大小小大中间找”;的解集是空集,即“大大小小取不了”. 6.求不等式(组)的特殊解:不等式(组)的解一般有无数多个,但其特殊解在某些范围内是有限的,如整数解,非负整数解,求这些特殊解应先确定不等式(组)的解集,然后再找到相应答案.7.列不等式(组)解应用题的一般步骤:①审:审题,分析题中已知什么、求什么,明确各数量之间的关系;②找:找出能够表示应用题全部含义的一个不等关系;③设:设未知数(一般求什么,就设什么为;④a b a c c b +a b c ac bc c a c b a b c ac bc c a cbax b <a b <x a x b <⎧⎨<⎩x a <x ax b >⎧⎨>⎩x b >x ax b>⎧⎨<⎩a x b <<x ax b <⎧⎨>⎩x。

中考专题复习-一元一次方程(组)含答案

中考专题复习-一元一次方程(组)含答案

中考数学总复习-方程与不等式一次方程(组)【基础知识回顾】一、等式的概念及性质:1、等式:用“=”连接表示关系的式子叫做等式2、等式的性质:①、性质1:等式两边都加(减)所得结果仍是等式,即:若a=b,那么a±c=②、性质2:等式两边都乘以或除以(除数不为0)所得结果仍是等式即:若a=b,那么a c= ,若a=b(c≠o)那么a c =【名师提醒:①用等式性质进行等式变形,必须注意“都”,不能漏项②等式两边都除以一个数或式时必须保证它的值】二、方程的有关概念:1、含有未知数的叫做方程2、使方程左右两边相等的的值,叫做方程的组3、叫做解方程4、一个方程两边都是关于未知数的,这样的方程叫做整式方程三、一元一次方程:1、定义:只含有一个未知数,并且未知数的次数都是的方程叫做一元一次方程,一元一次方程一般可以化成的形式。

2、解一元一次方程的一般步骤:1.2。

3。

4。

5。

【名师提醒:1、一元一次方程的解法的各个步骤的依据分别是等式的性质和合并同类法则,要注意灵活准确运用;2、特别提醒:去分母时应注意不要漏乘项,移项时要注意.】四、二元一次方程组及解法:1、二元一次方程的一般形式:ax+by+c=0(a 。

b 。

c 是常数,a≠0,b≠0);2、由几个含有相同未知数的 合在一起,叫做二元一次方程组;3、 二元一次方程组中两个方程的 叫做二元一次方程组的解;4、 解二元一次方程组的基本思路是: ;5、 二元一次方程组的解法:① 消元法 ② 消元法【名师提醒:1、一个二元一次方程的解有 组,我们通常在实际应用中要求其正整数解2、二元一次方程组的解应写成五、列方程(组)解应用题:一般步骤:1、审:弄清题意,分清题目中的已知量和未知量2、设:直接或间接设未知数3、列:根据题意寻找等量关系列方程(组)4、解:解这个方程(组),求出未知数的值5、验:检验方程(组)的解是否符合题意6:答:写出答案(包括单位名称)【名师提醒:1、列方程(组)解应用题的关键是: 2、几个常用的等量关系:①路程= × ②工作效率= 】 【重点考点例析】考点一:二元一次方程组的解法对应训练 1.(2016•湘西州)解方程组: 213211x y x y +=⎧⎨-=⎩①②. .x=a y=b 的形式考点二:一(二)元一次方程的应用例2 (2016•齐齐哈尔)假期到了,17名女教师去外地培训,住宿时有2人间和3人间可供租住,每个房间都要住满,她们有几种租住方案()A.5种B.4种C.3种D.2种故选:C.例3 (2016•张家界)为增强市民的节水意识,某市对居民用水实行“阶梯收费”:规定每户每月不超过月用水标准部分的水价为1.5元/吨,超过月用水标准量部分的水价为2。

一元一次不等式和一元一次不等式组

一元一次不等式和一元一次不等式组

一元一次不等式和一元一次不等式组知识梳理(一)基本概念1.不等式:2.不等式的解:3.不等式的解集:4.一元一次不等式:5.一元一次不等式组的解集:(二)不等式的基本性质基本性质1:基本性质2:基本性质3:(三)基本方法1.不等式解集的表示方法:(1) (2)2.不等式的解法:【与解方程类似,不同之处就在:左右两边同时乘以(或除以)一个负数时,不等号的方向一定要改变。

