一元二次不等式及其解法优质课比赛说课教案 精品
3.2一元二次不等式及其解法教案

3.2一元二次不等式及其解法教案第一篇:3.2一元二次不等式及其解法教案3.2一元二次不等式及其解法(3课时)(一)教学目标1.知识与技能:从实际问题中建立一元二次不等式,解一元二次不等式;应用一元二次不等式解决日常生活中的实际问题;能用一个程序框图把求解一般一元二次不等式的过程表示出来;2.过程与方法:通过学生感兴趣的上网问题引入一元二次不等式的有关概念,通过让学生比较两种不同的收费方式,抽象出不等关系;利用计算机将数学知识用程序表示出来;3.情态与价值:培养学生通过日常生活中的例子,找到数学知识规率,从而在实际生活问题中数形结合的应用以及计算机在数学中的应用。
(二)教学重、难点重点:从实际问题中抽象出一元二次不等式模型,围绕一元二次不等式的解法展开,突出体现数形结合的思想;难点:理解二次函数、一元二次方程与一元二次不等式解集的关系。
(四)教学设想[创设情景] 通过让学生阅读第84页的上网问题,得出一个关于x 的一元二次不等式,即x2-5x<0[探索研究] 首先考察不等式x-5x<0与二次函数y=x2-5x以及一元二次方程x-5x=0的关系。
容易知道,方程x-5x=0有两个实根:x1=0,x2=5由二次函数的零点与相应的一元二次方程根的关系,知x1=0,x2=5是二次函数222y=x2-5x的两个零点。
通过学生画出的二次函数y=x2-5x的图象,观察而知,当x<0,x>5时,函数图象位于x轴上方,此时y>0,即x-5x>0;2当0<x<5时,函数图象位于x轴下方,此时y<0,即x-5x<0。
22所以,一元二次不等式x-5x<0的解集是x0<x<5{}从而解决了以上的上网问题。
[总结归纳] 上述方法可以推广到求一般的一元二次不等式ax+bx+c>0或2ax2+bx+c<0(a>0)的解集:可分∆>0,∆=0,∆<0三种情况来讨论。
一元二次不等式的解法说课稿

《一元二次不等式解法》说课稿1一、教材简析1、地位和价值一元二次不等式解法是高中数学新教材第一册(上)第一章第5节的内容。
在此之前,学生在初中已学习了一元一次不等式,一元一次不等式组,一元二次方程,二次函数,绝对值不等式(高中),这为过渡到本节的学习起着铺垫作用。
一元二次不等式解法是解不等式的基础和核心,它在高中代数中起着广泛应用的工具作用,蕴藏着“数与形结合”的重要思想方法,它已成为代数、三角、解析几何交汇综合的重要部分,是高考综合题的热点。
2、教材结构简介教材首先以一个一次函数图象的应用解一元一次不等式,引出图象法,然后给出一个二次函数,通过具体画图象,提出问题。
再一般地给出了二次函数图象解二次不等式的结论。
课本精选了四个解不等式的例题,并配有相应的练习和习题。
它的后一小节为解可转化为一元二次不等式的分式不等式。
二、教育教学观1、学生为主体,重学生参与学习活动。
2、重过程。
按照认知规律及学生认知特点,由浅入深,由表及里,设计一系列教学活动过程。
体现由“实践……观察……归纳……猜想……结论……验证应用”的循环往复的认知过程。
3、重能力与态度的培养,在活动中培养学生自主、交流合作、探究、发现的能力。
重科学严谨的个性品质。
重参与学习的兴趣和体验。
4、重指导点拨。
在学生自主探究、实践的基础上,相机启发,恰当点拨,促进学生知识由感性向理性提升,由具体到概括抽象,形成师生间的有效互动。
三、教学目标基于上述认识,及不等式的基本知识,同时学生在初中已学过二次函数,考虑到学生已有的认知结构心理特征,制订如下教学目标:1、知识目标:一元二次方程,一元二次不等式及二次函数间的联系,及利用二次函数的图象求解一元二次不等式。
2、能力目标:数形结合的思想(应用二次函数图象解不等式)3、情感态度目标:通过问题解决,培养学生自主参与学习,以及严谨求实的态度。
四、教与学重点、难点1、重点:用图象解一元二次不等式。
2、难点:围绕二次函数图象、性质这一主线,解决三个“二次”的联系和应用。
一元二次不等式的解法省公开课获奖课件说课比赛一等奖课件

谢 谢 大 家! 再 见!
