运筹学(第五版) 习题答案

合集下载

运筹学第五版课后习题答案

运筹学第五版课后习题答案

运筹学第五版课后习题答案
《运筹学第五版课后习题答案》
运筹学是一门研究如何有效地组织和管理资源,以达到最佳效益的学科。

它涉及到许多领域,包括生产、物流、供应链管理等。

《运筹学第五版》是一本经典的教材,它提供了大量的课后习题,帮助学生巩固所学知识。

在这本教材中,每一章都包含了大量的习题,涵盖了各种不同的问题和情景。

这些习题既有理论性的问题,也有实际案例分析,让学生能够从多个角度理解和应用所学的知识。

这些习题的答案不仅仅是简单的解答,更是对运筹学理论的深入解释和应用。

通过阅读这些答案,学生可以更好地理解运筹学的原理和方法,提高问题解决能力。

除此之外,这些习题答案还可以帮助学生检验自己的学习成果。

通过对比自己的答案和教材中的答案,学生可以及时发现自己的不足之处,及时进行改正和提高。

总的来说,《运筹学第五版课后习题答案》是一本非常有用的参考书,它不仅可以帮助学生巩固所学知识,提高解决问题的能力,还可以帮助他们更好地应用所学知识,为未来的工作做好准备。

希望更多的学生能够认真阅读这本教材,从中受益。

运筹学第五版第一章课后习题答案

运筹学第五版第一章课后习题答案
x1 1 x1 2 x1 2 x1 3 s .t . x1 3 x1 4 x1 4 x 2 3 x ij 0 ( i x1 3 x1 4 1 5 x1 4 x 2 1 x 2 2 x 2 3 1 0 x 22 x 23 x31 x32 2 0 x32 x 41 1 2 1, 2 , 3, 4 ; j 1, 2 , 3, 4 )
解得: Y
*
(
4 5
,
3 5
, 1, 0 )
即得对偶问题的最优解。
(0, 3 2 , 1, 0 , 0 )
T
X 2.6(a)最优解:
*
最优值: z=36 2.8 (a) λ1≥-1(c1 ≥ 1), λ2≤3 (c2 ≤2), λ3≤ 1 (c3 ≤2) (b) λ1 ≥ -6 (b1 ≥ 0) ,λ2 ≥ -10 (b2≥-6) (c) X=(10/3,0,8/3,0,22/3,0)T z=28/3
2.9(a)
1≤c1 ≤4; 3/2≤c2 ≤6 (b) 4≤b1 ≤7; 6≤b2≤12 b3≥-2; b4≥4/3 (c) 有非基变量检验数为0,有无穷 多最优解,最优解之一为: X=(3,4/3,0,0,5/3,0,1/3)T; z=13 (d) 最优解不变
2.10(d) 0≤λ≤10/3 , 10/3≤λ≤30/7 2.11 a11=0, a12 =1, a13 =2, a21 =3, a22 =-1, a23=1, c1=6, c2 =-2, c3 =10, b1 =5, b2=10 -6≤t1≤8, -5/3≤t2≤15
1.16 (a) X*仍为最优解 ,maxz=λ CX;
σ =λ
C-λ CBB-1A=λ (C-CBB-1A) ≤0 (b)除C为常数向量外,一般X*不再是问题的最优解。

