堆内存与栈内存的区别
堆和栈的区别是什么?

堆和栈的区别是什么?⾸先,讨论的堆和栈指的是内存中的“堆区”和“栈区”,OC语⾔是C语⾔的超集,所以先了解C语⾔的内存模型的内存管理会有很⼤的帮助。
C 语⾔的内存模型分为5个区:栈区、堆区、静态区、常量区、代码区。
每个区存储的内容如下:1、栈区:存放函数的参数值、局部变量等,由编译器⾃动分配和释放,通常在函数执⾏完后就释放了,其操作⽅式类似于数据结构中的栈。
栈内存分配运算内置于CPU的指令集,效率很⾼,但是分配的内存量有限,⽐如iOS中栈区的⼤⼩是2M。
2、堆区:就是通过new、malloc、realloc分配的内存块,编译器不会负责它们的释放⼯作,需要⽤程序去释放。
分配⽅式类似于数据结构中的链表。
在iOS开发中所说的“内存泄漏”说的就是堆区的内存。
3、静态区:全局变量和静态变量(在iOS中就是⽤static修饰的局部变量或全局变量)的存储是放在⼀块的,初始化的全局变量和静态变量在⼀块区域,未初始化的全局变量和未初始化的静态变量在相邻的另⼀块区域。
程序结束后,由系统释放。
4、常量区:常量存储在这⾥,不允许修改。
5、代码区:存放函数体的⼆进制代码。
堆和栈的区别:1、堆空间的内存是动态分配的,⼀般存放对象,并且需要⼿动释放内存。
当然,iOS引⼊了ARC(⾃动引⽤计数管理技术)之后,程序员就不需要⽤代码管理对象的内存了,之前MRC(⼿动管理内存)的时候,程序员需要⼿动release对象。
另外,ARC只是⼀种中间层的技术,虽然在ARC模式下,程序员不需要像之前那么⿇烦管理内存,但是需要遵循ARC技术的规范操作,⽐如使⽤属性限定符weak、strong、assigen等。
因此,如果程序员没有按ARC的规则并合理的使⽤这些属性限定符的话,同样是会造成内存泄漏的。
2、栈空间的内存是由系统⾃动分配,⼀般存放局部变量,⽐如对象的地址等值,不需要程序员对这块内存进⾏管理,⽐如,函数中的局部变量的作⽤范围(⽣命周期)就是在调完这个函数之后就结束了。
堆、栈的概念与理解

1、从数据结构层次理解,栈是一种先进后出的线性表,只要符合先进后出的原则的线性表都是栈。至于采用的存储方式(实现方式)是顺序存储(顺序栈)还是链式存储(链式栈)是没有关系的。堆则是二叉树的一种,有最大堆最小堆,排序算法中有常用的堆排序。
2、从系统层次理解,栈是系统为运行的程序分配的先进后出的存储区域。在学习bootloader时知道,在上电后初始化阶段要为各个工作模式下分配堆 栈,这里的堆栈实际上就是指stack,堆栈的说法只是因为历史的原因。在执行函数时,函数内部局部变量的存储单元可以在栈上创建(针对CISC架构而 言,RISC架构下,局部变量的存储单元是在寄存器上创建),函数执行结束时这些存储单元自动被释放。堆是系统管理的可以被程序利用的全局存储空间,动态 内存分配就是从堆上分配。
什么是堆什么是栈
一 英文名称
堆和栈是C/C++编程中经常遇到的两个基本概念。先看一下它们的英文表示:
堆――heap
栈――stack
二 从数据结构和系统两个层次理解
在具体的C/C++编程框架中,这两个概念并不是并行的。深入到汇编级进行研究就会发现,栈是机器系统提供的数据结构,而堆是由C/C++函数库提供的。这两个概念可以从数据结构和系统两个层次去理解:
具体地说,现在计算机(串行执行机制),都直接在代码层次支持栈这种数据结构。这体现在,有专门的寄存器指向栈所在的地址,有专门的机器指令完成数据入栈 出栈的操作。比如ARM指令中的stmfd和ldmfd。因为栈内存分配运算内置于处理器的指令集中,所以效率很高,但是支持的数据有限,一般是整数、指 针、浮点数等系统直接支持的数据类型,并不直接支持其他的数据结构。在CISC中,对子程序的调用就是利用栈来完成的。C/C++中的自动变量也是直接利 用栈的例子,这就是为什么当函数返回时,该函数的自动变量失效的原因(因为栈恢复了调用前的状态)。在RISC下,这些都是通过寄存器来完成的。这些留待 第二部分总结中详细阐述。
内存泄漏和内存溢出、堆内存和栈内存区分、负载标准、降低cache内存方法

