布袋除尘器结构设计及强度计算(精)

合集下载

布袋除尘器结构设计及强度计算

布袋除尘器结构设计及强度计算

•布袋除尘器结构设计及强度计算•前言低压脉冲布袋除尘器广泛应用于电厂脱硫除尘及一般钢厂除尘中(应用于钢厂及电厂的主要区别是除尘器外表是否需要保温、烟气对钢板的腐蚀程度及滤料的选择等),脱硫后的烟尘经过该除尘器后,其排放到大气中的浓度基本控制在20~30mg/m3,低于国家环保部门规定的50mg/m3。

低压脉冲布袋除尘器的工作原理:含尘气体由导流管进入各单元,大颗粒粉尘经分离后直接落入灰斗、其余粉尘随气流进入中箱体过滤区,过滤后的洁净气体透过滤袋经上箱体、排风管排出。

随着过滤工况的进行,当滤袋表面积尘达到一定量时,由清灰控制装置(差压或定时、手动控制)按设定程序打开电磁脉冲阀喷吹,抖落滤袋上的粉尘。

落入灰斗中的粉尘借助输灰系统排出。

低压脉冲除尘器的主要结构组成如下:底柱组件、滑块组件、顶柱组件、灰斗组件(含三通及风量调节阀,如果有的话)、进风装置、中箱体、上箱体、喷吹系统、离线装置、内旁路装置(外旁路,可供选择)、平台扶梯、防雨棚、气路配管及控制元件等组成。

其结构简图如下:除尘器的设计过程中,应当对除尘器的载荷(包括静载、动载、风载、雪载及地震载荷等,单位KN)、除尘器承受的设计负压(单位Pa)、板件材料的屈服极限及抗拉伸极限等(单位MPa),要有一定程度的了解。

必要时,结构设计人员可以查阅相关的机械设计手册,以加深自己对这方面的理解。

如下的设计过程仅供除尘设备制造厂家及相关设计单位参考。

1.除尘器载荷的确定:1.1静载的确定:G静载=∑Gi(i=1~5)式中,G1本体钢结构部分的重量,G2滤袋总重,G3袋笼总重,G4滤袋表面积灰5mm的重量,G5灰斗允许积灰重量。

按本公司多年来的设计经验,静载荷在除尘器基础上的分布,一般是,最外面一圈基础柱桩的载荷为总静载分布在所有柱桩上的平均值Gp的110%。

次外圈一圈柱桩的载荷为Gp的120~200%,以此类推,直到最内圈载荷。

内圈载荷高于外圈载荷,但内外圈载荷最大差别不得超过300KN。

布袋除尘器的设计方案计算书.doc

布袋除尘器的设计方案计算书.doc

布袋除尘器的设计计算书由于公司要求设计一套较小型的除尘设备, 所以查了很多资料, 现在把设计计算方法发下。

下面给出已知条件:处理风量 :200 立方 /min滤袋尺寸 : Φ116X3m1.根据已知条件选择过滤风速一般的过滤风速的选择范围是在 0.8~1.5m/min此时根据除尘设备大小和滤带选择风速, 本人选择的是 1m/min2.根据过滤风速和处理风量计算过滤面积公式为: S=Q/VV--------- 过滤风速S--------- 过滤面积Q--------- 处理风量计算后得 S=Q/V=200/1=200平方米3.计算滤带数量每条滤带的表面积 S=ПDLΠ --------3.14 (这个不需要说明了把)D--------- 滤带直径L--------- 滤带长度计算得 S1=3.14X0.116X3≈1平方米滤带数量 N=S/S1=200/1=200 条(注意:这里的滤带面积计算约等于 200 是为了方便计算,实际计算值为 1.1 ,除下来滤带数量小于 200 条,为了方便,选择( 200/1 )条 >( 200/1.1 )条,其实多几条可以满足处理风量,对计算无影响)4.其实以上的全是基础,接下来的几点才是精髓前面计算了这么多,是为什么?接下来要做什么?首先我们要明确,除尘器的心脏是什么?是电磁阀!所以接下来我们选型电磁阀一般常用的电磁阀厂家有澳大利亚高原、SMC、等等此处本人选择的是澳大利亚GOYEN的电磁脉冲阀。