】3.不等式组解法:“分开解,集中判”解出各个不等式,再判断所有解集的公共部分即为不等式组的解集。

4.不等式组解集规律:“同大取大,同小取小,不大不小中间找,又大又小无解了。

” 请用数轴展现:设 a > b :⎩⎨⎧bx a x ⎩⎨⎧b x a x ⎩⎨⎧b x a x ⎩⎨⎧bx a x(四)方法思想1.数形结合思想:不等式(组)解集的两种表示方法。

2.不等式与一次函数的关系,可以利用函数图像来分析解答。

如:一次函数y 1=k 1x+b 1,y 2=k 2x+b 2图像如右图所示,求不等式k 1x+b 1≤k 2x+b 2的解集。

专题一:不等式的有关概念与不等式的基本性质解不等式(组)(一)、不等式的基本性质练习1、已知a <b ,用“<”或“>”填空(1) a -3b -3;(2) 6a6b ;(3) -a -b ;(4) a -b 0;2aa+b2、若a <b ,则不等式○1a-5<b-5 ○2a+k <b+k ○32a <2b ○4ac <b 中成立的有( ) A、1个 B、2个 C、3个 D、4个3、不等式7+5x 〈24 的正整数解的个数是( )A.1个B.3个C.无数个D.4个4、已知32,5221+-=-=x y x y ,如果21y y <,则x 的取值范围是( )A .2>xB .2<xC .2->xD .2-<x5、当x 时,能使x+4>0和2x+1>0同时成立6、关于x 的方程632=-x a 的解是正数,那么a 的取值范围:__________(二)、解不等式(组)1(1)4352+>-x x (2)11237x x --≤2、解下列不等式组(1)⎪⎩⎪⎨⎧->->13132x x (2)⎩⎨⎧>+≤0312x x(3)⎩⎨⎧-≤+>+145321x x x x (4)24321<--<-x专题三、不等式组的特解1、求不等式x x 228)2(5-≤+的非负整数解2、解不等式组()⎪⎩⎪⎨⎧---+≥+-xx x x 81311323 并写出该不等式组的整数解当堂练习1、求不等式组⎪⎩⎪⎨⎧-≤+421121 x x 的整数解2、求不等式()⎪⎩⎪⎨⎧-+≤+3212352x x x x 的正整数专题三 用不等式或不等式组解答实际问题一、课堂练习1、小明用30元钱买笔记本和练习本共30本,已知每个笔记本4元,每个练习本4角,那么他最多能买笔记本多少本?2、某校初一新生中有若干住宿生,分住若干间宿舍,若每间住4人,则还有21人无房住;若每间住7人,则有一间不空也不满,求住宿生人数.3、暑假,学校的老师将带领校、镇、市级“三好学生”去旅游.甲旅行社说:“其中一位带队老师买全票,全票价为240元,则其余老师和学生可享受半价优惠”;乙旅行社说:“包括带队老师和学生全部票价6折优惠”。

七年级数学《一元一次方程》教案【4篇】

七年级数学《一元一次方程》教案【4篇】

七年级数学《一元一次方程》教案【4篇】七年级数学《一元一次方程》教案篇一2.自主探索、合作交流:先由学生独立思考求解,再小组合作交流,师生共同评价分析。

方法1:解:方程两边都加上2,得5x-2+2=8+2也就是5x=8+2合并同类项,得5x=10所以,x=23.理性归纳、得出结论(让学生通过观察、归纳,独立发现移项法则。

)比较方程5x=8+2与原方程5x-2=8,可以发现,这个变形相当于5x-2=85x=8+2即把原方程中的-2改变符号后,从方程的一边移到另一边,这种变形叫做移项。

教学建议:关于移项法则,不应只强调记忆,更应强调理解。

学生开始时也许仍习惯于利用逆运算而不利用移项法则来求解方程,可借助例题、练习题使相互逐步体会到移项的优越性)。

方法2;解:移项,得5x=8+2合并同类项,得5x=10方程两边都除以5,得x=24.运用反思、拓展创新[例1]解下列方程:(1)2x+6=1(2)3x+3=2x+7教学建议:先鼓励学生自己尝试求解方程,教师要注意发现学生可能出现的错误,然后组织学生进行讨论交流。