(一)内存泄漏和内存溢出内存溢出 out of memory,是指程序在申请内存时,没有足够的内存空间供其使用,出现out of memory;比如申请了一个integer,但给它存了long才能存下的数,那就是内存溢出。
内存溢出就是你要求分配的内存超出了系统能给你的,系统不能满足需求,于是产生溢出。
内存泄露 memory leak,是指程序在申请内存后,无法释放已申请的内存空间,一次内存泄露危害可以忽略,但内存泄露堆积后果很严重,无论多少内存,迟早会被占光。
内存泄漏是指你向系统申请分配内存进行使用(new),可是使用完了以后却不归还(delete),结果你申请到的那块内存你自己也不能再访问(也许你把它的地址给弄丢了),而系统也不能再次将它分配给需要的程序。
memory leak会最终会导致out of memory。
(二)堆内存和栈内存区分一、数据结构中的堆和栈1. 栈是一种连续储存的数据结构,具有先进后出的性质。
通常的操作有入栈(压栈),出栈和栈顶元素。
想要读取栈中的某个元素,就是将其之间的所有元素出栈才能完成。
2. 堆是一种非连续的树形储存数据结构,每个节点有一个值,整棵树是经过排序的。
特点是根结点的值最小(或最大),且根结点的两个子树也是一个堆。
常用来实现优先队列,存取随意。
二、内存中的栈区与堆区1. 内存中的栈区与堆区比较2. 计算机内存的大致划分一般说到内存,指的是计算机的随机存储器(RAM),程序都是在这里面运行。
三、栈内存与栈溢出由程序自动向操作系统申请分配以及回收,速度快,使用方便,但程序员无法控制。
若分配失败,则提示栈溢出错误。
注意,const 局部变量也储存在栈区内,栈区向地址减小的方向增长。
四、堆内存与内存泄露程序员向操作系统申请一块内存,当系统收到程序的申请时,会遍历一个记录空闲内存地址的链表,寻找第一个空间大于所申请空间的堆结点,然后将该结点从空闲结点链表中删除,并将该结点的空间分配给程序。
c语言的内存结构

c语言的内存结构C语言是一种高级编程语言,但实际上在计算机中运行时,C语言程序会被编译成可执行文件,然后在计算机内存中运行。
因此,了解C 语言的内存结构对于理解C程序的运行及性能优化至关重要。
C语言的内存结构主要可以分为以下几个部分:栈(Stack)、堆(Heap)、全局内存(Global Memory)和代码区(Code Segment)。
首先是栈(Stack),栈是一种自动分配和释放内存的数据结构。
它用于存储局部变量、函数参数和函数调用信息等。
栈的特点是后进先出(LIFO),也就是最后进入的数据最先被释放。
栈的大小在程序运行时是固定的,一般由编译器设置。
栈的操作速度较快,但内存空间有限。
其次是堆(Heap),堆是一种动态分配和释放内存的数据结构。
它用于存储动态分配的变量、数据结构和对象等。
堆的大小一般由操作系统管理,并且可以在运行时进行动态扩展。
堆的操作相对较慢,因为需要手动分配和释放内存,并且容易产生内存碎片。
全局内存(Global Memory)是用于存储全局变量和静态变量的区域。
全局变量在程序的生命周期内都存在,并且可以在多个函数之间共享。
静态变量作用于其所在的函数内,但是生命周期与全局变量相同。
全局内存由编译器进行分配和管理。
代码区(Code Segment)存储了程序的指令集合,它是只读的。
在程序运行时,代码区的指令会被一条一条地执行。
代码区的大小由编译器决定,并且在程序执行过程中不能修改。
此外,C语言还具有特殊的内存区域,如常量区和字符串常量区。
常量区用于存储常量数据,如字符串常量和全局常量等。
常量区的数据是只读的,且在程序的整个生命周期内存在。
字符串常量区是常量区的一个子区域,用于存储字符串常量。
在C语言中,内存分配和释放是程序员的责任。
通过使用malloc和free等函数,程序员可以在堆中动态地分配和释放内存,从而灵活地管理程序的内存使用。
不过,应当注意避免内存泄漏和野指针等问题,以免出现内存错误和性能问题。
C语言中堆的名词解释

C语言中堆的名词解释堆(Heap)是C语言中的一种动态内存分配方式,它相对于栈(Stack)来说,拥有更大的内存空间并且能够存储具有更长生命周期的数据。