(至于为什么选这个型号,那是领导安排的)如果真要了解怎么选型的话,最好是多搞点电磁阀厂家的样本本次选的 GOYEN的电磁阀的几个参数很重要MM型淹没式电磁脉冲阀1). 阀门标称尺寸有三种 25/40/76对应的口内径尺为25mm/40mm/76mm换成英尺为 1"/1.5"/3"2). 这个叫流动系数Cv 的很重要相对上述三种尺寸的Cv 值为 30/51/416好,知道这些后,我选择的是中间那种40mm/Cv=513)脉冲长度 0.15sec( 可以理解为膜片打开到关闭的时间)5.电磁阀的吐出流量(1)选用 GOYENΦ40mm电磁阀Q=(198.3XCvXP1)/ (根号 G) ------------(抱歉,懒得找跟号)Q---------- Cv--------- P1--------- 吐出流量流动系数表压(就是气包上压力表值,低压为0.4MPa 以下,超过0.4 算高压,此处选3kg/cm2, 即0.3MPa)G---------- 气体比重(这个可以无视,常温下空气比重为 1.14 )Q=(198.3x51x3)/( 跟号 1.14 )=28442.8/min=474.1/sec=71.1/0.15sec很多人会问公式怎么来的?抱歉,我也不知道,但是每个阀都有自己的计算公式(2)压力容器的必要容积(这里就是算气包的直径和长度)能够吐出 71/0.15sec 的压力容器的流量V=Q/( P1-P2)V---------- 流量P1--------- 清灰前压力P2--------- 脉冲清灰后的压力(这个根据工况确定,本人选 1.5 )V=71100/1.5kg=47.41L算到这里后,就先停一停因为先要大概算下花板的排部根据滤带数量 200 个,我选择 20X10的排部方式比较容易计算即电磁阀 20个,喷吹管上喷嘴数量为10个下面开始验算我这种拍部是否合理首先,计算花板上孔与孔之间的距离根据经验, 间距一般取滤带直径 1.5 倍即D=1.5XdD--------- 花板孔间距d--------- 滤带直径计算得 D=1.5X116=174这里我取 170mm纵向间距一样也是170mm最边上的孔到侧壁板距离我选的是150mm但如果是这样间距到底的话,兄弟们,实在太难看了。

布袋除尘器的设计计算书

布袋除尘器的设计计算书

布袋除尘器的设计计算书由于公司要求设计一套较小型的除尘设备,所以查了很多资料,现在把设计计算方法发下。

下面给出已知条件:处理风量:200立方/min滤袋尺寸:Φ116X3m1.根据已知条件选择过滤风速一般的过滤风速的选择范围是在0.8~1.5m/min此时根据除尘设备大小和滤带选择风速,本人选择的是1m/min2.根据过滤风速和处理风量计算过滤面积公式为:S=Q/VV---------过滤风速S---------过滤面积Q---------处理风量计算后得S=Q/V=200/1=200平方米3.计算滤带数量每条滤带的表面积S=ПDLΠ--------3.14(这个不需要说明了把)D---------滤带直径L---------滤带长度≈1平方米滤带数量N=S/S1=200/1=200条(注意:这里的滤带面积计算约等于200是为了方便计算,实际计算值为1.1,除下来滤带数量小于200条,为了方便,选择(200/1)条>(200/1.1)条,其实多几条可以满足处理风量,对计算无影响)4.其实以上的全是基础,接下来的几点才是精髓前面计算了这么多,是为什么?接下来要做什么?首先我们要明确,除尘器的心脏是什么?是电磁阀!所以接下来我们选型电磁阀一般常用的电磁阀厂家有澳大利亚高原、SMC、等等此处本人选择的是澳大利亚GOYEN的电磁脉冲阀。

(至于为什么选这个型号,那是领导安排的)如果真要了解怎么选型的话,最好是多搞点电磁阀厂家的样本本次选的GOYEN的电磁阀的几个参数很重要MM型淹没式电磁脉冲阀1).阀门标称尺寸有三种25/40/76对应的口内径尺为25mm/40mm/76mm换成英尺为1"/1.5"/3"2).这个叫流动系数Cv的很重要相对上述三种尺寸的Cv值为30/51/416好,知道这些后,我选择的是中间那种40mm/Cv=513)脉冲长度0.15sec(可以理解为膜片打开到关闭的时间)5.电磁阀的吐出流量(1)选用GOYENΦ40mm电磁阀Q=(198.3XCvXP1)/(根号G)------------(抱歉,懒得找跟号)Q----------吐出流量Cv---------流动系数P1---------表压(就是气包上压力表值,低压为0.4MPa以下,超过0.4算高压,此处选3kg/cm2,即0.3MPa)G----------气体比重(这个可以无视,常温下空气比重为1.14)Q=(198.3x51x3)/(跟号1.14)=28442.8/min=474.1/sec=71.1/0.15sec很多人会问公式怎么来的?抱歉,我也不知道,但是每个阀都有自己的计算公式(2)压力容器的必要容积(这里就是算气包的直径和长度)能够吐出71/0.15sec的压力容器的流量V=Q/(P1-P2)V----------流量P1---------清灰前压力P2---------脉冲清灰后的压力(这个根据工况确定,本人选1.5)V=71100/1.5kg=47.41L算到这里后,就先停一停因为先要大概算下花板的排部根据滤带数量200个,我选择20X10的排部方式比较容易计算即电磁阀20个,喷吹管上喷嘴数量为10个下面开始验算我这种拍部是否合理首先,计算花板上孔与孔之间的距离根据经验,间距一般取滤带直径1.5倍即D=1.5XdD---------花板孔间距d---------滤带直径计算得D=1.5X116=174这里我取170mm纵向间距一样也是170mm最边上的孔到侧壁板距离我选的是150mm但如果是这样间距到底的话,兄弟们,实在太难看了。