[例2]解方程:教学建议:①先放手让学生去做,学生可能采取多种方法,教学时,不要拘泥于教科书中的解法,只要学生的解法合理,就应给予鼓励。

②在移项时,学生常会犯一些错误,如移项忘记变号等。

这时,教士不要急于求成,而要引导学生反思自己的解题过程。

必要时,可让学生利用等式的性质和移项法则两种方法解例1、例2中的方程,并将两者加以对照,进而使学生加深对移项法则的理解,并自觉地改正错误。

5.小结回顾:学生谈本节课的收获与体会。

师强调:移项法则。

七年级数学《一元一次方程》教案篇二教学内容:人教版七年级上册3.1.1一元一次方程教学目标:知识与技能:1、理解一元一次方程,以及一元一次方程解的概念。

2、会从题目中找出包含题目意思的一个相等关系,列出简单的方程。

3、掌握检验某个数值是不是方程解的方法。

过程与方法:在实际问题的过程中探讨概念,数量关系,列出方程的方法,训练学生运用新知识解决实际问题的能力。

初中数学《一元一次不等式和一元一次不等式组》单元教学设计以及思维导图

初中数学《一元一次不等式和一元一次不等式组》单元教学设计以及思维导图

一元一次不等式和一元一次不等式组
主题单元学习目标
知识与技能:
1、经历将一些实际问题抽象成不等式的过程,体会不等式也是刻画现实世界中量与量之间关系的有效数学模型进一步发展符号感。

2、能够根据具体问题中的大小关系了解不等式的意义。

3、掌握不等式的基本性质。

4、理解不等式组的解及解集的含义,会解简单的一元一次不等式并能在数轴上表示一元一次不等式的解集,会解一元一次不等式组并会在数轴上确定其解集,初步体会数形结合的思想。

其他:纸、笔
学习活动设计
活动一、
如下图,正方形的边长和圆的直径都是acm。

1、如果要使正方形的周长不大于25cm,那么 a 应满足怎样的关系式?
2、如果要使圆的周长不小于100cm,那么a 应满足怎样的关系式?
3、当 a= 8 时,正方形和圆的周长哪个大?a = 12 呢?
4、你能得到什么猜想?改变a的取值再试一试。

观察由上述问题得到的关系式,它们有什么共同特点?
由4a 4a4a≤25, πa ≥100 ,3x+5>240得,这些关系式都是用不等号连接的式子.由此
一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式
活动二、。

人教版七年级下册数学期末考复习专题05一元一次不等式及不等式组(知识点串讲)(解析版)

人教版七年级下册数学期末考复习专题05一元一次不等式及不等式组(知识点串讲)(解析版)

专题05 一元一次不等式及不等式组知识框架重难突破一、一元一次不等式1. 一元一次不等式定义:含有一个未知数,并且未知数的最高次数是1的不等式叫做一元一次不等式。

2.一元一次不等式的解及解集(1)使一元一次不等式成立的每一个未知数的值叫做一元一次不等式的解。

(2) 一元一次不等式的所有解组成的集合是一元一次不等式的解集。

(3)解集在数轴上表示3、一元一次不等式的解法:解一元一次不等式,要根据不等式的性质,将不等式逐步化为x a <(x a >或)x a x a ≥≤或或的形式,其一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1。