请同学们完毕下表:
方程或不等式 (a>0)
Δ>0
解
集
Δ=0
{x|x=x1 或 ax2+bx+c=0、
x=x2}
{- b }
2a
ax2+bx+c >0
Δ<0 ф
ax2+bx+c <0
一元二次方程、不等式旳解集
方程或不等式
解
集
(a>0)
Δ>0
Δ=0
{x|x=x1 或 ax2+bx+c=0、
参照答案:
(1) {x | 1 x 2}
(2)
{x
3
|x
1
或
x
2}
2
3
(3)
(4) R
本课小节:
解一元二次不等式旳环节: (1)化成原则形式(a>0) (2)解方程ax2+bx+c=0 (3)由图象写解集
小节
解一元二次不等式ax2+bx+c>0、ax2+bx+c<0 (a>0) 旳环节是:
x=x2}
ax2+bx+c >0
{x|x<x1 或 x>x2}
{- b }
2a
{x|x≠- b}
2a
ax2+bx+c <0 {x|x 1 <x <x2}
ф
Δ<0 ф R ф
⊿=b2-4ac
二次函数 y=ax2+bx+c(a>0)
旳图象
⊿>0 x1 x2
⊿=0
⊿<0
x1(x2)
方程
ax2+bx+c=0 旳根
一元二次不等式及其解法说课稿

一元二次不等式及其解法说课稿《一元二次不等式及其解法》说课稿各位老师好!今天我说课的题目是一元二次不等式及其解法,所选用的是高中数学人教A版必修5教材。
《一元二次不等式及其解法》出自该教材第二章不等式。
根据新课标的理念,对于本节课,我将以教什么,怎样教,为什么这样教为思路,从教材分析,教学目标分析,教学方法分析,教学过程分析四个方面加以说明。
一、教材分析1、教材的地位和作用一元二次不等式的解法是解不等式的基础和核心,在高中数学中有广泛的应用,蕴藏着重要的数形结合思想,现已成为代数、三角、解析几何交汇综合的部分,也是近年来高考综合题的热点,可见,本节课的学习在高中数学中具有举足轻重的地位。
2. 学情分析学生在初中已经学习了一元二次方程和一元二次函数,对不等式的性质有了初步了解。
从心理特征来说,高中阶段的学生逻辑思维较初中学生来说更加严密,抽象思维能力也有进一步提升,所以要更加注重其抽象思维的训练,因此对于这个阶段的学生来说,一元二次不等式的学习有一定的基础。
3. 教学重难点根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的重点确定为:.从实际问题中抽象出一元二次不等式模型;围绕一元二次不等式的解法展开,突出体现数形结合的思想。
难点确定为:理解一元二次函数、一元二次方程与一元二次不等式解集的关系。
二、教学目标分析新课标指出,教学目标应包括只是与技能目标,过程与方法目标,情感与态度目标这三个方面,而这三维目标又应是紧密联系的一个有机整体,学生学会知识与技能的过程同时成为学会学习,形成正确价值观的过程,这告诉我们,在教学中应以知识与技能为主线,渗透情感态度价值观,并把前面两者充分体现在过程与方法中。
借此,我将三维目标进行整合,确定本节课的教学目标为:1.经历从实际情景中抽象出一元二次不等式模型的过程;通过函数图象了解一元二次不等式与二次函数、一元二次方程的联系;会解一次二次不等式,对给定的一元二次不等式,尝试设计求解的程序框图.2.采用探究法,按照思考、交流、观察、分析、得出结论的方法进行启发式教学;发挥学生的主体作用,作好探究性实验;理论联系实际,激发学生的学习兴趣.3.通过利用二次函数的图象来求解一元二次不等式的解集,培养学生的数形结合的数学思想;通过研究函数、方程与不等式之间的内在联系,使学生认识到事物是相互联系、相互转化的,树立辩证的世界观.三、教学方法分析本节课为了培养学生的探究型思维目标,实现学生在教师指导下的发现探索,让学生愉快的学习,在发现与探索中建构知识,发展能力,有效地渗透数学思想,同时以观察法为主的合作交流方式,以一系列问题促进主体学生的学习活动,让学生自己发现问题、解决问题,得到一般性结论,教师则从旁适时点拨,帮助学生逐步攀升,从而达到知识与能力的目标。