运筹学(胡运权)第五版课后答案-运筹作业

运筹学(胡运权)第五版课后答案-运筹作业

运筹学(胡运权)第五版课后答案-运筹作业47页1.1b用图解法找不到满足所有约束条件的公共范围,所以该问题无可行解47页1.1d无界解1 2 3 454321-1-6 -5 -4 -3 -2X2X12x1--2x1+3x1 2 3 44321X12x1+x2=23x1+4x2=X1.2(b)约束方程的系数矩阵A= 1 2 3 42 1 1 2P1 P2 P3 P4基基解是否可行解目标函数值X1 X2 X3 X4P1 P2 -4 11/2 0 0 否P1 P3 2/5 0 11/5 0 是43/5 P1 P4 -1/3 0 0 11/6 否P2 P3 0 1/2 2 0 是 5 P2 P4 0 -1/2 0 2 否P3 P4 0 0 1 1 是 5最优解A=(0 1/2 2 0)T和(0 0 1 1)T49页13题设Xij为第i月租j个月的面积minz=2800x11+2800x21+2800x31+2800x41+4500x12+4500x22+4500x32+6000x1 3 +6000x23+7300x14s.t.x11+x12+x13+x14≥15x12+x13+x14+x21+x22+x23≥10x13+x14+x22+x23+x31+x32≥20x14+x23+x32+x41≥12Xij≥0用excel求解为:( )用LINDO求解:LP OPTIMUM FOUND AT STEP 3 OBJECTIVE FUNCTION V ALUE1) 118400.0V ARIABLE V ALUE REDUCED COSTZ 0.000000 1.000000X11 3.000000 0.000000X21 0.000000 2800.000000X31 8.000000 0.000000X41 0.000000 1100.000000X12 0.000000 1700.000000X22 0.000000 1700.000000X32 0.000000 0.000000X13 0.000000 400.000000X23 0.0000001500.000000X14 12.000000 0.000000ROW SLACK OR SURPLUS DUAL PRICES2) 0.000000 -2800.0000003) 2.000000 0.0000004) 0.000000 -2800.0000005) 0.000000 -1700.000000NO. ITERATIONS= 3答若使所费租借费用最小,需第一个月租一个月租期300平方米,租四个月租期1200平方米,第三个月租一个月租期800平方米,50页14题设a1,a2,a3, a4, a5分别为在A1, A2, B1, B2, B3加工的Ⅰ产品数量,b1,b2,b3分别为在A1, A2, B1加工的Ⅱ产品数量,c1为在A2,B2上加工的Ⅲ产品数量。

第五版运筹学课后习题答案

第五版运筹学课后习题答案

第五版运筹学课后习题答案【篇一:运筹学课后习题答案林齐宁版本北邮出版社】>1、某织带厂生产a、b两种纱线和c、d两种纱带,纱带由专门纱线加工而工厂有供纺纱的总工时7200h,织带的总工时1200h。

(1) 列出线性规划模型,以便确定产品的数量使总利润最大;(2) 如果组织这次生产具有一次性的投入20万元,模型有什么变化?对模型的解是否有影响?解:(1)设a的产量为x1,b的产量为x2,c的产量为x3,d的产量为x4,则有线性规划模型如下:max f(x)=(168?42)x1 +(140?28)x2 +(1050?350)x3 +(406?140)x4=126 x1 +112 x2 +700 x3 +266 x4?3x1?2x2?10x3?4x4?7200?s.t. ? 2x3?0.5x4?1200?xi?0, i?1,2,3,4?(2)如果组织这次生产有一次性的投入20万元,由于与产品的生产量无关,故上述模型只需要在目标函数中减去一个常数20万,因此可知对模型的解没有影响。

2、将下列线性规划化为极大化的标准形式minf(x)?2x1?3x2?5x3解:将约束条件中的第一行的右端项变为正值,并添加松弛变量x4,在第二行添加人工变量? x1? x2? x3??5 ???6x1?7x2?9x3?16 x5,将第三行约束的绝对值号打开,变为两s.t. ?|19x1?7x2?5x3|?13个不等式,分别添加松弛变量x6, x7,并令??x,x?0, x?不限3?12x3?x3??x3??,则有max[?f(x)]= {?2 x1 ?3 x2 ?5(x3??x3??)+0 x4 ?m x5+0 x6 +0 x7} ?? x3???x4?5 ?x1 ?x2 ?x3 ???6x?7x?9x??9x?? ?x?1612335????5x3?? ?x6?13 s.t. ? 19x1?7x2?5x3??19x?7x?5x??5x?? ?x7?131233??,x3??,x4,x5,x6,x7?0?x1,x2,x3?3、用单纯形法解下面的线性规划maxf(x)?2x1?5x2?3x3?3x1?2x2?x3?610??x?6x?3x?125 ?123s. t. ???2x1?x2?0.5x3?420?x1,x2,x3?0, ?解:在约束行1,2,3分别添加x4, x5, x6松弛变量,有初始基础可行解和单纯形答:最优解为x1 =244.375, x2 =0, x3 =123.125, 剩余变量x6=847.1875;最优解的目标函数值为858.125。