布袋除尘器的设计计算书

布袋除尘器的设计计算书

布袋除尘器的设计计算书由于公司要求设计一套较小型的除尘设备,所以查了很多资料,现在把设计计算方法发下。

下面给出已知条件:处理风量:200立方/min滤袋尺寸:Φ116X3m1.根据已知条件选择过滤风速一般的过滤风速的选择范围是在0.8~1.5m/min此时根据除尘设备大小和滤带选择风速,本人选择的是1m/min2.根据过滤风速和处理风量计算过滤面积公式为:S=Q/VV---------过滤风速S---------过滤面积Q---------处理风量计算后得S=Q/V=200/1=200平方米3.计算滤带数量每条滤带的表面积S=ПDLΠ--------3.14(这个不需要说明了把)D---------滤带直径L---------滤带长度计算得S1=3.14X0.116X3≈1平方米滤带数量N=S/S1=200/1=200条(注意:这里的滤带面积计算约等于200是为了方便计算,实际计算值为1.1,除下来滤带数量小于200条,为了方便,选择(200/1)条>(200/1.1)条,其实多几条可以满足处理风量,对计算无影响)4.其实以上的全是基础,接下来的几点才是精髓前面计算了这么多,是为什么?接下来要做什么?首先我们要明确,除尘器的心脏是什么?是电磁阀!所以接下来我们选型电磁阀一般常用的电磁阀厂家有澳大利亚高原、SMC、等等此处本人选择的是澳大利亚GOYEN的电磁脉冲阀。

(至于为什么选这个型号,那是领导安排的)如果真要了解怎么选型的话,最好是多搞点电磁阀厂家的样本本次选的GOYEN的电磁阀的几个参数很重要MM型淹没式电磁脉冲阀1).阀门标称尺寸有三种25/40/76对应的口内径尺为25mm/40mm/76mm换成英尺为1"/1.5"/3"2).这个叫流动系数Cv的很重要相对上述三种尺寸的Cv值为30/51/416好,知道这些后,我选择的是中间那种40mm/Cv=513)脉冲长度0.15sec(可以理解为膜片打开到关闭的时间)5.电磁阀的吐出流量(1)选用GOYENΦ40mm电磁阀Q=(198.3XCvXP1)/(根号G)------------(抱歉,懒得找跟号)Q----------吐出流量Cv---------流动系数P1---------表压(就是气包上压力表值,低压为0.4MPa以下,超过0.4算高压,此处选3kg/cm2,即0.3MPa)G----------气体比重(这个可以无视,常温下空气比重为1.14)Q=(198.3x51x3)/(跟号1.14)=28442.8/min=474.1/sec=71.1/0.15sec很多人会问公式怎么来的?抱歉,我也不知道,但是每个阀都有自己的计算公式(2)压力容器的必要容积(这里就是算气包的直径和长度)能够吐出71/0.15sec的压力容器的流量V=Q/(P1-P2)V----------流量P1---------清灰前压力P2---------脉冲清灰后的压力(这个根据工况确定,本人选1.5)V=71100/1.5kg=47.41L算到这里后,就先停一停因为先要大概算下花板的排部根据滤带数量200个,我选择20X10的排部方式比较容易计算即电磁阀20个,喷吹管上喷嘴数量为10个下面开始验算我这种拍部是否合理首先,计算花板上孔与孔之间的距离根据经验,间距一般取滤带直径1.5倍即D=1.5XdD---------花板孔间距d---------滤带直径计算得D=1.5X116=174这里我取170mm纵向间距一样也是170mm最边上的孔到侧壁板距离我选的是150mm但如果是这样间距到底的话,兄弟们,实在太难看了。