一元二次不等式及其解法优质课比赛说课教案 精品

一元二次不等式及其解法【设计思想】新的课程标准指出:数学课程应面向全体学生;促进学生获得数学素养的培养和提高;逐步形成数学观念和数学意识;倡导学生探究性学习.这与建构主义教学观相吻合.本节课正是基于上述理念,通过对已学知识的回忆,引导学生主动探究.强调学习的主体性,使学生实现知识的重构,培养学生“用数学”的意识.本节课的设计以问题为中心,以探究解决问题的方法为主线展开.这种安排强调过程,符合学生的认知规律,使数学教学过程成为学生对书本知识的再创造、再发现的过程,从而培养学生的创新意识.【教材分析】本节课是人教社普通高中课程标准实验教材数学必修5第三章《不等式》第二节一元二次不等式及其解法,本节主要内容是从实际问题中建立一元二次不等式,并能解一元二次不等式.这一节共分三个课时,本节课属于第一课时,课题为《一元二次不等式及其解法》.学数学的目的在于用数学,除了让学生探究并掌握一元二次不等式的解法外,更重要的是要领悟函数、方程、不等式的密切联系,体会数形结合,分类讨论,等价转换等数学思想.【学情分析】学生在初中就开始接触不等式,并会解一元一次不等式.【教学目标】知识目标: 掌握一元二次方程、一元二次不等式和二次函数之间的关系;掌握一元二次不等式的解法;能力目标:培养学生运用等价转化和数形结合等数学思想解决数学问题的能力.情感目标: 自主探究与讨论交流过程中,培养学生的合作意识和创新精神.【教学重点】一元二次不等式的解法.【教学难点】一元二次方程、一元二次不等式和二次函数的关系.【教学策略】教学策略:探究式教学方法(创设问题情境——界定问题——选择问题解决策略——执行策略——结果评价)教学流程:【课前准备】教具:“几何画板”及PPT课件.多媒体投影仪:主要用于投影自制的课件及学生的作品.彩笔:主要用于投影学生作品时实时修改学生作品中不规范的地方.粉笔:用于板书示范.【教学过程】1.创设情境,提出问题某同学去网吧上网,现有两家网吧A、B可去,上网不足一小时均按1小时计算收费,一次连续上网不得超过17个小时.网吧A每小时收费1.5元;网吧B收费原则如下:问题(1):网吧B每小时收取费用有什么规律?问题(2):想一想,一次上网多长时间内能够保证选择去网吧A上网所需费用不大于去网吧B所需费用?设计意图:问题(1)的设置与上一章节数列知识关联,从旧知识中产生新问题.问题(2)的设置是想通过学生感兴趣的上网问题及计时收费问题引入,通过学生比较两种不同的收费方式,抽象出不等关系——一元二次不等式.课件预案(投影):设上网时间为x,则去网吧A所需费用为1.5x元;去网吧B 所需费用为1.7+1.6+1.5+…+1.7-0.1(x -1)= 20)35(x x -, 由题意知1.5x ≤20)35(x x -,整理得x 2-5x ≤0. (其解集为{x | 0≤x ≤5}所以,当上网时间在5小时以内时选择去网吧A ) 2.明确概念,探究解法由上面的研究,可得出一个不等式x 2-5x ≤0,由此明确概念.一元二次不等式:只含一个未知数,并且未知数的最高次数是2的不等式. 问题(3):你能够解出这个一元二次不等式吗?请你试一试.教师此时可放手让学生尝试解这个一元二次不等式.设计意图:让学生自己动手尝试解决,形成自己的解决方法,完成对一元二次不等式解法的初步建构.学生情况预案:从以往的经验看,学生一般会有三种解决方式:(1)两边消掉x 得出x ≤5;因为x ≥0,故得0≤x ≤5.