备注:解一元一次不等式和解一元一次方程类似.不同的是:一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方.例如:131321≤---x x 解不等式: 解:去分母,得 6)13(2)13≤---x x ((不要漏乘!每一项都得乘) 去括号,得 62633≤+--x x (注意符号,不要漏乘!)移 项,得 23663-+≤-x x (移项,每一项要变号;但符号不改变)a a a a < > ≤ ≥合并同类项,得 73≤-x (计算要正确)系数化为1, 得 37-≥x (同除负,不等号方向要改变,分子分母别颠倒了) 例1.(2019·湖南广益实验中学初一期中)下列不等式中,是一元一次不等式的是( )A .1x >3B .x 2<1C .x +2y >0D .x <2x +1【答案】D【解析】解:A 、1x 是分式,因此1x>3不是一元一次不等式,故此选项不合题意; B 、x 2是2次,因此x 2<1不是一元一次不等式,故此选项不合题意;C 、x +2y >0含有2个未知数,因此不是一元一次不等式,故此选项不合题意;D 、x <2x +1是一元一次不等式,故此选项符合题意;故选:D .练习1.(2018·六安市裕安中学初一期中)下列不等式中,一元一次不等式有( )①2x 32x +> ②130x -> ③ x 32y -> ④x 15ππ-≥ ⑤ 3y 3>- A .1 个B .2 个C .3 个D .4 个 【答案】B【解析】详解:①不是,因为最高次数是2;②不是,因为是分式;③不是,因为有两个未知数;④是;⑤是.综上,只有2个是一元一次不等式.故选B .例2.(2019·洋县教育局初二期中)若437m x -+≤是关于x 的一元一次不等式,则m =__________.【答案】3【解析】解:∵437m x -+≤是关于x 的一元一次不等式,∴4-m =1,∴m=3,故答案为:3.练习1.(2019·山东省初二期中)已知12(m+4)x|m|﹣3+6>0是关于x的一元一次不等式,则m的值为()A.4 B.±4 C.3 D.±3【答案】A【解析】根据题意|m|﹣3=1且m+4≠0解得:|m|=4,m≠﹣4所以m=4.故选:A.例3.(2018·浙江省初二期中)一元一次不等式2(x﹣1)≥3x﹣3的解在数轴上表示为()A.B.C.D.【答案】B【解析】解: 2(x﹣1)≥3x﹣3去括号, 得2x-2≥3x-3,移项, 合并同类项, 得-x≥-1,得:x≤1故在数轴上表示为:故选B.练习1.(2020·万杰朝阳学校初一期中)如图,张小雨把不等式3x>2x-3的解集表示在数轴上,则阴影部分盖住的数字是____.【答案】-3【解析】由3x>2x-3,解得:x>-3,∴阴影部分盖住的数字是:-3.故答案是:-3.例4.(2020·监利县新沟新建中学初一期中)解不等式:14232-+->-x x . 【答案】x <−2【解析】解:去分母:2(x −1)−3(x +4)>−12,去括号:2x −2−3x −12>−12,合并同类项:−x >2,系数化1:x <−2. 练习1.(2018·福建省永春第二中学初一期中)解不等式3(21)x +<13(43)x --,并把解集在数轴上表示出来.【答案】x <2,数轴见解析【解析】去括号,得 6x +3<13-4+3x ,移项,得 6x -3x <13-4-3,即3x <6,两边同除以3,得x <2,在数轴上表示不等式的解集如下:例5.(2019·重庆市凤鸣山中学初一期中)关于x 的不等式22x a -+≥的解集如图所示,则a 的值是( )A .0B .2C .2-D .4- 【答案】A【解析】解:解不等式22x a -+≥,得22a x- ,∵由数轴得到解集为x ≤-1, ∴212a -=- ,解得:a =0. 故选:A .练习1.(2019·陕西省初二期中)不等式-4x -k ≤0的负整数解是-1,-2,那么k 的取值范围是( ) A .812k ≤<B .812k <≤C .23k ≤<D .23k <≤ 【答案】A【解析】解:∵-4x -k ≤0,∴x ≥-4k , ∵不等式的负整数解是-1,-2,∴-3<-4k ≤-2, 解得:8≤k <12,故选:A .二、一元一次不等式组1、一元一次不等式组定义: 含有同一个未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组。

一次函数与一元一次方程和不等式同步辅导(含答案)--绝对经典

一次函数与一元一次方程和不等式同步辅导(含答案)--绝对经典

11.3.1 -11.3.2 一次函数与一元一次方程和不等式重点知识讲解1.一元一次方程ax+b=0(a≠0)与一次函数y=ax+b(a≠0)的关系(1)一元一次方程ax+b=0(a≠0)是一次函数y=ax+b(a≠0)的函数值为0时的特殊情形.(2)直线y=ax+b与x轴交点的横坐标就是一元一次方程ax+b=0的解x=-ba。

2.一元一次不等式与一次函数的关系(1)一元一次不等式ax+b>0或ax+b<0(a≠0)是一次函数y=ax+b(a≠0)•的函数值不等于0的情形.(2)直线y=ax+b上使函数值y>0(x轴上方的图像)的x的取值范围是ax+b>0的解集;使函数值y<0(x轴下方的图像)的x的取值范围是ax+b<0的解集.经验与方法技巧1.利用一次函数求一元一次方程的解题步骤(1)将一元一次方程化成ax+b=0的形式.(2)画出y=ax+b的图像,确定其与x轴交点的横坐标.2.利用一次函数求一元一次不等式的解集的技巧根据不等式的特点,灵活采用求解方法:(1)利用一个一次函数;(2)•利用两个一次函数.典型例题例1画出y=-3x+5的图象,利用图像求方程-3x+5=0的解.解析取点(0,5),(53,0),图像如图所示.∵直线y=-3x+5与x轴交点的横坐标为53,∴方程-3x+5=0的解为x=53。

