图论第二次作业
电子科技大学-图论第二次作业

复杂性分析:在第 k 次循环里,找到点 u0 与 v0,要做如下运算: (a) 找出所 有不邻接点对----需要 n(n-1)/2 次比较运算;(b) 计算不邻接点对度和----需要做 n(n-1)/2-m(G)次加法运算;(c ),选出度和最大的不邻接点对----需要 n(n-1)/2-m(G)次
2) 若 ek 不在 Ck 中,令 Gk-1=Gk-ek, Ck-1=Ck; 否则转 3); 3) 设 ek=u0v0 ∈Ck, 令 Gk-1=Gk-ek; 求 Ck 中两个相邻点 u 与 v 使得 u0,v0,u,v 依序 排列在 Ck 上,且有:uu0,vv0 ∈E(Gk-1),令:
Ck1 Ck u0v0,uvuu0,vv0
如果在
中有 H 圈
如下: Ck1 (u0 , v0 , v1,..., vn2 , u0 )
我们有如下断言: 在Ck1上,vi , vi1, 使得u0vi , v0vi1 E(Gk )
若不然,设
那么在 Gk 中,至少有 r 个顶点与 v0 不邻接,则
≦(n-1)-r < n-r, 这样与 u0,v0 在 Gk 中度和大于等于 n 矛盾!
图的闭包算法:
1) 令 =G ,k=0;
2) 在 中求顶点 与 ,使得:
dGk (u0 ) dGk (v0 ) max dGk (u) dGk (v) uv E(Gk )
3) 如果 此时得到 G 的闭包;
dGk (u0 ) dGk (v0 ) n
则转 4);否则,停止,
4) 令
,
,转 2).
则 是非 Hamilton 图
(2)因为 是具有二分类 的偶图,又因为
,在这里假设
,则有
,也就是说:对于
图论习题答案2

第四次作业
四(13).设M是二分图G的最大匹配,则 | M || X | max| S | | N ( S )| ,
SX
证明: | X | max| S | | N ( S )| min(| X | | S |) | N ( S )| ,而(X - S ) N ( S )是G的一个覆盖,则 min(| X | | S |) | N ( S )|是G的最小覆盖,
第七次作业
• 五(28).设sn是满足下列条件的最小整数,把 {1,2,...,sn}任划分成n个子集后,总有一个子集 中含有x+y=z的根,求s1,s2,s3是多少? • 解:n=1,枚举得s1=2; • s2=5 • s3=14
第七次作业
五(34).求证r(k, l) = r(l, k) 证明:若G含有K k 子图,则G c 含有k个顶点的独立集;若G含有 l个顶点的独立集,则G c 含有K l 子图。则命题成立。
五 (13).若 是单图 G 顶的最小次数,证明; 若 1则存在 1边着色, 使与每顶关联的边种有 1种颜色。 反证法:假设在 v1处无 i 0色 设 C (E 1 , E 2 ,..., E 1 )为 G 的( 1) 最佳边着色 第一步:构造点列: v1 , v 2 ,..., v h , v h 1 ,....., vl ,.... v1处无 i 0色, v j v j 1着 i j色,且在 v j点处 i j 色重复出现,可知在 v j1处仅一 个 i j色;证明如下: 用反证法证明,假设在 v j1处 i j色重复出现,将 v j v j 1改成 v j 所关联的边 没有的颜色 im,则可以对图 G 的找色进行改善。与 C 是最佳边着色矛盾, 假设不成立。 又 是单图 G 顶的最小次数,则必存 在最小整数 h使得 i h i l 第二步:着色调整: v j v j 1着 i j-1色 ( j 1,2,..., h ),所得新着色为 C ' 在 C '中, v1处多了个 i 0色, v h 1处少了个 i h 色,其他点的边着色数 不变, 所以 C ' 还是 1最佳边着色
离散数学图论部分形成性考核书面作业4答案

离散数学作业4离散数学图论部分形成性考核书面作业本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。
本次形考书面作业是第二次作业,大家要认真及时地完成图论部分的综合练习作业。
