正比例函数的概念PPT课件
合集下载
《正比例函数》-课件PPT

2
2
即 y 4x 它是正比例函数
(2)当x=7时,y=4x=4×7=28
课堂总结
1、这正节比课例你函学数的到概念。 2、用了待什定么系?数法求正
比例函数的解析式。
1、写出下列个题中的X和Y的关系式,并判 断Y是否是X的正比例函数?
(1)电报收费标准是每个字0.1元,电报费Y(元)
与字数X(个)之间的函数关系.
练习
已知正比例函数当自变量x等于-4时, 函数y的值等于2。
(1)求正比例函数的解析式和自变 量的取值范围;
(2)求当x=6时函数y的值。
解:(1)设正比例函数解析式是 y=kx,
设
把 x =-4, y =2 代入上式,得 2 = -4k 代
解得
k= -
1 2
求
∴所求的正比例函数解析式是y=-
x 2
是正比例函数,
∵函数 y (m 1)xm2
是正比例函数,
∴ m-1≠0
求m的值。
m2=1 即 m≠1
m=±1
函数是正比例函数 ∴ m=-1
函数解析式可转化为y=kx
(k是常数,k ≠0)的形式。
(1)若 y =5x 3m-2 是正比例函数,
练习
则m= 1 。
(2)若 y (m 2)xm23 是正比例函数,
解:h = 0.5n
(4)冷冻一个0℃的物体,使它每分 下降2℃,物体的温度T(单位:℃)随 冷冻时间t(单位:分)的变化而变化.
解:T = -2t
认真观察以上出现的四个函数解析式,分 别说出哪些是函数、常数和自变量.
函数解析式 函数 常数 自变量 这些这函些数函解数析解式都
l =2πr l 2π
正比例函数ppt课件

。
当k>0时,图像位于第一象限和 第三象限;当k<0时,图像位于
第二象限和第四象限。
正比例函数的情势
正比例函数的一般情 势为y=kx,其中k是 比例常数。
当x=0时,y=0,这 是正比例函数图像上 的一个重要点。
当k>0时,y随x的增 大而增大;当k<0时 ,y随x的增大而减小 。
正比例函数的图像
05 练习与问题解答
CHAPTER
基础练习题
总结词:理解正比例函数 的定义和性质
ห้องสมุดไป่ตู้
什么是正比例函数?
正比例函数的图像是怎样 的?
详细描写
正比例函数的一般情势是 什么?
正比例函数有哪些性质?
进阶练习题
总结词:掌握正比例函数的解析式和图像变换
01
02
详细描写
如何确定正比例函数的解析式?
03
04
如何通过平移得到正比例函数的图像?
在经济中的应用
收入与工作量的关系
价格与需求量的关系
在一定范围内,工资与工作量成正比 ,即收入 = 基本工资 + 计时工资 × 工作量。
在供需平衡下,价格与需求量成正比 ,即需求量 = 价格 / 边际效用。
成本与产量的关系
在规模经济下,单位产品的成本与产 量成反比,即成本 = 固定成本 + 可 变成本 / 产量。
在日常生活中的应用
身高与体重的关系
一般来说,身高越高的人体重也越重,但这并不是严格的正比关 系。
光照强度与植物生长的关系
在适宜的光照条件下,植物的生长速度与光照强度成正比。
药物剂量与疗效的关系
在一定范围内,药物剂量越大,疗效越好,但这也不是绝对的,需 要斟酌到副作用和个体差异等因素。
当k>0时,图像位于第一象限和 第三象限;当k<0时,图像位于
第二象限和第四象限。
正比例函数的情势
正比例函数的一般情 势为y=kx,其中k是 比例常数。
当x=0时,y=0,这 是正比例函数图像上 的一个重要点。
当k>0时,y随x的增 大而增大;当k<0时 ,y随x的增大而减小 。
正比例函数的图像
05 练习与问题解答
CHAPTER
基础练习题
总结词:理解正比例函数 的定义和性质
ห้องสมุดไป่ตู้
什么是正比例函数?
正比例函数的图像是怎样 的?
详细描写
正比例函数的一般情势是 什么?
正比例函数有哪些性质?
进阶练习题
总结词:掌握正比例函数的解析式和图像变换
01
02
详细描写
如何确定正比例函数的解析式?
03
04
如何通过平移得到正比例函数的图像?
在经济中的应用
收入与工作量的关系
价格与需求量的关系
在一定范围内,工资与工作量成正比 ,即收入 = 基本工资 + 计时工资 × 工作量。
在供需平衡下,价格与需求量成正比 ,即需求量 = 价格 / 边际效用。
成本与产量的关系
在规模经济下,单位产品的成本与产 量成反比,即成本 = 固定成本 + 可 变成本 / 产量。
在日常生活中的应用
身高与体重的关系
一般来说,身高越高的人体重也越重,但这并不是严格的正比关 系。
光照强度与植物生长的关系
在适宜的光照条件下,植物的生长速度与光照强度成正比。
药物剂量与疗效的关系
在一定范围内,药物剂量越大,疗效越好,但这也不是绝对的,需 要斟酌到副作用和个体差异等因素。
正比例和反比例ppt课件