运筹学第五、六、七、八章答案

运筹学第五、六、七、八章答案

运筹学第五、六、七、八章答案5.2 用元素差额法直接给出表5-53及表5-54下列两个运输问题的近似最优解.表5-53 B1 B2 B3 B4 B5 Ai A1 19 16 10 21 9 18 A2 14 13 5 24 7 30 A3 25 30 20 11 23 10 A4 7 8 6 10 4 42 Bj 15 25 35 20 5 表5-54 B1 B2 B3 B4 Ai A1 5 3 8 6 16 A2 10 7 12 15 24 A3 17 4 8 9 30 Bj 20 25 10 15 【解】表5-53。

Z=824 表5-54 Z=495 5.3 求表5-55及表5-56所示运输问题的最优方案.(1)用闭回路法求检验数(表5-55)表5-55 B1 B2 B3 B4 Ai A1 10 5 2 3 70 A2 4 3 1 2 80 A3 5 6 4 4 30 bj 60 60 40 20(2)用位势法求检验数(表5-56)表5-56 B1 B2 B3 B4 Ai A1 9 15 4 8 10 A2 3 1 7 6 30 A3 2 10 13 4 20 A4 4 5 8 3 43 bj 20 15 50 15 【解】(1)(2)5.4 求下列运输问题的最优解(1)C1目标函数求最小值;(2)C2目标函数求最大值 15 45 20 40 60 30 50 40(3)目标函数最小值,B1的需求为30≤b1≤50, B2的需求为40,B3的需求为20≤b3≤60,A1不可达A4,B4的需求为30.【解】(1)(2)(3)先化为平衡表 B11 B12 B2 B31 B32 B4 ai A1 4 4 9 7 7 M 70 A2 6 6 5 3 3 2 20 A3 8 8 5 9 9 10 50 A4 M 0 M M 0 M 40 bj 30 20 40 20 40 30 180 最优解:5.5(1)建立数学模型设xij(I=1,2,3;j=1,2)为甲、乙、丙三种型号的客车每天发往B1,B2两城市的台班数,则(2)写平衡运价表将第一、二等式两边同除以40,加入松驰变量x13,x23和x33将不等式化为等式,则平衡表为:B1 B2 B3 ai 甲乙丙 80 60 50 65 50 40 0 0 0 5 10 15 bj 10 15 5 为了平衡表简单,故表中运价没有乘以40,最优解不变(3)最优调度方案:即甲第天发5辆车到B1城市,乙每天发5辆车到B1城市,5辆车到B2城市,丙每天发10辆车到B2城市,多余5辆,最大收入为Z=40(5×80+5×60+5×50+10×40)=54000(元)5.6(1)设xij为第i月生产的产品第j月交货的台数,则此生产计划问题的数学模型为(2)化为运输问题后运价表(即生产费用加上存储费用)如下,其中第5列是虚设销地费用为零,需求量为30。

运筹学教程第五版课后答案

运筹学教程第五版课后答案

运筹学教程第五版课后答案第一章课后答案1.1 选择题答案1.B2.D3.A4.C5.A1.2 填空题答案1.优化2.最优解3.最大化4.变量5.限制条件1.3 解答题答案1.运筹学是指运用数学方法来研究决策问题和优化问题的学科。

它包括数学规划、排队论、图论、线性规划等多个分支领域,并广泛应用于各个领域的管理和决策中。

2.线性规划是数学规划中的一种重要方法,用于解决特定形式的最优化问题。

线性规划的基本模型包括目标函数、决策变量、约束条件等要素。

线性规划的求解过程包括建立数学模型、确定最优解的条件和方法、利用线性规划软件进行求解等步骤。

第二章课后答案2.1 选择题答案1.B2.A3.C4.D5.B2.2 填空题答案1.线性不等式2.解空间3.最优解4.可行解5.凸集2.3 解答题答案1.线性规划模型由目标函数、决策变量和约束条件三部分组成。