一、填空题1.已知图G 中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G 的边数是 15 .2.设给定图G (如右由图所示),则图G 的点割集是 {f} .3.设G 是一个图,结点集合为V ,边集合为E ,则 G 的结点 度数之和 等于边数的两倍.4.无向图G 存在欧拉回路,当且仅当G 连通且 等于出度 .5.设G=<V ,E >是具有n 个结点的简单图,若在G 中每一对结点度数之和大于等于 n-1 ,则在G 中存在一条汉密尔顿路.6.若图G=<V , E>中具有一条汉密尔顿回路,则对于结点集V 的每个非空子集S ,在G 中删除S 中的所有结点得到的连通分支数为W ,则S 中结点数|S|与W 满足的关系式为 W(G-V1) ≤∣V 1∣ .7.设完全图K n 有n 个结点(n ≥2),m 条边,当 n 为奇数 时,K n中存在欧拉回路.8.结点数v 与边数e 满足 e=v-1 关系的无向连通图就是树.9.设图G 是有6个结点的连通图,结点的总度数为18,则可从G 中删去 4 条边后使之变成树.10.设正则5叉树的树叶数为17,则分支数为i = 5 .二、判断说明题(判断下列各题,并说明理由.)1.如果图G 是无向图,且其结点度数均为偶数,则图G 存在一条欧拉回路..姓 名: 学 号: 得 分: 教师签名:(1) 不正确,缺了一个条件,图G应该是连通图,可以找出一个反例,比如图G是一个有孤立结点的图。
图论习题二答案

图论习题二答案图论习题二答案图论是数学中的一个分支,研究的是图的性质和图之间的关系。
在图论中,有很多经典的习题可以帮助我们更好地理解和应用图的概念。
本文将探讨一些图论习题二的答案,帮助读者更好地理解和掌握图论的知识。
1. 习题:给定一个无向图G=(V,E),其中V={1,2,3,4,5,6},E={(1,2),(1,3),(2,3),(2,4),(3,4),(4,5),(4,6)},求图G的邻接矩阵和关联矩阵。
答案:邻接矩阵是一个n×n的矩阵,其中n是图的顶点数。
对于无向图G,邻接矩阵的元素a[i][j]表示顶点i和顶点j之间是否存在边。
如果存在边,则a[i][j]=1,否则a[i][j]=0。
对于给定的图G,邻接矩阵为:0 1 1 0 0 01 0 1 1 0 01 1 0 1 0 00 1 1 0 1 10 0 0 1 0 00 0 0 1 0 0关联矩阵是一个n×m的矩阵,其中n是图的顶点数,m是图的边数。
对于无向图G,关联矩阵的元素b[i][j]表示顶点i和边j之间的关系。
如果顶点i是边j 的起点,则b[i][j]=-1;如果顶点i是边j的终点,则b[i][j]=1;否则b[i][j]=0。
对于给定的图G,关联矩阵为:-1 -1 0 0 0 01 0 -1 -1 0 00 1 1 0 0 00 0 0 1 -1 -10 0 0 0 1 00 0 0 0 0 12. 习题:给定一个有向图G=(V,E),其中V={1,2,3,4,5},E={(1,2),(1,3),(2,3),(2,4),(3,4),(4,1),(5,4)},求图G的邻接表和深度优先搜索遍历结果。
答案:邻接表是一种图的表示方法,用于存储图中每个顶点的邻接顶点。
对于有向图G,邻接表中的每个元素表示该顶点的出边。
对于给定的图G,邻接表为:1: 2, 32: 3, 43: 44: 15: 4深度优先搜索(DFS)是一种图的遍历算法,用于遍历图中的所有顶点。
第二篇 图论习题

习题课 2
例10 若G是一个恰有两个奇度顶点u和v的无向图,则 (1)顶点u与v连通;(2)G连通G+uv连通。 例1 设G为p阶简单无向图,p>2且p为奇数,G和G的 补图GC 中度数为奇数的顶点的个数是否一定相等? 试证明你的结论。 例2 设V={v1,v2,…,vp},计算以V为顶点集的无向图 的个数是多少?(KP有多少个生成子图) 例3 设V={v1,v2,…,vp},q≤p(p-1)/2,计算以V为顶 点集具有q条边的无向图的个数是多少? 例4 设G是(p,q)图,r≤q,则具有r条边的G的生成 子图有多少? 答案: 2p(p-1)/2 ,Cqp(p-1)/2 ,Crq。
习题课 2