在本文中,我们将解释堆的概念、特性以及在C语言中的应用。
一、堆的概念和特性堆是C语言中一块动态分配的内存区域,用于存储程序运行期间需要长时间保留的数据。
与栈不同,堆的内存分配和释放并不自动管理,而是需要通过程序员手动控制。
堆的主要特性可以概括为以下几点:1. 大小可变:堆的大小取决于操作系统的内存限制,可以动态地增加或缩小。
2. 不连续性:堆内存中的数据块可以被随意分配和释放,它们的位置通常是不连续的。
3. 长生命周期:堆中分配的内存空间在程序运行期间一直存在,直到显式地释放。
4. 存储动态数据:堆用于存储运行时动态创建的数据,例如对象、数组、链表等。
二、堆的内存分配在C语言中,使用malloc函数来动态分配堆内存。
malloc的完整形式是memory allocation(内存分配),其原型如下:```cvoid* malloc(size_t size);malloc函数接受一个size_t类型的参数,表示需要分配的内存空间大小,返回一个void指针,指向分配的内存起始地址。
若分配失败,则返回一个空指针NULL。
以下是一个使用malloc分配堆内存的示例:```cint* ptr = (int*) malloc(sizeof(int));```在上述示例中,我们使用malloc函数分配了一个int类型的内存空间并将其地址赋值给了ptr指针。
这样,我们就可以通过访问ptr来操作这个堆内存空间。
需要注意的是,使用malloc函数分配的堆内存必须在使用完毕后通过调用free 函数来显式地释放,以避免内存泄漏。
free函数的原型如下:```cvoid free(void* ptr);```free函数接受一个void指针作为参数,指向需要释放的堆内存的起始地址。
内存中堆栈的划分

栈和堆的区别 (转) 终于知道区别了(2007-09-12 08:50:49)转载标签:IT/科技一个由 c/C++ 编译的程序占用的内存分为以下几个部分:1 、栈区( stack )—由编译器自动分配释放,存放函数的参数值,局部变量的值等。
其操作方式类似于数据结构中的栈。
2 、堆区( heap )—一般由程序员分配释放,若程序员不释放,程序结束时可能由 OS 回收。
注意它与数据结构中的堆是两回事,分配方式倒是类似于链表,呵呵。
3 、全局区(静态区)( static )—全局变量和静态变量的存储是放在一块的,初始化的全局变量和静态变量在一块区域,未初始化的全局变量和未初始化的静态变量在相邻的另一块区域。
程序结束后由有系统释放。
4 、文字常量区—常量字符串就是放在这里的。
程序结束后由系统释放。
5 、程序代码区—存放函数体的二进制代码。
例子程序:这是一个前辈写的,非常详细//main.cppint a = 0; //全局初始化区char *p1; //全局未初始化区main(){int b; 栈char s[] = "abc"; //栈char *p2; //栈char *p3 = "123456"; //123456在常量区,p3在栈上。
static int c =0; //全局(静态)初始化区p1 = (char *)malloc(10);p2 = (char *)malloc(20); //分配得来得10和20字节的区域就在堆区。
strcpy(p1, "123456"); //123456放在常量区,编译器可能会将它与p3所指向的"123456"优化成一个地方。
}栈:在 Windows 下,栈是向低地址扩展的数据结构,是一块连续的内存的区域。
这句话的意思是栈顶的地址和栈的最大容量是系统预先规定好的,在 WINDOWS 下,栈的大小是 2M (也有的说是 1M ,总之是一个编译时就确定的常数),如果申请的空间超过栈的剩余空间时,将提示 overflow 。
.net中堆和栈的区别(图文解释)

尽管在.NET framework下我们并不需要担心内存管理和垃圾回收(Garbage Collection),但是我们还是应该了解它们,以优化我们的应用程序。
同时,还需要具备一些基础的内存管理工作机制的知识,这样能够有助于解释我们日常程序编写中的变量的行为。