在直角坐标系中,反比例函数图 像是一个双曲线。
正反比例的性质对照
相同点
两者都涉及到两个量的变化关系,其中一个量变化时,另一个量也相应变化。
不同点
正比例中,比值是一定的;反比例中,比值是不定的。正比例关系是一条直线,而反比例 关系是一个双曲线。
应用场景
正比例关系在物理、化学、工程等领域都有广泛应用,如速度、密度等;反比例关系在电 力、运输、通讯等领域常见,如电流与电阻、运输成本与运输距离等。
02 正比例和反比例的应用
正比例的应用
01
02
03
计算增长率
在统计学中,正比例常用 于计算某一变量的增长率 ,如GDP增长率、人口增 长率等。
猜测模型
在猜测模型中,正比例关 系可用于猜测未来趋势, 例如猜测产品销售量与广 告投入的关系。
线性回归分析
在回归分析中,正比例关 系可用于描写两个变量之 间的线性关系,例如身高 与体重的关系。
在坐标系中,反比例关系表现为一条 双曲线。
当一个量y随着另一个量x的增大而减 小,或者随着x的减小而增大时,我们 说y与x成反比。
正反比例数学表达的异同点
相同点
正比例和反比例都涉及到两个量之间的变化关系,且都存在 一个常数k来描写这种关系。
不同点
正比例是y与x之间的直接关系,而反比例是xy之间的乘积关 系;正比例关系中y随x增大而增大,而反比例关系中y随x增 大而减小或随x减小而增大;正比例在坐标系中表现为直线, 而反比例表现为双曲线。
则它们成反比例。
反比例关系在现实生活中也广泛 存在,如一定质量的物体下,压 力与面积成反比;一定速度下,
距离与时间成反比等。
正反比例的异同点
相同点
正比例和反比例都是描写两个量之间关系的比例关系,都涉及到两个变量的变 化趋势。
正反比例的性质对照
相同点
两者都涉及到两个量的变化关系,其中一个量变化时,另一个量也相应变化。
不同点
正比例中,比值是一定的;反比例中,比值是不定的。正比例关系是一条直线,而反比例 关系是一个双曲线。
应用场景
正比例关系在物理、化学、工程等领域都有广泛应用,如速度、密度等;反比例关系在电 力、运输、通讯等领域常见,如电流与电阻、运输成本与运输距离等。
02 正比例和反比例的应用
正比例的应用
01
02
03
计算增长率
在统计学中,正比例常用 于计算某一变量的增长率 ,如GDP增长率、人口增 长率等。
猜测模型
在猜测模型中,正比例关 系可用于猜测未来趋势, 例如猜测产品销售量与广 告投入的关系。
线性回归分析
在回归分析中,正比例关 系可用于描写两个变量之 间的线性关系,例如身高 与体重的关系。
在坐标系中,反比例关系表现为一条 双曲线。
当一个量y随着另一个量x的增大而减 小,或者随着x的减小而增大时,我们 说y与x成反比。
正反比例数学表达的异同点
相同点
正比例和反比例都涉及到两个量之间的变化关系,且都存在 一个常数k来描写这种关系。
不同点
正比例是y与x之间的直接关系,而反比例是xy之间的乘积关 系;正比例关系中y随x增大而增大,而反比例关系中y随x增 大而减小或随x减小而增大;正比例在坐标系中表现为直线, 而反比例表现为双曲线。
则它们成反比例。
反比例关系在现实生活中也广泛 存在,如一定质量的物体下,压 力与面积成反比;一定速度下,
距离与时间成反比等。
正反比例的异同点
相同点
正比例和反比例都是描写两个量之间关系的比例关系,都涉及到两个变量的变 化趋势。
正比例函数课件