1. 说明图中所示图(1)(2)是否是非平面图? 2.证明:彼得森图不是平面图。 (1) 收缩法;(2) 欧拉公式法;(3)收缩到K3,3。 3.设G是无向图,p<8,则G与Gc中至少有一个是平面图。 4.设平面图G的顶点数p=7,边数q=15,证明G是连通的。
习 题 课 3
1.判断下面命题是否正确,并说明理由。 任意平面图G的对偶图G*的对偶图G**与G同构。 2. 设G*是平面图G的对偶图,证明:p*=f,q*=q, f*=p-k+1。其中k(k≥1)为G的连通分支数。 3. 证明:若G是自对偶的平面图,则q=2p-2。其中p 和q是G的边与顶点数。 4.把平面分成p个区域,每两个区域都相邻,问p最 大为多少? 5.证明:不存在具有5个面,每两个面都共享一条公 共边的平面图G。
例7 设G是有个p顶点,q条边的无向图,各顶点的度 数均为3。则 (1)若q=3p-6,证明:G在同构意义下唯一,并求p,q。 (2)若p=6,证明:G在同构的意义下不唯一。 例8 已知p阶(简单)无向图中有q条边,各顶点的度数 均为3,又2p=q+3,试画出满足条件的所有不同 构的G。 例9 9个学生,每个学生向其他学生中的3个学生各送 一张贺年卡。确定能否使每个学生收到的卡均来自 其送过卡的相同人?为什么? 解:否,不存在9(奇数)个顶点的3-正则图。
电子科技大学-图论第二次作业

习题四:3. (1)画一个有Euler闭迹和Hamilton圈的图;(2) 画一个有Euler闭迹但没有Hamilton圈的图;(3) 画一个有Hamilton圈但没有Euler闭迹的图;(4) 画一个即没有Hamilton圈也没有Euler闭迹的图;解:找到的图如下:(1)一个有Euler闭迹和Hamilton圈的图;(2)—个有Euler闭迹但没有Hamilton圈的图;⑶一个有Hamilton圈但没有Euler闭迹的图;(4)一个即没有Hamilton圈也没有Euler闭迹的图.4. 设n阶无向简单图G有m条边,证明:若2 ) * ',则G是血加此"图。
证明:G是H图。
若不然,因为G是无向简单图,则n芝3,由定理%若G是n芝3的非单图,则G、一 ...C …度弱丁某个阵".于是有:- - 1 2 E(G)| E(C m,n ) - m (n 2m)(n m 1) m(m 1)1.这与条件矛盾!所以G 是H 图若G 有个奇点,则存在k 条边不重的迹Q1・Q 矿心,使得 E(G) = E(Q 】)U E(Q J U E(Q 3) U …U E(Q k ) 证明:不失一般性,只就 G 是连通图进行证明。
设 G=(n, m)是连通图。
令 虬 V 2,…,v,V k+1,…,v 是G 的所有奇度点。
在V i与v i+k 问连新边e i 得图G* (1三隹k). 则G*是欧拉图,因此,由Fleury 算法得欧拉环游C 在C 中删去e i (1m M k).得 k 条边不重的迹Qi (1 MiMk):E(G) E(Q1^E(Q2^^E(Qk)10. 证明:若:(1) G 不是二连通图,或者(2) G 是具有二分类|(X,Y)的偶图,这里|X” |Y|则G 是非Hamilton 图。
证明:(1) G|不是二连通图,则G 不连通或者存在割点v ,俨任-v) >2 ,由丁课本 上的相关定理:若G 是Hamilton 图,则对丁*勇)的任意非空顶点集S,有: w(G- S) <|S|,则该定理的逆否命题也成立,所以可以得出:若不是二连通图, 则G 是非Hamilton 图(2)因为是具有二分类(XI)的偶图,乂因为|X|丰1丫1,在这里假设|X| < |Y|,则有 w(G-X) = |Y|>|X|,也就是说:对北(G)|的非空顶点集S,有:w(G-S)>||S|成 立,则可以得出则G 是非Hamilton 图。
离散数学图论部分形成性考核书面作业4答案

离散数学图论部分形成性考核书面作业4答案离散数学作业4离散数学图论部分形成性考核书面作业本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。
本次形考书面作业是第二次作业,大家要认真及时地完成图论部分的综合练习作业。