评注画函数图像时要准确,求出直线y=-3x+5与x•轴交点的横坐标即为方程的解.例2画出函数y=-3x+12的图像,利用图像求:(1)不等式-3x+12>0的解集.(2)不等式-3x+12≤0的解集.(3)如果y的值在-6≤y≤6的范围内,那么相应的x的值在什么范围内?解析取点(0,12),(4,0),作出函数图像,如图所示,由图像可以看出:(1)当y>0时,x的取值范围为x<4,∴不等式-3x+12>0的解集为x<4.(2)当y≤0时,x的取值范围为x≥4.∴不等式-3x+12≤0的解集为x≥4.(3)当-6≤y≤6时,x的取值范围为2≤x≤6.评注借助图像求不等式的解集,关键是要清楚以下几点:①y>0时,x•的取值范围就是x轴上方的图像所对应的x的取值范围.②y<0时,x的取值范围就是x•轴下方的图像所对应的x的取值范围.③y=0时,x的值就是图像与x轴交点的横坐标.④当y>a或y<a(a≠0)时,应先确定当y=a时对应的x值,然后再进一步确定x的取值范围.例3若y1=-x+3,y2=3x-4,当x取何值时,y1<y2?解析∵y1<y2,∴-x+3<3x-4,解得x>74,∴当x>74时,y1<y2.评注此题是两个一次函数之间的关系,可以直接借助一元一次不等式求出x的取值范围.教材例题习题的变形题例(P41例2)用画图像的方法解下列各题:(1)解不等式:5x+4>2x+10.(2)解方程:5x+4=2x+10.解析(1)如图,原不等式可化为3x-6>0,画出直线y=3x-6,由图像可以看出,当x>2时,这条直线上的点在x轴的上方,即这时y=3x-6>0,所以不等式的解集为x>2.(2)原方程可化为3x-6=0.由图像可以看出,y=3x-6与x轴交点的横坐标为2,所以原方程的解为x=2.评注①从函数的角度看问题,能发现一次函数与一元一次不等式、•一元一次方程之间的联系,体现了数形结合的思想.②本题求不等式的解集时,还可将不等式的两边分别看作两个一次函数,画出两条直线,比较直线上点的位置的高度,也可求得不等式的解集.学科内综合题例1甲、乙两辆摩托车分别从相距20km的A,B两地出发,相向而行,图中的L1,L2分别表示甲、乙两辆摩托车离开A地的距离s(km)与行驶时间t(h)•之间的函数关系.(1)哪辆摩托车的速度较快?(2)经过多长时间,甲摩托车行驶到A,B两地的中点?解析(1)由图像可以看出,甲摩托用了0.6h行驶了20km,而乙摩托车用了0.•5h 行驶了20km,所以乙摩托车的速度较快.(2)设L1的关系式为y=kx,把x=0.6,y=20代入,得20=0.6k,解得k=1003,∴y=1003x.当y=10时,10=1003x.所以经过0.3h,甲摩托车行驶到A,B两地的中点.评注本题第(1)题是比较速度的大小,这一点可以通过图像提供的数量直接分析出来.第(2)题的关键是要分析出甲摩托车行驶到中点时所行驶的路程为10km.例2已知y=12x-2.(1)x取何值时,y>0?(2)x取何值时,y<0?(3)当x>4时,求y的取值范围.解析作出y=12x-2的图像,如图所示.(1)当x>4时,y>0.(2)当x<4时,y<0.(3)当x>4时,y的取值范围是y>0.评注本题可以通过图像直观地得出结论.综合应用题例1某单位计划在新年期间组织员工到某地旅游,参加旅游的人数估计为10~20人,甲、乙两家旅行社的服务质量相同,且报价都是每人200元.经过协商,•甲旅行社表示可给予每位游客七五折优惠;乙旅行社表示可先免去一位游客的旅游费用,再给其余游客八折优惠.该单位选择哪一家旅行社支付的旅游费用较少?