正比例函数课件
contents
目录
• 正比例函数概述 • 正比例函数的图像性质 • 正比例函数的实际应用 • 正比例函数的解析式 • 正比例函数的图像变换 • 正比例函数与反比例函数的关系
01
正比例函数概述
正比例函数的定义
正比例函数是指形如 y=kx(k为常数, k≠0)的函数。
当k<0时,函数图像 过第二、四象限,y 随x的增大而减小。
04
正比例函数的解析式
解析式的推导过程
01
02
03
04
定义正比例函数:$y=kx$, 其中k为比例系数。
从已知的图像中,通过取不同 的x值,计算对应的y值。
利用已知数据,通过最小二乘 法进行线性回归分析,得出k
的值。
得出解析式:$y=kx$,其中 k为比例系数,x为自变量,y
为因变量。
解析式的应用实例
反比例函数的应用场景
反比例函数在工程、技术、经济等领域有广泛的应用。例如,在电子工程中描 述电阻、电容、电感之间的关系,在经济学中描述成本与产量之间的关系。
THANKS
感谢观看
日常生活中的应用
身高与年龄
在一定年龄范围内,身高与年龄 之间存在正比例关系。随着年龄
的增长,身高也会相应增加。
收入与工作时间
在一定时间内,收入与工作时间之 间存在正比例关系。随着工作时间 的增加,收入也会相应增加。
路程与速度
当速度保持不变时,路程与时间之 间存在正比例关系。当时间增加时 ,路程也会相应增加。
图像的平移变换
上下平移
正比例函数的图像在垂直方向上平移。
左右平移
正比例函数的图像在水平方向上平移。
平移性质
平移不改变函数的值域和定义域,也不改变函数 的单调性和奇偶性。
contents
目录
• 正比例函数概述 • 正比例函数的图像性质 • 正比例函数的实际应用 • 正比例函数的解析式 • 正比例函数的图像变换 • 正比例函数与反比例函数的关系
01
正比例函数概述
正比例函数的定义
正比例函数是指形如 y=kx(k为常数, k≠0)的函数。
当k<0时,函数图像 过第二、四象限,y 随x的增大而减小。
04
正比例函数的解析式
解析式的推导过程
01
02
03
04
定义正比例函数:$y=kx$, 其中k为比例系数。
从已知的图像中,通过取不同 的x值,计算对应的y值。
利用已知数据,通过最小二乘 法进行线性回归分析,得出k
的值。
得出解析式:$y=kx$,其中 k为比例系数,x为自变量,y
为因变量。
解析式的应用实例
反比例函数的应用场景
反比例函数在工程、技术、经济等领域有广泛的应用。例如,在电子工程中描 述电阻、电容、电感之间的关系,在经济学中描述成本与产量之间的关系。
THANKS
感谢观看
日常生活中的应用
身高与年龄
在一定年龄范围内,身高与年龄 之间存在正比例关系。随着年龄
的增长,身高也会相应增加。
收入与工作时间
在一定时间内,收入与工作时间之 间存在正比例关系。随着工作时间 的增加,收入也会相应增加。
路程与速度
当速度保持不变时,路程与时间之 间存在正比例关系。当时间增加时 ,路程也会相应增加。
图像的平移变换
上下平移
正比例函数的图像在垂直方向上平移。
左右平移
正比例函数的图像在水平方向上平移。
平移性质
平移不改变函数的值域和定义域,也不改变函数 的单调性和奇偶性。
正比例函数的图象和性质课件

们只相交于原点。
06
CHAPTER
03
正比例函数的性质
增减性
01
02
03
增减性
正比例函数在定义域内是 单调的,即随着x的增大 (或减小),y也相应增 大(或减小)。
增减性的判断
根据斜率k的正负来判断 。当k>0时,函数为增函 数;当k<0时,函数为减 函数。
增减性的应用
在解决实际问题时,可以 利用增减性判断函数的值 域或最值。
y=-3/x
提升练习题
01
总结词
深化理解与运用
02
03
04
题目1
已知某物体的速度v与时间t的 关系为v=kt,其中k为常数。 求该物体在t=3时的速度v。
题目2
画出函数y=0.5x和y=-0.2x的 图象,并比较它们的性质。
题目3
已知某物体的位移s与时间t的 关系为s=2t^2,求该物体在
t=5时的位移s。
斜率
1 2 3
斜率定义
正比例函数y=kx(k≠0)的斜率是k。
斜率与函数图像的关系
斜率决定了函数图像的形状和倾斜程度。当k>0 时,图像从左下到右上上升;当k<0时,图像从 左上到右下下降。
斜率的应用
在解决实际问题时,可以利用斜率判断函数的单 调性和变化趋势。
截距
截距定义
正比例函数y=kx(k≠0)的截距是0。
正比例函数的图象和性 质ppt课件
CONTENTS
目录
• 正比例函数的概念 • 正比例函数的图象 • 正比例函数的性质 • 正比例函数的应用 • 练习与思考
CHAPTER
01
正比例函数的概念
正比例函数的定义
19.2.1 正比例函数 (第2课时) 课件