一、填空题1.已知图G 中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G 的边数是 15 .2.设给定图G (如右由图所示),则图G 的点割集是 {f} .3.设G 是一个图,结点集合为V ,边集合为E ,则 G 的结点 度数之和 等于边数的两倍.4.无向图G 存在欧拉回路,当且仅当G 连通且 等于出度 . 5.设G=<V ,E >是具有n 个结点的简单图,若在G 中每一对结点度数之和大于等于 n-1 ,则在G 中存在一条汉密尔顿路.6.若图G=<V , E>中具有一条汉密尔顿回路,则对于结点集V 的每个非空子集S ,在G 中删除S 中的所有结点得到的连通分支数为W ,则S 中结点数|S|与W 满足的关系式为 W(G-V1) ≤∣V 1∣ .7.设完全图K n 有n 个结点(n ≥2),m 条边,当 n 为奇数 时,K n中存在欧拉回路.8.结点数v 与边数e 满足 e=v-1 关系的无向连通图就是树.姓 名: 学 号: 得 分: 教师签名:4.设G是一个有7个结点16条边的连通图,则G为平面图.解:(1) 错误假设图G是连通的平面图,根据定理,结点数v,边数为e,应满足e小于等于3v-6,但现在16小于等于3*7-6,显示不成立。
所以假设错误。
5.设G是一个连通平面图,且有6个结点11条边,则G有7个面.(2) 正确根据欧拉定理,有v-e+r=2,边数v=11,结点数e=6,代入公式求出面数r=7三、计算题1.设G=<V,E>,V={ v1,v2,v3,v4,v5},E={ (v1,v3),(v2,v3),(v2,v4),(v3,v4),(v3,v5),(v4,v5) },试(1) 给出G的图形表示;(2) 写出其邻接矩阵;(3) 求出每个结点的度数;(4) 画出其补图的图形.解:(1)οοοοvοv vv v(2) 邻接矩阵为⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛0110010110110110110000100(3) v 1结点度数为1,v 2结点度数为2,v 3结点度数为3,v 4结点度数为2,v 5结点度数为2(4) 补图图形为2.图G =<V , E >,其中V ={ a , b , c , d , e },E ={ (a , b ), (a , c ), (a , e ), (b , d ), (b , e ),(c , e ), (c , d ), (d , e ) },对应边的权值依次为2、1、2、3、6、1、4及5,试(1)画出G 的图形; (2)写出G 的邻接矩阵; (3)求出G 权最小的生成树及其权值. (1)G 的图形如下:οο ο οv οv v vv(2)写出G的邻接矩阵(3)G权最小的生成树及其权值3.已知带权图G如右图所示.(1) 求图G的最小生成树;(2)计算该生成树的权值.解:(1) 最小生成树为(2) 该生成树的权值为(1+2+3+5+7)=184.设有一组权为2, 3, 5, 7, 17, 31,试画出相应的最优二叉树,计算该最优二叉树的权.12357权为 2*5+3*5+5*4+7*3+17*2+31=131四、证明题1.设G 是一个n 阶无向简单图,n 是大于等于3的奇数.证明图G 与它的补图G 中的奇数度顶点个数相等.证明:设,G V E =<>,,G V E '=<>.则E '是由n 阶无向完全图n K 的边删去E 所得到的.所以对于任意结点u V ∈,u 在G 和G 中的度数之和等于u 在n K 中的度数.由于n 是大于等于3的奇数,从而n K 的每个结点都是偶数度的( 1 (2)n -≥度),于是若u V ∈在G 中是奇数度结点,则它在G 中也是奇数度结点.故图G 与它的补图G 中的奇数度结点个数相等.35251717311362.设连通图G 有k 个奇数度的结点,证明在图G 中至少要添加2k条边才能使其成为欧拉图.证明:由定理3.1.2,任何图中度数为奇数的结点必是偶数,可知k 是偶数. 又根据定理4.1.1的推论,图G 是欧拉图的充分必要条件是图G 不含奇数度结点.因此只要在每对奇数度结点之间各加一条边,使图G 的所有结点的度数变为偶数,成为欧拉图.故最少要加2k条边到图G 才能使其成为欧拉图.。
电子科大图论-第二次作业