在本文中我将讲解栈和堆的基本知识,变量类型以及为什么一些变量能够按照它们自己的方式工作。
在.NET framework环境下,当我们的代码执行时,内存中尽管在.NET framework下我们并不需要担心内存管理和垃圾回收(Garbage Collection),但是我们还是应该了解它们,以优化我们的应用程序。
同时,还需要具备一些基础的内存管理工作机制的知识,这样能够有助于解释我们日常程序编写中的变量的行为。
在本文中我将讲解栈和堆的基本知识,变量类型以及为什么一些变量能够按照它们自己的方式工作。
在.NET framework环境下,当我们的代码执行时,内存中有两个地方用来存储这些代码。
假如你不曾了解,那就让我来给你介绍栈(Stack)和堆(Heap)。
栈和堆都用来帮助我们运行代码的,它们驻留在机器内存中,且包含所有代码执行所需要的信息。
* 栈vs堆:有什么不同?栈负责保存我们的代码执行(或调用)路径,而堆则负责保存对象(或者说数据,接下来将谈到很多关于堆的问题)的路径。
可以将栈想象成一堆从顶向下堆叠的盒子。
当每调用一次方法时,我们将应用程序中所要发生的事情记录在栈顶的一个盒子中,而我们每次只能够使用栈顶的那个盒子。
当我们栈顶的盒子被使用完之后,或者说方法执行完毕之后,我们将抛开这个盒子然后继续使用栈顶上的新盒子。
堆的工作原理比较相似,但大多数时候堆用作保存信息而非保存执行路径,因此堆能够在任意时间被访问。
与栈相比堆没有任何访问限制,堆就像床上的旧衣服,我们并没有花时间去整理,那是因为可以随时找到一件我们需要的衣服,而栈就像储物柜里堆叠的鞋盒,我们只能从最顶层的盒子开始取,直到发现那只合适的。
heap与stack的区别

heap与stack的区别java 的内存分为两类,⼀类是栈内存,⼀类是堆内存。
栈内存是指程序进⼊⼀个⽅法时,
会为这个⽅法单独分配⼀块私属存储空间,⽤于存储这个⽅法内部的局部变量,当这个⽅法
结束时,分配给这个⽅法的栈会释放,这个栈中的变量也将随之释放。
堆是与栈作⽤不同的内存,⼀般⽤于存放不放在当前⽅法栈中的那些数据,例如,使⽤ new
创建的对象都放在堆⾥,所以,它不会随⽅法的结束⽽消失。
⽅法中的局部变量使⽤ final
修饰后,放在堆中,⽽不是栈中。
区别:
1.heap是堆,stack是栈。
2.stack的空间由操作系统⾃动分配和释放,heap的空间是⼿动申请和释放的,heap常⽤new关键字来分配。
3.stack空间有限,heap的空间是很⼤的⾃由区。
在中,
若只是声明⼀个对象,则先在栈内存中为其分配地址空间,
若再new⼀下,实例化它,则在堆内存中为其分配地址。
4.举例:
数据类型变量名;这样定义的东西在栈区。
如:Object a =null; 只在栈内存中分配空间
new 数据类型();或者malloc(长度); 这样定义的东西就在堆区
如:Object b =new Object(); 则在堆内存中分配空间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、程序在编译的时候占用的内存分为以下几个部分:
1 、栈区(stack )—由编译器自动分配释放,存放函数的参数值,局部变量的值等。
其操作方式类似于数据结构中的栈。
栈内存分配运算内置于处理器的指令集中,效率很高,但是分配的内存容量有限.
2 、堆区(heap )—亦称动态内存分配.程序在运行的时候用malloc或new申请任意大小的内存,程序员自己负责在适当的时候用free或delete释放内存。
动态内存的生存期可以由我们决定,如果我们不释放内存,程序将在最后才释放掉动态内存.但是,良好的编程习惯是:如果某动态内存不再使用,需要将其释放掉,否则,我们认为发生了内存泄漏现象。
注意它与数据结构中的堆是两回事,分配方式倒是类似于链表.
3 、全局区(静态区)(static )—全局变量和静态变量的存储是放在一块的,初始化的全局变量和静态变量在一块区域,未初始化的全局变量和未初始化的静态变量在相邻的另一块区域。
程序结束后由有系统释放.
4 、常量区—常量字符串就是放在这里的.程序结束后由系统释放.
5 、程序代码区—存放函数体的二进制代码.