解析设该单位参加这次旅游的人数是x人,选择甲旅行社时所需的费用为y1元,选择乙旅行社时所需的费用为y2元,则y1=200×0.75x,即y1=150x;y2=200×0.8(x-1),即y2=160x-160.由y1=y2,得150x=160x-160,解得x=16;由y1>y2,得150x>160x-160,解得x<16;由y1<y2,得150x<160x-160,解得x>16.因为参加旅游的人数估计为10~20人,所以,当x=16时,甲、•乙两家旅行社的收费相同;当17≤x≤20时,选择甲旅行社费用较少;当10≤x≤15时,选择乙旅行社费用较少.评注已知前提条件,设计方案是解决实际问题的一种常见形式.明确每一种收费方式占优势时对应的自变量的取值范围是解决此类问题的关键,•借助不等式就可确定自变量的取值范围.例2兄弟俩赛距,哥哥先让弟弟跑9m,然后自己才开始跑.已知弟弟每秒跑3m,•哥哥每秒跑4m.列出函数关系式,作出函数图像,观察图像回答下列问题:(1)何时弟弟跑在哥哥前面?(2)何时哥哥跑在弟弟前面?(3)谁先跑过20m?谁先跑过100m?解析设哥哥跑了ts,则哥哥所跑的路程与时间的关系式为s1=4t;弟弟所跑的路程与时间的关系为s2=3t+9.图像如图所示.当s1=s2时,4t=3t+9,t=9.(1)当0≤t<9时,弟弟跑在哥哥的前面.(2)当t>9时,哥哥跑在弟弟的前面.(3)∵20<36,∴弟弟先跑过20m.∵100>36,∴哥哥先跑过100m.评注本题可以从时间或路程两个角度进行分析.在同一时间内,谁跑的路程远,谁就在前面,谁就先跑过20m,100m.也可比较他们各自所用的时间,谁用的时间短,•谁就先跑过.本题既可以通过计算来进行比较,也可通过图像直观地进行判断.创新题例(探究题)我边防局接到情报,在离海岸5海里处有一可疑船只A•正向公海方向行驶,边防局迅速派出快艇B追赶.图中L1,L2分别表示两船相对于海岸的距离s(海里)与追赶时间t(min)之间的关系.(1)A,B哪一个的速度快?(2)至少要用多长时间才能追上可疑船只A?解析由图像可确定L表示快艇B的图像,L表示可疑船只A的图像.(1)快艇10min行驶了5海里,所以其速度为5÷10=0.5(海里/min).可疑船只10min行驶了7-5=2(海里),所以其速度为2÷10=0.2(海里/min).所以快艇B的速度快.(2)设L1的关系式为y1=kx,把(10,5)代入,得5=10k,解得k=0.5,∴y1=0.5x.设L2的关系式为y2=kx+5,把(10,7)代入,得7=10k+5,解得k=0.2,∴y2=0.2x+5.当y1≥y2,即0.5x≥0.2x+5时,0.3x≥5,x≥503.所以至少需要503min,快艇才能追上可疑船只.中考题例(2004年苏州卷)如图,平面直角坐标系中画出了函数y=kx+b的图像.(1)根据图像,求k和b的值.(2)在图中画出函数y=-2x+2的图像.(3)求x的取值范围,使函数y=kx+b的函数值大于函数y=-2x+2的函数值.解析(1)∵直线y=kx+b经过点(-2,0),(0,2).∴02,20,k bb=-+⎧⎨=+⎩解得1,2,kb=⎧⎨=⎩∴y=x+2.(2)y=-2x+2经过(0,2),(1,0),图像如图所示.(3)当y=kx+b 的函数值大于y=-2x+2的函数值时,也就是x+2>-2x+2,解得x>0,•即x 的取值范围为x>0.11.3.1 一次函数与一元一次方程同步练习[要点再现]1.由于任何一元一次方程都可以转化为 的形式,所以解一元一次方程可以转化为:当 时,求 的值。