(2)将x 2-5 x ≤0转化为⎩⎨⎧≤-≥050x x ,或⎩⎨⎧≥-≤.050x x ,(3)利用一元二次函数图象数形结合解决.课件预案:利用“几何画板”演示二次函数y =x 2-5x 的图象,引导学生观察点在函数图象上变化时横纵坐标的变化. (视情况而定,若有学生是画图象数形结合的话,就投影学生的作品) 问题(4):通过刚才的探究,大家都解出了上面的不等式,不妨利用你的方法看看能不能解出下列不等式:(1)4 x 2-4x +1>0; (2)x 2-x -2 >0; (3)-x 2+2 x -3<0.设计意图:学生在解不等式时,有不同的方法,各有优劣,此时教师不用直接指出,而是在再尝试中自已体会. 3.观察体会,归纳总结通过上面三个不等式的求解,学生自己可以体会数形结合思想的运用,同时更能感受三个二次之间的关系.此时,教师趁热打铁.问题(5):试根据刚才解不等式的情况,我们想想看,对于一般的一元二次不等式ax 2+bx +c >0(a >0)该如何求解呢?学生在思考后提出自己的看法,然后老师引导学生完成下表.课件预案:利用PPT课件投影上表填表结果.设计意图:通过几个具体的不等式的求解,引导学生寻求更一般的解法,使之推广,让学生体会从特殊到一般的认知规律.4.优化思维,形成步骤例题:求不等式的解集:x(1-x) >x(2x-3)+1.板书:解:不等式可化为3x2-4x+1<0,因为Δ=4>0,方程3x2-4x+1=0有两实数根x1=13,x2=1.所以,原不等式的解集为{x| 13<x < 1}.问题(6):你能总结出解一元二次不等式的一般步骤吗?课件预案:利用PPT课件投影:解一元二次不等式的步骤:①先把不等式中二次项系数化为正数;②计算Δ=b2-4ac,解对应的一元二次方程;③根据对应方程的根的情况,结合不等号的方向,写出不等式的解集.设计意图:对于一元二次不等式的求解,其书写格式也需规范,通过教师板书予以示范.从求解过程中,提炼出解题步骤,形成方法,从感性认识上升到理性认识.解后反思应形成习惯,这对于学生以后的学习也是一种帮助.5.练习反馈,合作检测问题(7):通过上面的学习,你能写出一个一元二次不等式,并能求出它的解吗?现在每人写一个一元二次不等式,然后同桌互相交换,解出同桌所写出的不等式,我们不妨来比比看,看谁解得又快又好.在学生完成之后,每组各选一个学生的作品予以投影,由学生一起评价,找出有没有错误的或不规范的地方,并同时用彩笔在学生的作品里对错误的地方予以更正.设计意图:在以往的课堂里,为了检验学生知识掌握的情况,必要的练习是少不了的.但是,这些练习常常是教师事先准备好的,学生兴趣不是很高,因而不妨让学生自已出题,对这些新鲜出炉的、自己创造的题目,更能引起学生的学习欲望.学生作品的展示应引起我们的重视,每次我说要展示学生的作品的时候,学生就会做的格外认真,好的作品,通过表扬,能增强学生的信心;有问题的作品,通过大家的分析,找到误因,有利于进一步提高.从实践来看,这个设计的效果很好.6.探究提高,深化理解问题(8):已知关于x的不等式ax2+b x+1>0的解集为{x|-12<x<13},你能知道a, b的应满足哪些条件吗?你能求出a ,b的值吗?在学生思考后由学生举手回答,教师予以评价.设计意图:前面一直是给出不等式然后求解,而当我们知道一个不等式的解后,能否知道这个不等式呢?这个问题的设置对于学生进一步理解三个二次之间的关系大有助益.而开放性问题的设置,也使得学生的思维空间更广阔.课件预案:(若时间不够可作为弹性作业)问题(9):已知关于x的不等式ax2+b x+c>0的解集为{x|-12<x<13},你能知道a,b,c的应满足哪些条件吗?