其中,目标函数是优化的目标,决策变量是待确定的变量,约束条件是对决策变量的限制。

线性规划模型可以表示为:maximize Z = c1x1 + c2x2 + … + cnxn subject to: a11x1 + a12x2 + … + a1nxn <= b1 a21x1 + a22x2 + … + a2nxn <= b2 … am1x1 + am2x2 + … + amnxn <= bm x1, x2, …, xn >= 0 其中,Z表示要优化的目标函数,ci表示目标函数中的系数,aij表示约束条件中的系数,bi表示约束条件右侧的常数。

2.线性规划应用广泛,包括生产调度、资源分配、运输问题等。

例如,一个工厂生产两种产品,需要确定每种产品的产量使得总利润最大化,可以使用线性规划模型进行建模和求解。

又如,在物流领域中,需要确定货物的最优运输方案,可以使用线性规划模型来解决。

第三章课后答案3.1 选择题答案1.C2.A3.B4.D5.B3.2 填空题答案1.线性规划2.整数规划3.混合整数规划4.松弛问题5.整数线性规划3.3 解答题答案1.整数规划是指在线性规划的基础上,决策变量取整数值的最优化问题。

(完整word版)运筹学(胡运权)第五版课后答案,运筹作业

47页1.1b羅蕿用图解法找不到满足所有约束条件的公共范围,所以该问题无可行解薅47页1。

1d蒂无界解(b)衿1.2蕿约束方程的系数矩阵A=1234莇2112蚄P1P2P3P4,运筹作业肀最优解A=(01/220)T和(0011)T页13题肆49膃设Xij为第i月租j个月的面积羄minz=2800x11+2800x21+2800x31+2800x41+4500x12+4500x22+4500x32+6000x13+6000x23+7300x 14螁s.t.聿x11+x12+x13+x14≥15膃x12+x13+x14+x21+x22+x23≥10膀x13+x14+x22+x23+x31+x32≥20艿x14+x23+x32+x41≥12袇Xij≥0芃用excel求解为:薁用LINDO求解:羁LPOPTIMUMFOUNDATSTEP3薆OBJECTIVEFUNCTIONVALUE 蚇1)118400.0羂VARIABLEVALUEREDUCEDCOST 荿Z0.0000001。

000000虿X113.0000000。

000000螇X210。

0000002800。

000000莃X318。

0000000.000000肁X410.0000001100。

000000莈X120.0000001700.000000袆X220.0000001700。

000000螄X320.0000000。

000000蕿X130.000000400.000000膇X230。

0000001500。

000000袆X1412.0000000.000000袁ROWSLACKORSURPLUSDUALPRICES芁2)0。

000000—2800。

000000羆3)2.0000000.000000羆4)0。

000000—2800.000000节5)0。

000000-1700.000000蝿NO。

ITERATIONS=3罿答若使所费租借费用最小,需第一个月租一个月租期300平方米,租四个月租期1200平方米,第三个月租一个月租期800平方米,页14题肆50蚃设a1,a2,a3,a4,a5分别为在A1,A2,B1,B2,B3加工的Ⅰ产品数量,b1,b2,b3分别为在A1,A2,B1加工的Ⅱ产品数量,c1为在A2,B2上加工的Ⅲ产品数量。

胡运权运筹学第五版第一章习题讲解


1.3 答案:
●单纯形法:
Cj CB 0 0 基 x3 x4 Cj-Zj 0 x3
10
x1
Cj-Zj
8/5
1
0
2/5
1 1
0
0 5/14
1/5
-2 -3/14
5
x2
3/2
0
10
x1
Cj-Zj
1
1
0
0
0
-1/7
-5/14
2/7
-25/14
Return

课后题答案
z' -3x1 x 2 'x 2 ' '-2x 3 '0x 4 0x 5 - Mx6 - Mx7
台时 限制 6000 1000 0 4000 7000 4000
单位台 时费用 0.05 0.03 0.06 0.11 0.05
6 4 7 0.25 0.36 0.25 0.44 0.25 0.35
6 4 7 0.21 0.36 0.21 0.44 0.21 0.77
8
8 11
0.5 0.48
0.27 0.48

课后题答案
1.1(a)答案: 该问题有无穷多最优解。 取特殊值:(1.5,0) 计算目标函数最优值 得:min z=3。
1.1(a)
1.1(b)答案: 由图可知:该Lp问题没 有可行域,即可得出: 该问题无可行解
1.1(b)
Return