B.(-1,-2)
C.(2,-1) D.(1,-2)
4.已知函数y=kx的函数值随x的增大而增大,则函数的图象
经过( B ) A.第一、二象限
B.第一、三象限
C.第二、三象限
D.第二、四象限
5.用你认为最简单的方法画出下列函数的图象:
(1)y=-������x; (2)y=6x.
������
解:图象略.
例3.在水管放水的过程中,放水的时 间x(分)与流出的水量y(立方米)是 两个变量,已知水管每分钟流出的水量 是0.2立方米,放水的过程持续10分钟, 写出y与x之间的函数解析式,并指出函 数的自变量取值范围,再画出函数的图 像
能力提高:
想一想:
点燃蜡烛,蜡烛长度按照与时间成正比变短,长 为21厘米的蜡烛,已知点燃6分钟后,蜡烛变短3.6 厘米,设蜡烛点燃x分钟后变短y厘米,求
(3)如果函数 y= - ax 的图像经过
一、三象限,那么y = ax 的图像经
过 二、四象限
.
(4)已知ab 0 , 则函数 y b x
a
的图像经过哪些象限?
二、四象限
3.下列图像哪个可能是函数y=-8x
的图像( B )
A
B
C
D
y 3x
y x
y 1 x 3
y
y 3x yx
6.如图,三个正比例函数的图象对应的解析式分别是:① y=ax, ②y=bx, ③y=cx, 则a,b,c的大小关系是
(C ) A.a>b>c
B.c>b>a
C.b>a>c
D.b>c>a
7.对于函数 y=k2x(k 是常数,k≠0)的图象,下列说法中不正
《正比例函数》ppt课件

练习1、已知y与x-1成正比例,并且 x=8时,y=14
(1)求y与x之间的函数关系式 (2)求x=9时,y的值。
拓展:
已知y=y1+y2,y1与x2成正比例, y2与x-2成正比例,当x=1时,y=-1, 当x=2时,y=4。求x=3时,y的值。
小结
这节课你学到了些什么 1、正比例函数的概念和一般形式。 2、利用待定系数法求函数解析式。
注: 正比例函数y=kx(k≠0) 的结构特征
①k≠0
②x、y的次数是1
自变量
练习
1.下列函数中哪些是正比例函数?
(1)y=
x 3
√
(2)y= 3
×
x
1
(3)y= 2x
×
(4)y=2x √
(5)y=x2+1 × (6)y=3x2 × (7)y=2(x-x2 )+2x2 √
应用新知
1 .(1)若y=5x3m-2是正比例函数,m= 1 。
(3)这只燕鸥飞行45天的行程大约是多少千米?
当x=45时,y=200×45=9000
(1)圆的周长L随半径r的变化而变
化 L=2πr .
(2)铜的密度是8.9克/厘米3,铜的质量M (克)与体积V(厘米3 )之间的函数关系
是M= 8.9V .
下列问题中的变量对应规律可用怎样的 函数表示?
(3)每个练习本的厚度为0.5cm,一些练习 本叠放在一起的总厚度h(单位cm)随这些 练习本的本数n的变化而变化;
解:设正比例函数的解析式为y=kx.
设
把 x =-4, y =2 代入上式,得 2 = -4k 代
解得正比例函数解析式是y= -x2
写
(2)当 x=6 时, y = -3 待定系数法
正比例函数图像课件ppt

正比例函数的应用场景
总结词
正比例函数在现实生活中有许多应用场景,如速度-时间关系 、加速度-时间关系等。
详细描写
在物理学中,速度和时间是成正比的,可以用正比例函数表 示。同样地,加速度和时间的关系也可以用正比例函数表示 。此外,在经济学、统计学等领域中也有许多应用场景,如 收入与工作时间的关系等。
k值变化时
当k的值产生变化时,图像的斜率也 会相应变化,但始终保持垂直于x轴 。
03 正比例函数图像的性质
函数的单调性
单调递增
当比例系数大于0时,随着x的增大 ,y的值也增大。
单调递减
当比例系数小于0时,随着x的增大,y 的值减小。
函数的对称性
关于原点对称
正比例函数的图像总是经过原点,并且关于原点对称。
正比例函数的基本性质
总结词
正比例函数具有一些基本性质,包括斜率固定、过原点、y 随 x 增大而增大或 减小等。
详细描写
正比例函数的斜率为 k,即当 x 增加时,y 会以 k 的比例增加或减少。如果 k>0,则函数图像为增函数;如果 k<0,则函数图像为减函数。由于图像过原 点,因此当 x=0 时,y=0。
解决代数问题
正比例函数是线性函数的一种特殊情势,通过正比例函数图像可以直观地表示函数的增减性、交点等性质,有助 于解决代数方程、不等式等问题。
在物理中的应用
描写光强与距离的关系
在光学中,光强与光源的距离成正比。通过正比例函数图像,可以表示光强与距离之间的关系,进而 分析光学现象。
描写声音强度与距离的关系
续的学习打下坚实的基础。
提高练习题
总结词:深化理解
详细描写:提高练习题是在学生掌握正比例函数的基本概念后,进一步深化对正 比例函数的理解。这些练习题将涉及更复杂的函数情势、参数变化对函数图像的 影响等内容,有助于培养学生的思维能力和解决问题的能力。