你能写出一个符合上述条件的一元二次不等式吗?7.课堂小结:(1)通过这堂课,你学到了什么?(2)给你留下印象最深的是什么?(3)你还有一些什么想法?设计意图:可以让学生自己构建自己的知识结构.8.作业:(1)阅读作业:阅读课本87页内容并完成解一元二次不等式程序图的设计.(2)书面作业:质量监控讲义,基础训练(24).(3)弹性作业:已知关于x的不等式ax2+b x+c>0的解集为{x|-12<x <13},你能知道a,b,c的应满足哪些条件吗?你能写出一个符合上述条件的一元二次不等式吗?设计意图:弹性作业的设置,让学有余力的学生有了进一步提高的空间.【板书设计】:【问题研讨】:学生作品的利用与评价问题:通过学生作品的投影,有利于学生解题的规范,通过师生的共同分析,有助于学生的进一步提高,但这种场面常常只出现在公开课里,而平时的课堂中却很少见.在平时的课堂里,如何更好地利用学生的作品,值得我们进一步思考.。
一元二次不等式及其解法精品教案

例3.解不等式
四、小结
1.从实际问题中建立一元二次不等式,解一元二次不等式;
2.能把一元二次不等式的解的类型归纳出来。
3.情感、态度与价值观
培养学生通过日常生活中的例子,找到数学知识规率,从而在实际生活问题中数形结合的应用。
教学重点
从实际问题中抽象出一元二次不等式模型,围绕一元二次不等式的解法展开,突出体现数形结合的思想;
教学难点
理解二次函数、一元二次方程与一元二次不等式解集的关系。
教学过程
批注
一、[创设情景]
探究:通过让学生阅读第76页的上网问题,得出一个关于x的一元二次不等式,即
一元二次不等ห้องสมุดไป่ตู้的定义:只含一个未知数,并且未知数的最高次数为2的不等式;
练习:判断下列式子是不是一元二次不等式?
(1) (2)
(3)( (4)
二、[探索研究]
思考1:一元一次方程、一元一次不等式及与一次函数三者之间有什么关系?
2.不等式 、二次函数 、一元二次方程 的之间有什么关系?
容易知道,方程 有两个实根: 由二次函数的零点与相应的一元二次方程根的关系,知 是二次函数 的两个零点。
通过学生画出的二次函数 的图象,观察而知,
当 时,函数图象位于x轴上方,此时 ,即 ;
当 时,函数图象位于x轴下方,此时 ,即 。
所以,一元二次不等式 的解集是 从而解决了以上的上网问题。
3.如何解一元二次不等式?
三、[举例应用]
例1求下列不等式的解集
(1) (2)
(3)4 (4)
通过以上的例题及练习的讲解,指导学生归纳P77面的表格及一元二次不等式的解的情况。
一元二次不等式及其解法
一元二次不等式的解法(精品说课稿)

尊敬的各位评委各位老师:大家好,我是高中数学组号考生,今天我说课的题目是《一元二次不等式的解法》。
下面我将从说教材、说教学目标、说教学过程等几个方面来展开我的说课。
首先来说说教材。
本课是北师大版高中数学必修5第3章第2.1节课内容。
在初中阶段,学生已经学习了一元二次方程和一元二次函数,同时对不等式的性质有了初步了解,这为过渡到本节一元二次不等式的解法的学习起着铺垫作用。
本节课的主要学习任务是通过从实际情境中抽象出一元二次不等式模型,并探索一元二次不等式的解法。
是对于学生所学知识的容通和运用,也培养了学生逻辑思维能力和抽象概括能力。
基于以上教材地位以及新课标的要求,我确定了以下三维教学目标:1、理解一元二次方程、一元二次不等式与二次函数的关系,掌握图象法解一元二次不等式的方法,这是本课教学的重点。
2、通过从实际情景中抽象出一元二次不等式模型的探究,培养学生观察、类比、归纳和数形结合等发现规律的一般方法,使学生的思维能力得到锻炼,这也是本课教学的难点。