布袋除尘器结构设计及强度计算..doc

布袋除尘器结构设计及强度计算..doc

•布袋除尘器结构设计及强度计算•前言低压脉冲布袋除尘器广泛应用于电厂脱硫除尘及一般钢厂除尘中(应用于钢厂及电厂的主要区别是除尘器外表是否需要保温、烟气对钢板的腐蚀程度及滤料的选择等),脱硫后的烟尘经过该除尘器后,其排放到大气中的浓度基本控制在20~30mg/m3,低于国家环保部门规定的50mg/m3。

低压脉冲布袋除尘器的工作原理:含尘气体由导流管进入各单元,大颗粒粉尘经分离后直接落入灰斗、其余粉尘随气流进入中箱体过滤区,过滤后的洁净气体透过滤袋经上箱体、排风管排出。

随着过滤工况的进行,当滤袋表面积尘达到一定量时,由清灰控制装置(差压或定时、手动控制)按设定程序打开电磁脉冲阀喷吹,抖落滤袋上的粉尘。

落入灰斗中的粉尘借助输灰系统排出。

低压脉冲除尘器的主要结构组成如下:底柱组件、滑块组件、顶柱组件、灰斗组件(含三通及风量调节阀,如果有的话)、进风装置、中箱体、上箱体、喷吹系统、离线装置、内旁路装置(外旁路,可供选择)、平台扶梯、防雨棚、气路配管及控制元件等组成。

其结构简图如下:除尘器的设计过程中,应当对除尘器的载荷(包括静载、动载、风载、雪载及地震载荷等,单位KN)、除尘器承受的设计负压(单位Pa)、板件材料的屈服极限及抗拉伸极限等(单位MPa),要有一定程度的了解。

必要时,结构设计人员可以查阅相关的机械设计手册,以加深自己对这方面的理解。

如下的设计过程仅供除尘设备制造厂家及相关设计单位参考。

1.除尘器载荷的确定:1.1静载的确定:G静载=∑Gi(i=1~5)式中,G1本体钢结构部分的重量,G2滤袋总重,G3袋笼总重,G4滤袋表面积灰5mm的重量,G5灰斗允许积灰重量。

按本公司多年来的设计经验,静载荷在除尘器基础上的分布,一般是,最外面一圈基础柱桩的载荷为总静载分布在所有柱桩上的平均值Gp的110%。

次外圈一圈柱桩的载荷为Gp的120~200%,以此类推,直到最内圈载荷。

内圈载荷高于外圈载荷,但内外圈载荷最大差别不得超过300KN。

袋式除尘器结构设计及强度计算

袋式除尘器结构设计及强度计算

袋式除尘器一、袋式除尘器的介绍袋式除尘器广泛应用于电厂脱硫除尘及一般钢厂除尘中(应用于钢厂及电厂的主要区别是除尘器外表是否需要保温、烟气对钢板的腐蚀程度及滤料的选择等),脱硫后的烟尘经过该除尘器后,其排放到大气中的浓度基本控制在20~30mg/m3,低于国家环保部门规定的50mg/m3。

二、袋式除尘器的工作原理:含尘气体由导流管进入各单元,大颗粒粉尘经分离后直接落入灰斗、其余粉尘随气流进入中箱体过滤区,过滤后的洁净气体透过滤袋经上箱体、排风管排出。

随着过滤工况的进行,当滤袋表面积尘达到一定量时,由清灰控制装置(差压或定时、手动控制)按设定程序打开电磁脉冲阀喷吹,抖落滤袋上的粉尘。

落入灰斗中的粉尘借助输灰系统排出。

低压脉冲除尘器的主要结构组成如下:底柱组件、滑块组件、顶柱组件、灰斗组件(含三通及风量调节阀,如果有的话)、进风装置、中箱体、上箱体、喷吹系统、离线装置、内旁路装置(外旁路,可供选择)、平台扶梯、防雨棚、气路配管及控制元件等组成。

其结构简图如下:除尘器的设计过程中,应当对除尘器的载荷(包括静载、动载、风载、雪载及地震载荷等,单位KN)、除尘器承受的设计负压(单位Pa)、板件材料的屈服极限及抗拉伸极限等(单位MPa),要有一定程度的了解。