一元一次方程与一元一次不等式

一元一次方程与一元一次不等式

第一章:一元一次不等式和一元一次不等式组知识要点:1. 不等式:一般地用不等号连接的式子叫做不等式。

2. 不等式的基本性质:(1)不等式的两边都加上(或减去)同一个整式,不等号的方向不变。

(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。

(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。

3. 解不等式:把不等式变为x>a 或x<a 的形式。

4. 一元一次不等式:只含有一个未知数,并且未知数的最高次数是1,不等式的左右两边都是整式的不等式,叫做一元一次不等式。

5. 解一元一次不等式的步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为16. 一元一次不等式组的解集:几个一元一次不等式的解集的公共部分。

法则:“同大取大,同小取小,大小小大取中间,大大小小是无解。

”【典型例题】例1. 用不等式表示下列数量关系。

(1)a 的一半与-3的和小于或等于1。

()的与的差的相反数不小于。

2a 3525-()的相反数的不大于的倍加。

317516x x点评:用不等号表示的时候要准确理解“大”、“小”、“多”、“少”、“不大于”、“不小于”、“不多于”、“不少于”、“至少”、“至多”等词语的含义。

下面我们判断一下,以下的不等式是不是一元一次不等式.请大家讨论.2.一元一次不等式的解法.[例1]解不等式3-x <2x +6,并把它的解集表示在数轴上.[分析]要化成“x >a ”或“x <a ”的形式,首先要把不等式两边的x 或常数项转移到同一侧,变成“ax >b ”或“ax <b ”的形式,再根据不等式的基本性质求得.解一元一次方程的步骤吗?.有去分母;去括号;移项;合并同类项;系数化成1.[例2]解不等式22-x ≥37x -,并把它的解集在数轴上表示出来.请大家判断以下解法是否正确.若不正确,请改正.解不等式:312 -+-x≥5解:去分母,得-2x+1≥-15移项、合并同类项,得-2x≥-16两边同时除以-2,得x≥8.有两处错误.第一,在去分母时,两边同时乘以-3,根据不等式的基本性质3,不等号的方向要改变,第二,在最后一步,两边同时除以-2时,不等号的方向也应改变.[3.解一元一次不等式与解一元一次方程的区别与联系.联系:两种解法的步骤相似.区别:(1)不等式两边都乘以(或除以)同一个负数时,不等号的方向改变;而方程两边乘以(或除以)同一个负数时,等号不变.(2)一元一次不等式有无限多个解,而一元一次方程只有一个解.例2. 有理数x、y在数轴上的对应点如图所示,试用“>”或“<”号填空:x 0 y(1)x______y (2)x+y_____0 (3)xy____0(4)x-y______0例3. 设“A、B、C、D”表示四种不同质量的物体,在天平秤上的情况如图所示,请你用“<”号将这四种物体的质量m A、m B、m C、m D从小到大排列:_____________________________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元一次方程和不等式组含答案
单选题(共21小题)
1.某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装标价是()
A.350元 B.400元 C.450元 D.500元
2.已知是二元一次方程组的解,则的值是()
A. B. C. D.
3.方程组的解为()
A. B. C. D.
4.把方程变形为x=2,其依据是()
A.等式的性质1 B.等式的性质2 C.分式的基本性质 D.不等式的性质1
5.假期到了,17名女教师去外地培训,住宿时人2人间和3人间可供租住,每个房间都要住满,她们有几种租住方案()
A.5种 B.4种 C.3种 D.2种
6.李明同学早上骑自行车上学,中途因道路施工步行一段路,到学校共用时15分钟.他骑自行车的平均速度是250米/分钟,步行的平均速度是80米/分
钟.他家离学校的距离是2900米.如果他骑车和步行的时间分别为x,y分钟,列出的方程是()
A. B. C. D.
7.若不等式组有解,则a的取值范围是()
A.a≤3 B.a<3 C.a<2 D.a≤2
8.不等式组的解集在数轴上表示为()
A. B. C. D.
9.已知一次函数y=x﹣2,当函数值y>0时,自变量x的取值范围在数轴上表示正确的是()
A. B. C. D.
10.不等式的解集是()
A.﹤5 B.﹥5 C.﹤1 D.﹥1
11.不等式组的解集在数轴上表示正确的是()
A. B. C.
D.
12.把不等式组的解集表示在数轴上,正确的是()
A.
B.
C.
D.
13.不等式组的解集是()
A.> B. C.< D.
14.一个关于x的一元一次不等式组在数轴上的解集如图所示,则此不等式组的解集是()
A.x >1 B.x≥1 C.x>3 D.x≥3
15.一元一次不等式组的解集中,整数解的个数是()
A.4 B.5 C.6 D.7
16.不等式组的解集在数轴上表示为()
A. B. C. D.
17.在芦山地震抢险时,太平镇部分村庄需8组战士步行运送物资,要求每组分配的人数相同.若按每组人数比预定人数多分配1人,则总数会超过100人;若按每组人数比预定人数少分配1人,则总数不够90人,那么预定每组分配的人数是()
A.10人 B.11人 C.12人 D.13人
18.不等式组的解集是()
A.x≥0 B.x<1 C.0<x<1 D.0≤x<1
19.若把不等式组的解集在数轴上表示出来,则其对应的图形为()
A.长方形 B.线段 C.射线 D.直线
20.不等式的解集是()
A. B. C. D.空集
21.已知点P(3﹣m,m﹣1)在第二象限,则m的取值范围在数轴上表示正确的是()
A. B. C. D.
答案部分
1.考点:一次方程(组)的应用
试题解析: 本题考查了一元一次方程的应用,设该服装标价为x元,根据售价﹣进价=利润列出方程,解出即可.解: 设该服装标价为x元,由题意,得0.6x﹣200=200×20%,解得:x=400.答:该服装标价为400元.故选B.
答案:B
2.考点:二元一次方程(组)及其解法
试题解析:此题已知二元一次方程组的解,可代入求出待定系数的值。