3、通过本节课的学习,激发学生对数学学习的兴趣,增进对数学学习的信心,培养勇于探索和善于发现的精神,体会学习的快乐。
数学课程标准倡导“合作、自主、探究”的学习方法。
所以,本堂课的教学,我准备采用演示法、情境教学法、讨论分析法等。
在学法上,我将以“把学习的主动权还给学生”为指导思想,采取领会法、合作学习法、研究性学习法等。
为了完成既定的教学目标,解决教学重难点,课堂教学我将按照以下几个环节展开:环节一:激趣导入,未成曲调先有情上课伊始,我会以复习提问的方式开始的我课程,为激发学生兴趣,我设计了如下导语:请同学们思考下3个问题:1、一元二次方程的解法有哪些呢,2、二次函数的图像是怎样的?你记得二次函数的性质吗;3、如何利用二次函数图像和性质来解决不等关系问题,请同学们跟随老师进入今设计意图在于通过情景知识,引发学生的认识冲突。
并顺势引出课题。
学生在教师引导带着问题去独立思考,能够快速进入学习状态。
一元二次不等式及其解法(优质课)教案

一元二次不等式及其解法(优质课)教案 教学目标:教学重点: 正确理解一元二次不等式的解法;掌握一元二次不等式的不等式的解法;理解二次函数、一元二次方程、一元二次不等式之间的关系;教学难点: 理解二次函数、一元二次方程及一元二次不等式之间的关系。
教学过程:1. 一元二次不等式(1) 一元二次不等式的定义:一般地,含有1个未知数,且未知数的最高次数为2的整式不等式,叫做一元二次等式;(2) 一元二次不等式的解集:使某个一元二次不等式成立的未知数的取值集合叫做这个一元二次不等式的解集;(3) 同解不等式:如果两个不等式的解集相同,那么这两个不等式叫做同解不等式。
2. 一元二次不等式与相应的函数、方程之间的关系对于一元二次方程()200ax bx c a ++=>设24b ac ∆=-它的解按0,0,0∆>∆<∆=可分为三种情况,列表如下: 0>∆ 0=∆ 0<∆ c bx ax y ++=2c bx ax y ++=2 c bx ax y ++=23. 一元二次不等式的解法步骤(1) 对不等式进行变形,使一端为0,且二次项系数大于0;(2) 计算相应方程的根的判别式;(3) 当0∆>时,求出相应的一元二次方程的两根;(4) 根据一元二次不等式解集的结构,写出其解集。
注:若不等式左侧可因式分解,则可转化为一元一次不等式组求解。
(一看,二算,三写)4. 含参数的一元二次不等式的解法(1) 二次项系数含参数时,根据一元二次不等式的标准形式需要化二次项系数为正,所以要对参数讨论;(2) 解∆得过程中,若∆表达式含有参数且参数的取值影响∆的符号,这时根据∆的符号确定的需要,对参数进行讨论;(3) 方程的两根表达式中如果有参数,需要对参数讨论才能确定根的大小,这时要对参数进行讨论。
5. 不等式的恒成立问题(1) 结合二次函数的图像和性质用判别式法,当x 的取值为全体实数时,一般用此法;(2) 从函数的最值入手考虑,如大于零恒成立可转化为最小值大于零;(3) 能分离变量的尽量把参数和变量分离出来;(4) 数形结合,结合图形进行分析,从整体上把握图形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次不等式及其解法
【设计思想】
新的课程标准指出:数学课程应面向全体学生;促进学生获得数学素养的培养和提高;逐步形成数学观念和数学意识;倡导学生探究性学习.这与建构主义教学观相吻合.本节课正是基于上述理念,通过对已学知识的回忆,引导学生主动探究.强调学习的主体性,使学生实现知识的重构,培养学生“用数学”的意识.本节课的设计以问题为中心,以探究解决问题的方法为主线展开.这种安排强调过程,符合学生的认知规律,使数学教学过程成为学生对书本知识的再创造、再发现的过程,从而培养学生的创新意识.