必要时,结构设计人员可以查阅相关的机械设计手册,以加深自己对这方面的理解。

如下的设计过程仅供除尘设备制造厂家及相关设计单位参考。

1.除尘器载荷的确定:1.1静载的确定:G静载=∑Gi(i=1~5)式中,G1本体钢结构部分的重量,G2滤袋总重,G3袋笼总重,G4滤袋表面积灰5mm的重量,G5灰斗允许积灰重量。

按本公司多年来的设计经验,静载荷在除尘器基础上的分布,一般是,最外面一圈基础柱桩的载荷为总静载分布在所有柱桩上的平均值Gp 的110%。

次外圈一圈柱桩的载荷为Gp的120~200%,以此类推,直到最内圈载荷。

内圈载荷高于外圈载荷,但内外圈载荷最大差别不得超过300KN。

袋式除尘器设计要点及计算方法

袋式除尘器设计要点及计算方法

袋式除尘器设计要点袋式除尘器设计优劣涉及到诸多因素,文章从处理风量、使用温度、气体成分等方面简要介绍了袋式除尘器的设计要点。

袋式除尘器的工作机理是含尘烟气通过过滤材料,尘粒被过滤下来,过滤材料捕集粗粒粉尘主要靠惯性碰撞作用,捕集细粒粉尘主要靠扩散和筛分作用,滤料的粉尘层也有一定的过滤作用。

袋式除尘器设计优劣涉及到诸多因素,文章从以下因素介绍了袋式除尘器的设计要点。

1、处理风量处理风量决定着袋式除尘器的规格大小。

一般处理风量都用工况风量。

设计时一定要注意除尘器使用场所及烟气温度,若袋式除尘器的烟气处理温度已经确定,而气体又采取稀释法冷却时,处理风量还要考虑增加稀释的空气量;考虑今后工艺变化,风量设计指值在正常风量基础上要增加5%~10%的保险系数,否则今后一旦工艺调整增加风量,袋式除尘器的过滤速度会提高,从而使设备阻力增大,甚至缩短滤袋使用寿命,也将成为其他故障频率急剧上升的原因,但若保险系数过大,将会增加除尘器的投资和运转费用;过滤风速因袋式除尘器的形式、滤料的种类及特性的不同而有很大差异,处理风量一经确定,即可根据确定的过滤风速来决定所必须的过滤面积。

2、使用温度袋式除尘器的使用温度是设计的重要依据,使用温度与设计温度出现偏差,会酿成严重后果,因为温度受下述两个条件所制约: 一是不同滤料材质所允许的最高承受温度(瞬间允许温度和长期运行温度)有严格限制;二是为防止结露,气体温度必须保持在露点20℃以上。

对高温气体,必须将其冷却至滤料能承受的温度以下,冷却方式有多种,较为典型的有自然风管冷却、强制风冷、水冷等,具体可按不同的工艺及冷却温度、布置尺寸要求等进行设计选型。

3、气体成分除特殊情况外,袋式除尘器所处理的气体,多半是环境空气或炉窑烟气,通常情况下袋式除尘器的设计按处理空气来计算,只有在密度、黏度、质量热容等参数关系到风机动力性能和管道阻力的计算及冷却装置的设计时,才考虑气体的成分。

在许多工况的烟气中多含有水分,随着烟气中水分的增加,袋式除尘器的设备阻力和风机能耗也随之变化。

布袋除尘器的设计计算书

布袋除尘器的设计计算书

布袋除尘器的设计计算书由于公司要求设计一套较小型的除尘设备,所以查了很多资料,现在把设计计算方法发下。

下面给出已知条件:处理风量:200立方/min滤袋尺寸:Φ116X3m1。

根据已知条件选择过滤风速一般的过滤风速的选择范围是在0。

8~1.5m/min此时根据除尘设备大小和滤带选择风速,本人选择的是1m/min2.根据过滤风速和处理风量计算过滤面积公式为:S=Q/VV—--——-———过滤风速S--——--——-过滤面积Q—-———--——处理风量计算后得S=Q/V=200/1=200平方米3。

计算滤带数量每条滤带的表面积S=ПDLΠ-—-————-3。

14(这个不需要说明了把)D-——-----—滤带直径L—----—--—滤带长度计算得S1=3.14X0。

116X3≈1平方米滤带数量N=S/S1=200/1=200条(注意:这里的滤带面积计算约等于200是为了方便计算,实际计算值为1.1,除下来滤带数量小于200条,为了方便,选择(200/1)条>(200/1.1)条,其实多几条可以满足处理风量,对计算无影响)4。