图论及其应用第二次作业要求:1、交电子档给助教【助教给每个班设置邮箱,助教设置提交回复】;2、第7章授课结束前均可以提交;3、希望能够独立完成。
1.判断图4-43所示的四个图是否可以一笔画。
上面四个图都是连通图,看是否能一笔画成问题本质上看图是否存在欧拉迹;连通图有欧垃迹当且仅当G 最多有两个奇点。
(a )不可以 有4个奇点(b )可以 一个奇点(c )可以 两个奇点(d )可以 没有奇点2.(1)画一个有欧拉闭迹和哈密尔顿圈的图;(2)画一个有欧拉闭迹但没有哈密尔顿圈的图;(3) 画一个有哈密尔顿圈但没有欧拉闭迹的图;(4)画一个既没有欧拉闭迹也没有哈密尔顿圈的图。
3. 设n 阶无向简单图G 有m 条边。
证明:若m ≥⎪⎪⎭⎫ ⎝⎛-21n +2,则G 是哈密尔顿图。
(b) (c) (d ) 图4-43证明:G 是H 图。
若不然,因为G 是无向简单图,则n ≥3,由定理1:若G 是n ≥3的非单图,则G 度弱于C m,n 。
于是有:2,1()()(2)(1)(1)21111(1)(2)(1)(21) 1.222m n E G E C m n m n m m n n n m m m n m ⎡⎤≤=+---+-⎣⎦--⎛⎫⎛⎫=+-------≤+ ⎪ ⎪⎝⎭⎝⎭ 这与条件矛盾!所以G 是H 图。
4. 在图4-45中,哪些图是哈密尔顿图?哪些图中有哈密尔顿路?(a)非哈密尔顿图,没有哈密尔顿路(b)哈密尔顿图 (abcdejhfiga)(c)哈密尔顿图 (kjdhbagciefk)(d)非哈密尔顿图 有哈密尔顿路(hjaidebcgf)(e)不是哈密尔顿图,因为有割点a ,有哈密尔顿路(jaibcedkgfh )5. 证明:若G 没有奇点,则存在边不重的圈C 1, C 2,…, C m ,使得,E (G ) = E (C 1)∪E (C 2)∪…∪E (C m )。
证明:将G 中孤立点除去后的图记为G 1,则G 1也没有奇点,且δ(G 1),则G 1含圈C 1,在去掉()11G E C -的孤立点后,得图G 2,显然G 2仍无奇度点,且δ(G 2)≥ 2,从而G 2含圈C 1,如此重复下去,直到圈C m ,且G m -E (C m )全为孤立点为止,于是得到E (G ) = E (C 1)∪E (C 2)∪…∪E (C m )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图论第二次作业
一、第四章
4.3(1)画一个有Euler闭迹和Hamilton圈的图;
(2)画一个有Euler闭迹但没有Hamilton圈的图;
(3)画一个有Hamilton圈但没有Euler闭迹的图;
(4)画一个既没有Euler闭迹也没有Hamilton圈的图;解:(1)一个有Euler闭迹和Hamilton圈的图形如下:
(2)一个有Euler闭迹但没有Hamilton圈的图形如下:
(3)一个有Hamilton圈但没有Euler闭迹的图形如下:
(4)一个既没有Euler闭迹也没有Hamilton圈的图形如下:
4.7 证明:若G 没有奇点,则存在边不重的圈C 1,C 1,···,C m ,使得
)()()()(21m C E C E C E G E •••=。
证明:将G 中孤立点除去后的图记为1G ,则1G 也没有奇点,且2)(1≥G δ,则1G 含圈1C ,在去掉)(11C E G -的孤立点后,得图2G ,显然2G 仍无奇度点,且2)(2≥G δ,从而2G 含圈2C ,如此重复下去,直到圈m C ,且)(m m C E G -全为孤立点为止,于是得到)()()()(21m C E C E C E G E ⋅⋅⋅=。
4.10 证明:若
(1)G 不是二连通图,或者
(2)G 是具有二分类),(Y X 的偶图,这里Y X ≠, 则G 是非Hamilton 图。
证明:(1)因为G 不是二连通图,则G 不连通或者存在割点v ,有2)(≥-v G w ,由相关定理得:若G 是Hamilton 图,则对于v(G)的任意非空顶点集S ,有:S S G w ≤-)(,则该定理得逆否命题也成立,所以可得:若G 不是二连通图,则G 是非Hamilton 图。