【教材分析】
本节课是人教社普通高中课程标准实验教材数学必修5第三章《不等式》第二节一元二次不等式及其解法,本节主要内容是从实际问题中建立一元二次不等式,并能解一元二次不等式.这一节共分三个课时,本节课属于第一课时,课题为《一元二次不等式及其解法》.学数学的目的在于用数学,除了让学生探究并掌握一元二次不等式的解法外,更重要的是要领悟函数、方程、不等式的密切联系,体会数形结合,分类讨论,等价转换等数学思想.
【学情分析】
学生在初中就开始接触不等式,并会解一元一次不等式.
【教学目标】
知识目标: 掌握一元二次方程、一元二次不等式和二次函数之间的关系;掌握一元二次不等式的解法;
能力目标:培养学生运用等价转化和数形结合等数学思想解决数学问题的能力.
情感目标: 自主探究与讨论交流过程中,培养学生的合作意识和创新精神.
【教学重点】一元二次不等式的解法.
【教学难点】一元二次方程、一元二次不等式和二次函数的关系.
【教学策略】
教学策略:探究式教学方法(创设问题情境——界定问题——选择问题解决策略——执行策略——结果评价)
教学流程:
【课前准备】
教具:“几何画板”及PPT课件.
多媒体投影仪:主要用于投影自制的课件及学生的作品.
彩笔:主要用于投影学生作品时实时修改学生作品中不规范的地方.
粉笔:用于板书示范.
【教学过程】
1.创设情境,提出问题
某同学去网吧上网,现有两家网吧A、B可去,上网不足一小时均按1小时计算收费,一次连续上网不得超过17个小时.
网吧A每小时收费1.5元;网吧B收费原则如下:
问题(1):网吧B每小时收取费用有什么规律?
问题(2):想一想,一次上网多长时间内能够保证选择去网吧A上网所需费用不大于去网吧B所需费用?
设计意图:问题(1)的设置与上一章节数列知识关联,从旧知识中产生新问题.问题(2)的设置是想通过学生感兴趣的上网问题及计时收费问题引入,通过学生比较两种不同的收费方式,抽象出不等关系——一元二次不等式.
课件预案(投影):设上网时间为x,则去网吧A所需费用为1.5x元;
去网吧B 所需费用为1.7+1.6+1.5+…+1.7-0.1(x -1)= 20
)
35(x x -, 由题意知1.5x ≤
20
)
35(x x -,整理得x 2-5x ≤0. (其解集为{x | 0≤x ≤5}所以,当上网时间在5小时以内时选择去网吧A ) 2.明确概念,探究解法
由上面的研究,可得出一个不等式x 2-5x ≤0,由此明确概念.
一元二次不等式:只含一个未知数,并且未知数的最高次数是2的不等式. 问题(3):你能够解出这个一元二次不等式吗?请你试一试.
教师此时可放手让学生尝试解这个一元二次不等式.
设计意图:让学生自己动手尝试解决,形成自己的解决方法,完成对一元二次不等式解法的初步建构.
学生情况预案:从以往的经验看,学生一般会有三种解决方式:
(1)两边消掉x 得出x ≤5;因为x ≥0,故得0≤x ≤5.
(2)将x 2-5 x ≤0转化为⎩⎨⎧≤-≥050x x ,或⎩⎨⎧≥-≤.050x x ,
(3)利用一元二次函数图象数形结合解决.
课件预案:利用“几何画板”演示二次函数y =x 2-5x 的图象,引导学生观察点在函数图象上变化时横纵坐标的变化. (视情况而定,若有学生是画图象数形结合的话,就投影学生的作品) 问题(4):通过刚才的探究,大家都解出了上面的不等式,不妨利用你的方法看看能不能解出下列不等式:
(1)4 x 2-4x +1>0; (2)x 2-x -2 >0; (3)-x 2+2 x -3<0.
设计意图:学生在解不等式时,有不同的方法,各有优劣,此时教师不用直接指出,而是在再尝试中自已体会. 3.观察体会,归纳总结
通过上面三个不等式的求解,学生自己可以体会数形结合思想的运用,同时更能感受三个二次之间的关系.此时,教师趁热打铁.
问题(5):试根据刚才解不等式的情况,我们想想看,对于一般的一元二次不等式ax 2+bx +c >0(a >0)该如何求解呢?