其实以上的全是基础,接下来的几点才是精髓前面计算了这么多,是为什么?接下来要做什么?首先我们要明确,除尘器的心脏是什么?是电磁阀!所以接下来我们选型电磁阀一般常用的电磁阀厂家有澳大利亚高原、SMC、等等此处本人选择的是澳大利亚GOYEN的电磁脉冲阀。

(至于为什么选这个型号,那是领导安排的)如果真要了解怎么选型的话,最好是多搞点电磁阀厂家的样本本次选的GOYEN的电磁阀的几个参数很重要MM型淹没式电磁脉冲阀1).阀门标称尺寸有三种25/40/76对应的口内径尺为25mm/40mm/76mm换成英尺为1”/1。

5"/3"2)。

这个叫流动系数Cv的很重要相对上述三种尺寸的Cv值为30/51/416好,知道这些后,我选择的是中间那种40mm/Cv=513)脉冲长度0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

•布袋除尘器结构设计及强度计算•前言低压脉冲布袋除尘器广泛应用于电厂脱硫除尘及一般钢厂除尘中(应用于钢厂及电厂的主要区别是除尘器外表是否需要保温、烟气对钢板的腐蚀程度及滤料的选择等),脱硫后的烟尘经过该除尘器后,其排放到大气中的浓度基本控制在20~30mg/m3,低于国家环保部门规定的50mg/m3。

低压脉冲布袋除尘器的工作原理:含尘气体由导流管进入各单元,大颗粒粉尘经分离后直接落入灰斗、其余粉尘随气流进入中箱体过滤区,过滤后的洁净气体透过滤袋经上箱体、排风管排出。

随着过滤工况的进行,当滤袋表面积尘达到一定量时,由清灰控制装置(差压或定时、手动控制)按设定程序打开电磁脉冲阀喷吹,抖落滤袋上的粉尘。

落入灰斗中的粉尘借助输灰系统排出。

低压脉冲除尘器的主要结构组成如下:底柱组件、滑块组件、顶柱组件、灰斗组件(含三通及风量调节阀,如果有的话)、进风装置、中箱体、上箱体、喷吹系统、离线装置、内旁路装置(外旁路,可供选择)、平台扶梯、防雨棚、气路配管及控制元件等组成。

其结构简图如下:除尘器的设计过程中,应当对除尘器的载荷(包括静载、动载、风载、雪载及地震载荷等,单位KN)、除尘器承受的设计负压(单位Pa)、板件材料的屈服极限及抗拉伸极限等(单位MPa),要有一定程度的了解。

必要时,结构设计人员可以查阅相关的机械设计手册,以加深自己对这方面的理解。

如下的设计过程仅供除尘设备制造厂家及相关设计单位参考。

1.除尘器载荷的确定:1.1静载的确定:G静载=∑Gi(i=1~5)式中,G1本体钢结构部分的重量,G2滤袋总重,G3袋笼总重,G4滤袋表面积灰5mm的重量,G5灰斗允许积灰重量。