(2)因为G 是具有二分类),(Y X 的偶图,又因为Y X ≠,在这里假设Y X ≤,则有X Y X G w >=-)(,也就是说:对于v(G)的非空顶点集S ,有:S S G w >-)(成立,则可以得出G 是非Hamilton 图。
4.12 设G 是有度序列),,,(21n d d d ⋅⋅⋅的非平凡简单图,这里n d d d ≤⋅⋅⋅≤≤21,证明:若不存在小于
2
)1(+n 的正整数m ,使得m d m <且m n d m n -<+-1,则G 有Hamliton 路。
证明:在G 之外加上一个新点v ,把它和G 的其余各点连接,得图G 1:
G 1的度序列为:),1,,1,1(21n d d d n +⋅⋅⋅++,由已知:不存在小于2
)1(+n 的正整数
m ,使得m d m ≤+1且m n m n d m n -+=+-<++-)1(111。
于是由度序列判定定理知:G 1是Hamilton 路,则G 有Hamliton 路。
二、 第五章作业
5.1 (1)证明:每个k 方体都有完美匹配(2≥k );
(2)求K 2n 和K n,n 中不同的完美匹配的个数。
证明:(1)证明每个k 方体都是k 正则偶图即可。
事实上,由k 方体的构造:k 方体有2k 个顶点,每个顶点可以用长度为k 的二进制码来表示,两个顶点连线当且仅当代表两个顶点的二进制码只有一位坐标不同。
如果我们划分k 方体的2k 个顶点,把坐标之和为偶数的顶点归入X ,其余归入Y 。
显然,X 中顶点互不邻接,Y 中顶点也如此。
所以k 方体是偶图。
又不难知道k 方体的每个顶点度数为k ,所以k 方体是k 正则偶图。
由推论得:k 方体存在完美匹配。
解:(2)利用归纳法求K 2n 和K n,n 中不同的完美匹配的个数。
K 2n 的任意一个顶点有2n-1中不同的方法被匹配。
所以K 2n 的不同完美匹配个数等于(2n-1)K 2n-2,如此递推下去,可以归纳出K 2n 的不同完美匹配个数为:(2n-1)!!;利用同样的方法可归纳出K n,n 的不同完美匹配个数为:n!。
5.2 证明:一棵树最多只有一个完美匹配。
证明:若不然,设M 1和M 2是树T 的两个不同的完美匹配,那么φ≠∆21M M ,容易知道:][21M M T ∆每个非空部分顶点度数为2,即它存在圈,于是推出T 中有圈,矛盾。
所以一棵树最多只有一个完美匹配。
5.6 证明:K 2n 的1-因子分解的数目为
!2)!2(n n n •。
证明:由结论知:K 2n 不同完美匹配的个数为(2n-1)!!。
所以,K 2n 的1-因子分解数目为(2n-1)!!个。
即:
!
2)!2(!)!12(n n n n •=-
5.7 将K 9表示为四个生成圈之和。
解:K 4n+1=K 2(2n)+1,所以,可以分解成2n 个边不重的2因子之和。
而K 9=K 2*4+1。
所以K 9可以表示为四个边不重的2因子之和,对于每个分解出的因子的路径为:
n i n i i i i i i i i v v v v v v v v P +--+-+-⋅⋅⋅=32211
则K 9的四条路径为:
,,
,
,
871625344768514233657483122546372811v v v v v v v v P v v v v v v v v P v v v v v v v v P v v v v v v v v P ====
则生成圈H i 是V 2n+1与P i 的两个端点连线生成的。
所以可将K 9表示为四个生成圈之和。
5.13 所谓n n ⨯矩阵的一条对角线是指两两不同行不同列的n 个矩阵元素组成的集。
对角线的权是指它的n 个元素的和。
找出下列矩阵具有最小权的对角线:
⎥⎥⎥⎥⎥⎥⎦
⎤⎢⎢⎢⎢⎢⎢⎣⎡897547101366
691258475671110854 解:首先从第一行第一列开始,找出矩阵中的最小元素,发现为坐标是(1,1)的4,将其所在的行和列删除,得到的矩阵为
⎥⎥⎥⎥⎦
⎤⎢⎢⎢⎢⎣⎡8975710136691254756 再从此矩阵的第一行第一列开始,找出矩阵中的最小元素,发现为原坐标是(2,5)的4。
依次类推,继续得到坐标是(3,2)的5,(5,3)的7,(4,4)的10。
所以最小权为:4+4+5+7+10=30。