解:已知是二元一次方程组的解代入得可得m-n=1-(-3)=4答案:D
3.考点:二元一次方程(组)及其解法
试题解析:此题考查二元一次方程组的解法.根据方程组中y的系数互为相反数,用加减法解方程组比较简便.解答此类题也可以根据方程组的解的意义,把各选项未知数的值分别代入方程组的每一个方程进行判断.解:①+②,得3x=6 ③∴x=2把x=2代入①,得y=-1∴原方程组的解故选:D
答案:D
4.考点:方程和方程的解
试题解析:本题主要考查了等式的基本性质,等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.解:把方程变形为x=2,其依据是等式的性质2;故选:B.
答案:B
5.考点:一次方程(组)的应用
试题解析:解:设租住2人间为x间,租住3人间为y间根据题意得:2x+3y=17所以,由于x、y都是整数,所以:当y=1时,x=7;当y=3,x=4;当y=5,x=1所以租住方案有3种
答案:C
6.考点:二元一次方程(组)及其解法
试题解析:解:他骑车和步行的时间分别为x分钟,y分钟,由题意得:
,故选D
答案:D
7.考点:二元一次方程(组)及其解法一次方程(组)的应用
试题解析:解:,由①得,x>a﹣1;由②得,x≤2,∵此不等式组有解,∴a﹣1<2,解得a<3.故选B.
答案:B
8.考点:一元一次不等式
试题解析:解:不等式组的解集在数轴上表示故选C.
答案:C
9.考点:一元一次不等式
试题解析:解:∵一次函数y=x﹣2,∴函数值y>0时,x﹣2>0,解得,x>2,表示在数轴上为:故选B.
答案:B
10.考点:一元一次不等式
试题解析:解:不等式x+1>2x﹣4移项得,﹣x>﹣5,在两边同时乘以﹣1,得x<5.所以,不等式的解集为x<5.故选A.
答案:A
11.考点:一次不等式(组)的解法及其解集的表示
试题解析:解不等式组得到解集为-2<x≤3,将-2<x≤3表示成数轴形式即可.解:解不等式(x+1)≤2得:x≤3.解不等式x-3<3x+1得:x>-2所以不等式组的解集为-2<x≤3.故选:D.
答案:D
12.考点:一次不等式(组)的解法及其解集的表示
试题解析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可解:解得,故选:D.
答案:D
13.考点:一次不等式(组)的解法及其解集的表示
试题解析:此题考查了解一元一次不等式组的方法,分别求出各不等式的解集,再求出其公共解集.熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此类题的关键.解:解不等式①,得>解不等式②,得x≥-1不等式组的解集是>故选:A
答案:A
14.考点:一次不等式(组)的解法及其解集的表示
试题解析: 本题考查了不等式组的解集,根据不等式组的解集是大于大的,可得答案.解:一个关于x的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是x>3.故选:C
答案:C
15.考点:一次不等式(组)的解法及其解集的表示
试题解析:本题考查了解一元一次不等式,解一元一次不等式组的应用,解此题的关键是求出不等式组的解集.先求出不等式的解集,再求出不等式组的解集,找出不等式组的整数解即可.解:∵解不等式2x+1>0得:x>- ,解不等式x-5≤0得:x≤5,∴不等式组的解集是<x≤5,整数解为0,1,2,3,4,5,共6个,故选C.
答案:C
16.考点:一次不等式(组)的解法及其解集的表示
试题解析:此题考查了在数轴上表示解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示. 解:由①,得x>1 由②,得x≥2 则不等式组的解集为x≥2表示在数轴上,如图所示:故选:A
答案:A
17.考点:一次不等式(组)的解法及其解集的表示
试题解析:此题主要考查了一元一次不等式组的应用,解题的关键是读懂题意,根据关键语句若按每组人数比预定人数多分配1人,则总数会超过100人;若按每组人数比预定人数少分配1人,则总数不够90人列出不等式
组.解得:∵x为整数,∴x=12.
答案:C
18.考点:一次不等式(组)的解法及其解集的表示
试题解析:本题考查了不等式组的解集的确定,解不等式组可遵循口诀:同大取较大,同小取较小,大小小大中间找,大大小小解不了.解:不等式组的解集是0≤x<1.
答案:D
19.考点:一次不等式(组)的解法及其解集的表示
精品文档
试题解析:先解出不等式组的解,然后把不等式的解集表示在数轴上即可作出判断.解:不等式组的解集为:﹣1≤x≤5.在数轴上表示为:
解集对应的图形是线段.故选B.
答案:B
20.考点:一次不等式(组)的解法及其解集的表示
试题解析:解:,解①得:,解②得:.则不等式组的解集是:.故选A.
答案:A
21.考点:一次不等式(组)的解法及其解集的表示
试题解析: 本题考查了在数轴上表示不等式的解集、解一元一次不等式组、点的坐标,根据第二象限内点的坐标特点,可得不等式,根据解不等式,可得答案.解: 已知点P(3﹣m,m﹣1)在第二象限,3﹣m<0且m﹣1>0,解得m >3,m>1,故选:A.
答案:A
收集于网络,如有侵权请联系管理员删除。

相关文档
最新文档