按本公司多年来的设计经验,静载荷在除尘器基础上的分布,一般是,最外面一圈基础柱桩的载荷为总静载分布在所有柱桩上的平均值Gp的110%。

次外圈一圈柱桩的载荷为Gp的120~200%,以此类推,直到最内圈载荷。

内圈载荷高于外圈载荷,但内外圈载荷最大差别不得超过300KN。

这样设计载荷的目的是保证本体结构系统的地基稳定性。

关于载荷部分的详细分配及计算过程可以参考《建筑荷载设计规范》手册。

1.2动载的确定按楼面及屋面活荷载取标准值2.5KN/m2(检修平台按4KN/m2)来计算。

除尘器总动载荷:F=KA0A1+KA1A2,KA1检修平台活荷载取标准值,A1除尘器平面投影面积,A2平台扶梯平面投影面积。

设计时,单个承载点荷载值是平均值的100~120%左右。

具体分布时,可以是平台扶梯结构多的部分取偏大值,结构少的部分取较小值。

结构设计人员应合理安排,综合考虑影响动载荷分布的各种因素。

1.3风载的确定根据GB50009-2001,查全国基本风压分布图,可得相关值。

风载的计算,也可以按经验公式:Kn=υ^2/1600(单位KN/m2)来计算,式中,υ为风速,单位m/s。

设计时,单个承载点荷载值是平均值的120~150%左右。

具体分布时,最外一圈的载荷点为平均载荷值的120%,内圈载荷点为平均载荷值的150%。

附:风载的设计,主要是考虑横向风的影响。

一般地说,除尘设备都安装在平地上,不必考虑风从高空俯吹的影响。

有些除尘设备厂家在计算风载时,特别考虑俯吹的影响,其实,那是不必要的。

1.4震载的确定在一些地震多发地区,必须考虑地震对结构强度的影响。

设计单位在与用户签定除尘设备技术协议时,必须明确地震的烈度。

根据《钢结构设计规范》(GB50017-2003),地震载荷的计算可以分为水平方向的剪力计算和竖直方向的拉(压)力计算。

公式如下:剪力标准值:FEK=α1 Geq拉(压)力标准值:FEK=α1 Geq各承载点的震载计算过程可以按照上面的计算步骤来进行。

1.5雪载的确定根据GB50009-2001,查全国基本雪压分布图,得雪压相关值。

基于安全考虑,实际设计时,单个承载点的设计值建议是平均承载值的120~200%。

除尘器载荷确定完毕后,结构设计人员就可以将载荷图提交给土建专业,由土建专业根据载荷的大小及相关特性确定土建部分包括混凝土配筋的规格、数量及混凝土开挖的深度及混凝土浇铸的样式。

2.底柱组件的结构计算对底柱的计算,主要是考虑底柱的柔度和挠度。

2.1底柱的柔度计算因型钢的规格未知,无法求出柔度(长细比)λ,无法判断使用的公式。

先采用欧拉公式计算,求出型钢的规格后,再检查是否满足欧拉公式使用条件。

(具体过程可以参考《机械设计手册》第一卷1-178页)惯性矩计算公式:Imin=Pc(μL)^2/(Eπ^2)〕式中,Pc底柱的临界载荷,E弹性模量,Ss稳定安全系数,μ长度系数,确定后应检查柔度λ是否符合要求,2.2底柱的挠度计算挠度因风载而产生。