课后题答案
1.2(b)答案:
基解 基
x1 P2 P3 P4 P3 -4 2/5 -113 ) 10 x211 6000 7( x x x ) 9 x 12 x 121 122 123 221 322 10000 6( x111 x121 ) 8( x211 x221 ) 4000 s.t. 4( x112 x122 ) 11x322 7000 7( x113 x123 ) 4000 x111 , x112 , x113 , x121 , x122 , x123 , x211 , x221 , x322 0

管理运筹学(第五版)韩伯棠主编第三章 线性规划问题的计算机求解课后习题参考答案

第三章线性规划问题的计算机求解3-1(1)甲、乙两种柜的日产量是分别是4和8,这时最大利润是2720。

(2)油漆工艺生产增加1小时,可以使总利润提高13.333元。

(3)常数项的上下限是指常数项在指定的范围内变化时,与其对应的约束条件的对偶价格不变。

比如油漆时间变为100,因为100在40和160之间,所以其对偶价格不变仍为13.333。

(4)不变,因为还在120和480之间。

3-2(1)最优决策为截第一种钢板6张,第二种钢板7张。

(2)需要A种规格的小钢板成品个数在12和27范围内时,第一个约束条件的对偶价格不变。

(3)B种规格的小钢板成品的剩余变量值为4,表示此决策下,截得B种规格成品的实际数量比B种规格的成品的需求量多了4个。

3-3(1)农用车有12辆剩余。

(2)300到正无穷范围内。

(3)每增加一辆大卡车,总运费降低192元。

3-4(1)是最优解。

(2)此常数项在-∞到2范围内变化时,约束1的对偶价格不变。

3-5(1)圆桌和衣柜的生产件数分别是350和100件,这时最大利润是3100元。

(2)相差值为0代表,不需要对相应的目标函数系数进行改进就可以生产该产品。

(3)最优解不变,因为C1允许增加量200-6=140;C2允许减少量为100-30=70,所有允许增加百分比和允许减少百分比之和(75-60)/140+(100-90)/70<100%,所以最优解不变。

3-6(1)1150x=,270x=,即产品I的产量为150,产品II的产量为70;目标函数最优值103 000,即最大利润为103 000。

(2)1、3车间的加工工时数已使用完;2、4车间的加工工时数没用完;没用完的加工工时数为2车间330小时,4车间15小时。

(3)50,0,200,0。

含义:1车间每增加1工时,总利润增加50元;3车间每增加1工时,总利润增加200元;2车间与4车间每增加一个工时,总利润不增加。

(4)3车间,因为增加的利润最大。

运筹学(第五版) 习题答案

第二阶段最优解(4/5,9/5,0,0,0,0 min z=7
非基变量 的检验数 =0,所以有无穷多最优解。
(3)解:大M法
加入人工变量,化成标准型:
Max z=10 +15 +12 +0 +0 +0 -M
s.t. 5 +3 + + =9
-5 +6 +15 + =15
2 + + - + =5
, , , , , , 0
当 0,目标函数在原点最大值。
k= 时, , 同号。
当 0时,目标函数在BC线断上任一点有最大值
当 0时,目标函数在原点最大值。
k=0时, =0
当 0时,目标函数在A点有最大值
当 0,目标函数在OC线断上任一点有最大值
(2)当 =0时,max z=
0时,目标函数在C点有最大值
0时,目标函数在OA线断上任一点有最大值
(i=1,2,3…,n)
0, 0, (i=1,2,3…n; k=1,2….,m)
M是任意正整数
初始单纯形表:
-M
-M

-M



b




-M
1
1
0

0
1
1


0
0

0
-M
1
0
1

0
0


0
0

0












  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

运筹学习题答案第一章(39页)1.1用图解法求解下列线性规划问题,并指出问题是具有唯一最优解、无穷多最优解、无界解还是无可行解。

(1)max 12z x x =+ 51x +102x ≤501x +2x ≥12x ≤4 1x ,2x ≥0(2)min z=1x +1.52x1x +32x ≥3 1x +2x ≥2 1x ,2x ≥0(3)max z=21x +22x1x -2x ≥-1-0.51x +2x ≤21x ,2x ≥0(4)max z=1x +2x1x -2x ≥031x -2x ≤-31x ,2x ≥0解: (1)(图略)有唯一可行解,max z=14 (2)(图略)有唯一可行解,min z=9/4 (3)(图略)无界解 (4)(图略)无可行解1.2将下列线性规划问题变换成标准型,并列出初始单纯形表。