例子程序:
这是一个前辈写的,非常详细
//main.cpp
int a = 0; 全局初始化区
char *p1; 全局未初始化区
main()
{
int b; 栈
char s[] = "abc"; 栈
char *p2; 栈
char *p3 = "123456"; 123456\0在常量区,p3在栈上。
static int c =0;全局(静态)初始化区
p1 = (char *)malloc(10);
p2 = (char *)malloc(20);
分配得来得10和20字节的区域就在堆区。
strcpy(p1, "123456"); 123456\0放在常量区,编译器可能会将它与p3所指向的"123456"优化成一个地方。
}
二、堆和栈的理论知识
2.1申请方式
stack:
由系统自动分配。
例如,声明在函数中一个局部变量int b; 系统自动在栈中为b开辟空间heap:
需要程序员自己申请,并指明大小,在c中malloc函数
如p1 = (char *)malloc(10);
在C++中用new运算符
如p2 = (char *)malloc(10);
但是注意p1、p2本身是在栈中的。
2.2
申请后系统的响应
栈:只要栈的剩余空间大于所申请空间,系统将为程序提供内存,否则将报异常提示栈溢出。
堆:首先应该知道操作系统有一个记录空闲内存地址的链表,当系统收到程序的申请时,会遍历该链表,寻找第一个空间大于所申请空间的堆结点,然后将该结点从空闲结点链表中删除,并将该结点的空间分配给程序,另外,对于大多数系统,会在这块内存空间中的首地址处记录本次分配的大小,这样,代码中的delete语句才能正确的释放本内存空间。
另外,由于找到的堆结点的大小不一定正好等于申请的大小,系统会自动的将多余的那部分重新放入空闲链表中。
2.3申请大小的限制
栈:在Windows下,栈是向低地址扩展的数据结构,是一块连续的内存的区域。
这句话的意思是栈顶的地址和栈的最大容量是系统预先规定好的,在WINDOWS下,栈的大小是2M (也有的说是1M,总之是一个编译时就确定的常数),如果申请的空间超过栈的剩余空间时,将提示overflow。
因此,能从栈获得的空间较小。
堆:堆是向高地址扩展的数据结构,是不连续的内存区域。
这是由于系统是用链表来存储的空闲内存地址的,自然是不连续的,而链表的遍历方向是由低地址向高地址。
堆的大小受限于计算机系统中有效的虚拟内存。
由此可见,堆获得的空间比较灵活,也比较大。
2.4申请效率的比较:
栈由系统自动分配,速度较快。
但程序员是无法控制的。
堆是由new分配的内存,一般速度比较慢,而且容易产生内存碎片,不过用起来最方便.
另外,在WINDOWS下,最好的方式是用VirtualAlloc分配内存,他不是在堆,也不是在栈是直接在进程的地址空间中保留一快内存,虽然用起来最不方便。
但是速度快,也最灵活。
2.5堆和栈中的存储内容
栈:在函数调用时,第一个进栈的是主函数中后的下一条指令(函数调用语句的下一条可执行语句)的地址,然后是函数的各个参数,在大多数的C编译器中,参数是由右往左入栈的,然后是函数中的局部变量。
注意静态变量是不入栈的。
当本次函数调用结束后,局部变量先出栈,然后是参数,最后栈顶指针指向最开始存的地址,也就是主函数中的下一条指令,程序由该点继续运行。
堆:一般是在堆的头部用一个字节存放堆的大小。
堆中的具体内容有程序员安排。
2.6存取效率的比较
char s1[] = "aaaaaaaaaaaaaaa";
char *s2 = "bbbbbbbbbbbbbbbbb";
aaaaaaaaaaa是在运行时刻赋值的;
而bbbbbbbbbbb是在编译时就确定的;
但是,在以后的存取中,在栈上的数组比指针所指向的字符串(例如堆)快。
比如:
#i nclude
void main()
{
char a = 1;
char c[] = "1234567890";
char *p ="1234567890";
a = c[1];
a = p[1];
return;
}
对应的汇编代码
10: a = c[1];
00401067 8A 4D F1 mov cl,byte ptr [ebp-0Fh]
0040106A 88 4D FC mov byte ptr [ebp-4],cl
11: a = p[1];
0040106D 8B 55 EC mov edx,dword ptr [ebp-14h]
00401070 8A 42 01 mov al,byte ptr [edx+1]
00401073 88 45 FC mov byte ptr [ebp-4],al
第一种在读取时直接就把字符串中的元素读到寄存器cl中,而第二种则要先把指针值读到edx中,在根据edx读取字符,显然慢了。
2.7小结:
堆和栈的区别可以用如下的比喻来看出:
使用栈就象我们去饭馆里吃饭,只管点菜(发出申请)、付钱、和吃(使用),吃饱了就走,不必理会切菜、洗菜等准备工作和洗碗、刷锅等扫尾工作,他的好处是快捷,但是自由度小。
使用堆就象是自己动手做喜欢吃的菜肴,比较麻烦,但是比较符合自己的口味,而且自由度大。