计算公式,f=PL^3/(3EI)式中,P风载作用于底柱顶端的最大推力,L底柱长度,E弹性模量,I惯性矩。

其实,一般说,经过计算后,挠度均难以达到设计要求。

需要增加斜撑。

将风载的力,转为由斜撑来承担。

在受拉的情况下,斜撑只要保证其受力截面面积符合要求。

3.滑块组件的结构设计滑块主要是消除钢材在温度变化时产生的线膨胀应力。

滑块固定于底柱顶端。

中箱体带动其上的所有与高温烟气接触的部件可以在滑块上自由膨胀(收缩)滑动。

设计滑块结构时,应考虑到滑块的布置、滑块的承载、滑动能力及材料以及滑动范围。

3.1滑块的承载滑块承受除立柱外除尘器的所有垂直向下的重量载荷。

重量载荷在滑块组的分布一般是,靠近除尘器中心的四个滑点为平均承重的300%,其余均为250%。

这样设计的目的是为了保证滑块材料有足够的强度支撑。

3.2滑块的滑动能力及材料的选择滑块采用光滑不锈钢板和滑板相结合的结构。

不锈钢板焊接于顶柱底部平面上,能在固定的滑板上自由滑动。

不锈钢板采用普通304材料制造,表面光洁度为6.3μm,厚度为2mm。

滑板固定于底柱顶部平面上。

切记:滑板的材料不能是钢,否则可能造成不锈钢板与滑板的胶着粘合而失去滑动功能(见《机械设计》第四版)。

3.3滑板材料的确定滑板一般采用聚四氟乙烯。

3.4滑块的滑动范围滑块的滑动范围与碳钢的线膨胀系数αl有关(见《机械设计手册》表1-1-14)。

本处设计计算从略。

滑板的设置一定要考虑到热膨胀的位移量。

滑板的设计要有一定的裕量,应保证在钢板发生热膨胀后,除尘器的全部载荷必须全部作用在滑板上。

4.顶柱组件的结构设计计算过程同底柱类似,本处从略。

5.灰斗组件的结构设计灰斗上部与中箱体、顶柱连续焊接,下部接输灰装置。

本工程共设置6个单独灰斗和两个船形灰斗,分两排布置。

灰斗外表面均盘有蒸汽加热管。

设计灰斗,除根据工艺要求确定灰斗的容积和下灰口尺寸外,还要对其强度进行计算。

灰斗组件同其后介绍的进风装置、中箱体和上箱体一样,是属于负压装置。

对其强度计算的目的是保证其在规定的最大负压(或规定正压)下能满足除尘器的正常运行,不会发生被细瘪(凹陷)的现象。

灰斗壁板的厚度一般为5mm。

5.1单独灰斗最大侧板的结构设计及计算为安全起见,对单独灰斗壁板的强度设计主要是考虑其外表面均布的加强型钢能承受的载荷,确定外表面加强型钢的规格。

灰斗外表面的加强型钢一般为角钢。

计算公式,Imin= qL^4/(384fE)式中,q单根型钢承受的载荷,L型钢长度,f 型钢允许的变形挠度,E弹性模量。

5.2灰斗导流板的设计导流板由若干组耐磨角钢板(材料为Q345A)组成,一般交错布置在灰斗进风口。

它的主要作用是均衡烟气流,同时使烟气中大颗粒粉尘通过碰撞导流板减缓速度沉降于灰斗底部,减轻滤袋过滤的负荷。

导流板一般按经验进行布置。

其布置也可以通过专业软件对烟气流的理论模拟而确定。

6.进风装置的设计进风装置由下风管、风量调节阀和矩形进风管组成。

对进风装置进行设计,主要是考虑风管壁板的耐负压程度。

风量调节阀可以作为厂通件,其内的阀板一般采用5mm厚度的16Mn 钢板制作。

此外,进风装置的合理布置也很重要:应保证烟尘在经过进风装置时,烟气流向合理,对管壁的冲刷降低到最低。

为防止高浓度含尘烟气对中箱体内滤袋及壁板的冲刷,烟气离开进风装置,通过矩形进风管的风速一般控制在4m/s以下。

进风装置耐负压强度一般按风机的全压来计算。

其计算过程同灰斗部分类似。

本处从略。

7.中箱体的结构设计中箱体由若干件壁板连接后连续焊接而成。

中箱体壁板一般采用厚度为5mm的普通钢板制造。

在靠近中箱体中间部位有斜隔板组件,负责将尘气室和净气室隔离开。

中箱体的结构设计,主要是考虑壁板的耐负压程度和斜隔板的耐负压程度。

中箱体耐负压强度一般按风机的全压来计算。

其计算过程同灰斗部分类似。

本处从略。

8.上箱体的结构设计上箱体在整个除尘器的设计中是属于关键部位的设计,它的设计好坏直接关系到除尘器能否正常运行。

设计上箱体时,应考虑到花板孔在上箱体内的合理布置、上箱体横截面高度、离线孔的大小及方位。

在有内旁通的情况下,还要考虑到离线孔与内旁通孔的位置关系。

当然,对上箱体结构强度的验算也是同等的重要。

上箱体在设计时,应考虑设计有一定的斜度,以利于雨水的顺利排放。

8.1花板孔布置。

花板孔在上箱体内应该均匀布置。

根据现场实际情况及工厂制造经验,在滤袋长度不超过8m的情况下,孔与孔之间的间隙为滤袋直径的1.5倍。

举例来说,如果采用160×6000的滤袋,则孔与孔之间的距离为240mm。

8.2上箱体横截面高度对上箱体横截面高度进行控制,主要是保证净化后的气体在通过上箱体内部空间时,气流流向均衡,不会发生由于上箱体截面太小而造成气流阻力太大,甚至造成风机吸力不够、无法正常工作的情况发生。

根据多年来的设计经验,通过上箱体横截面的风速不应当超过3m/s。

8.3离线孔大小及方位经过上箱体每个仓室离线孔的风速一般控制在6~12m/s左右。

理论上来说,经过离线孔的风速越低越好,这样可以使除尘器结构阻力降低到最低。

但在实际工程中,这却是不必要的,因为风速越低,势必会使离线孔径变大,同时导致整个上箱体结构向外侧延伸变大,浪费材料,很不经济。

8.4离线孔与内旁通孔的方位布置内旁通孔径的设计过程同离线孔是相同的。

需要注意的是:通过内旁通孔径的速度一般可以允许达到16m/s,但最大不允许超过18m/s。

这样设计的目的是保证烟气在走旁通时,除尘器进出风口差压不超过1500Pa。

(阻力与风速的平方成正比)在某些除尘器上箱体个别仓室内,会出现即有离线又有旁通的结构。

此时,就需要考虑一下离线与旁通的合理布置了。

一般来说,当旁通打开时,大量烟气通过旁通口直接进入上箱体净气室汇风烟道内,此种情况下,需要将离线设置在烟气流的背侧。

同时,要求离线必须有可靠的密封措施,防止大量烟尘灰透过缝隙进入上箱体仓室内。

8.5花板框架强度计算花板框架上面覆盖有花板。

滤袋及袋笼安装时,对花板平整度有极其严格的要求,其平面度允差一般为1:1000。

相关文档
最新文档