(1)min z=-31x +42x -23x +54x 41x -2x +23x -4x =-21x +2x +33x -4x ≤14-21x +32x -3x +24x ≥21x ,2x ,3x ≥0,4x 无约束(2)max kkz s p =11nmk ik ik i k z a x ===∑∑11(1,...,)mikk xi n =-=-=∑ik x ≥0 (i=1…n; k=1,…,m)(1)解:设z=-z ',4x =5x -6x , 5x ,6x ≥0 标准型:Max z '=31x -42x +23x -5(5x -6x )+07x +08x -M 9x -M 10x s. t .-41x +2x -23x +5x -6x +10x =21x +2x +33x -5x +6x +7x =14-21x +32x -3x +25x -26x -8x +9x =21x ,2x ,3x ,5x ,6x ,7x ,8x ,9x ,10x ≥0(2)解:加入人工变量1x ,2x ,3x ,…n x ,得: Max s=(1/k p )1ni =∑1mk =∑ik αik x -M 1x -M 2x -…..-M n xs.t.11mi ik k x x =+=∑ (i=1,2,3…,n)ik x ≥0, i x ≥0, (i=1,2,3…n; k=1,2….,m)M 是任意正整数1.3在下面的线性规划问题中找出满足约束条件的所有基解。

指出哪些是基可行解,并代入目标函数,确定最优解。

(1)max z=21x +32x +43x +74x 21x +32x -3x -44x =8 1x -22x +63x -74x =-31x ,2x ,3x ,4x ≥0(2)max z=51x -22x +33x -64x1x +22x +33x +44x =721x +2x +3x +24x =31x 2x 3x 4x ≥0(1)解:系数矩阵A 是:23141267--⎡⎤⎢⎥--⎣⎦ 令A=(1P ,2P ,3P ,4P )1P 与2P 线形无关,以(1P ,2P )为基,1x ,2x 为基变量。

有 21x +32x =8+3x +44x 1x -22x =-3-63x +74x 令非基变量3x ,4x =0 解得:1x =1;2x =2基解(1)X =(1,2,0,0)T 为可行解1z =8同理,以(1P ,3P )为基,基解(2)X =(45/13,0,-14/13,0)T 是非可行解; 以(1P ,4P )为基,基解(3)X =(34/5,0,0,7/5)T 是可行解,3z =117/5; 以(2P ,3P )为基,基解(4)X =(0,45/16,7/16,0)T 是可行解,4z =163/16; 以(2P ,4P )为基,基解(5)X =(0,68/29,0,-7/29)T 是非可行解; 以(4P ,3P )为基,基解(6)X =(0,0,-68/31,-45/31)T 是非可行解; 最大值为3z =117/5;最优解(3)X =(34/5,0,0,7/5)T 。

(2)解:系数矩阵A 是:12342112⎡⎤⎢⎥⎣⎦令A=(1P ,2P ,3P ,4P )1P ,2P 线性无关,以(1P ,2P )为基,有: 1x +22x =7-33x -44x21x +2x =3-3x -24x 令 3x ,4x =0得1x =-1/3,2x =11/3基解(1)X =(-1/3,11/3,0,0)T 为非可行解;同理,以(1P ,3P )为基,基解(2)X =(2/5,0,11/5,0)T 是可行解2z =43/5; 以(1P ,4P )为基,基解(3)X =(-1/3,0,0,11/6)T 是非可行解; 以(2P ,3P )为基,基解(4)X =(0,2,1,0)T 是可行解,4z =-1; 以(4P ,3P )为基,基解(6)X =(0,0,1,1)T 是6z =-3; 最大值为2z =43/5;最优解为(2)X =(2/5,0,11/5,0)T 。