学生在思考后提出自己的看法,然后老师引导学生完成下表.
课件预案:利用PPT课件投影上表填表结果.
设计意图:通过几个具体的不等式的求解,引导学生寻求更一般的解法,使之推广,让学生体会从特殊到一般的认知规律.
4.优化思维,形成步骤
例题:求不等式的解集:x(1-x) >x(2x-3)+1.
板书:
解:不等式可化为3x2-4x+1<0,
因为Δ=4>0,方程3x2-4x+1=0有两实数根x
1=
1
3
,x
2
=1.
所以,原不等式的解集为{x| 1
3
<x < 1}.
问题(6):你能总结出解一元二次不等式的一般步骤吗?
课件预案:利用PPT课件投影:解一元二次不等式的步骤:
①先把不等式中二次项系数化为正数;
②计算Δ=b2-4ac,解对应的一元二次方程;
③根据对应方程的根的情况,结合不等号的方向,写出不等式的解集.
设计意图:对于一元二次不等式的求解,其书写格式也需规范,通过教师板书予以示范.从求解过程中,提炼出解题步骤,形成方法,从感性认识上升到理性认识.解后反思应形成习惯,这对于学生以后的学习也是一种帮助.
5.练习反馈,合作检测
问题(7):通过上面的学习,你能写出一个一元二次不等式,并能求出它的解吗?现在每人写一个一元二次不等式,然后同桌互相交换,解出同桌所写出的不等式,我们不妨来比比看,看谁解得又快又好.
在学生完成之后,每组各选一个学生的作品予以投影,由学生一起评价,找出有没有错误的或不规范的地方,并同时用彩笔在学生的作品里对错误的地方予以更正.
设计意图:在以往的课堂里,为了检验学生知识掌握的情况,必要的练习是少不了的.但是,这些练习常常是教师事先准备好的,学生兴趣不是很高,因而不妨让学生自已出题,对这些新鲜出炉的、自己创造的题目,更能引起学生的学习欲望.学生作品的展示应引起我们的重视,每次我说要展示学生的作品的时候,学生就会做的格外认真,好的作品,通过表扬,能增强学生的信心;有问题的作品,通过大家的分析,找到误因,有利于进一步提高.从实践来看,这个设计的效果很好.
6.探究提高,深化理解
问题(8):已知关于x的不等式ax2+b x+1>0的解集为{x|-1
2
<x<
1
3
},你能知道a, b
的应满足哪些条件吗?你能求出a ,b的值吗?
在学生思考后由学生举手回答,教师予以评价.
设计意图:前面一直是给出不等式然后求解,而当我们知道一个不等式的解后,能否知道这个不等式呢?这个问题的设置对于学生进一步理解三个二次之间的关系大有助益.而开放性问题的设置,也使得学生的思维空间更广阔.
课件预案:(若时间不够可作为弹性作业)
问题(9):已知关于x的不等式ax2+b x+c>0的解集为{x|-1
2
<x<
1
3
},你能知道a,b,c
的应满足哪些条件吗?你能写出一个符合上述条件的一元二次不等式吗?
7.课堂小结:
(1)通过这堂课,你学到了什么?
(2)给你留下印象最深的是什么?
(3)你还有一些什么想法?
设计意图:可以让学生自己构建自己的知识结构.
8.作业:
(1)阅读作业:阅读课本87页内容并完成解一元二次不等式程序图的设计.
(2)书面作业:质量监控讲义,基础训练(24).
(3)弹性作业:已知关于x的不等式ax2+b x+c>0的解集为{x|-1
2
<x <
1
3
},你能知
道a,b,c的应满足哪些条件吗?你能写出一个符合上述条件的一元二次不等式吗?
设计意图:弹性作业的设置,让学有余力的学生有了进一步提高的空间.
【板书设计】:
【问题研讨】:
学生作品的利用与评价问题:通过学生作品的投影,有利于学生解题的规范,通过师生的共同分析,有助于学生的进一步提高,但这种场面常常只出现在公开课里,而平时的课堂中却很少见.在平时的课堂里,如何更好地利用学生的作品,值得我们进一步思考.。