1.4分别用图解法和单纯形法求解下列线性规划问题,并指出单纯形迭代每一步相当于图形的哪一点。

(1)max z=21x +2x 31x +52x ≤15 61x +22x ≤241x ,2x ≥0(2)max z=21x +52x1x ≤422x ≤12 31x +22x ≤181x ,2x ≥0解:(图略)(1)max z=33/4 最优解是(15/4,3/4) 单纯形法:标准型是max z=21x +2x +03x +04x s.t. 31x +52x +3x =15 61x +22x +4x =24 1x ,2x ,3x ,4x ≥0解为:(15/4,3/4,0,0 )T Max z=33/4迭代第一步表示原点;第二步代表C 点(4,0,3,0)T ; 第三步代表B 点(15/4,3/4,0,0 )T 。

(2)解:(图略)Max z=34 此时坐标点为(2,6) 单纯形法,标准型是: Max z=21x +52x +03x +04x +05xs.t. 1x +3x =4 22x +4x =12 31x +22x +5x =181x ,2x ,3x ,4x ,5x ≥0(表略)最优解 X=(2,6,2,0,0 )T Max z=34迭代第一步得(1)X =(0,0,4,12,18)T 表示原点,迭代第二步得(2)X =(0,6,4,0,6)T ,第三步迭代得到最优解的点。

1.5以1.4题(1)为例,具体说明当目标函数中变量的系数怎样变动时,满足约束条件的可行域的每一个顶点,都可能使得目标函数值达到最优。

解:目标函数:max z=1c 1x +2c 2x (1)当2c ≠0时2x =-(1c /2c )1x +z/2c 其中,k=-1c /2cAB k =-3/5,BC k =-3● kBC k 时,1c ,2c 同号。

当2c 0时,目标函数在C 点有最大值 当2c 0时,目标函数在原点最大值。

● BCk kABk 时,1c ,2c同号。

当2c 0, 目标函数在B 点有最大值; 当2c 0,目标函数在原点最大值。

● ABk k0时,1c , 2c同号。

当2c 0时,目标函数在A 点有最大值 当2c 0时,目标函数在原点最大值。

● k 0时,1c ,2c异号。

当2c 0,1c 0时,目标函数在A 点有最大值; 当2c 0,1c 0时,目标函数在C 点最大值。

● k= ABk 时,1c , 2c同号当2c 0时,目标函数在AB 线断上任一点有最大值 当2c 0,目标函数在原点最大值。

● k= BCk 时,1c ,2c 同号。

当2c 0时,目标函数在BC 线断上任一点有最大值 当2c 0时,目标函数在原点最大值。

● k=0时,1c=0 当2c 0时,目标函数在A 点有最大值当2c 0,目标函数在OC 线断上任一点有最大值(2)当2c =0时,max z= 1c 1x●1c 0时,目标函数在C 点有最大值 ● 1c0时,目标函数在OA 线断上任一点有最大值●1c =0时,在可行域任何一点取最大值。

1.6分别用单纯形法中的大M 法和两阶段法求解下列线性问题,并指出属于哪类解。

(1)max z=21x +32x -53x1x +2x +3x ≤1521x -52x +3x ≤241x ,2x ≥0(2)min z=21x +32x +3x1x +42x +23x ≥831x +22x ≥61x ,2x ,3x ≥0(3)max z=101x +152x +123x 51x +32x +3x ≤9 -51x +62x +153x ≤15 21x +2x +3x ≥51x ,2x ,3x ≥0(4)max z=21x -2x +23x1x +2x +3x ≥6-21x +3x ≥2 22x -3x ≥01x ,2x ,3x ≥0解:(1)解法一:大M 法 化为标准型:Max z=21x +32x -53x -M 4x +05x -M 6x s.t. 1x +2x +3x +4x =7 21x -52x +3x -5x +6x =101x ,2x ,3x ,5x ,4x ,6x ≥0 M 是任意大整数。

最优解是:X=(45/7,4/7,0,0,0 )T 目标函数最优值 max z=102/7 有唯一最优解。

解法二:第一阶段数学模型为 min w= 4x + 6x S.t. 1x +2x + 3x + 4x =72 1x -5 2x + 3x - 5x + 6x =101x ,2x ,3x ,4x ,5x ,6x ≥0(单纯形表略) 最优解X=(45/7,4/7,0,0,0 )T目标函数最优值 min w=0X=(45/7,4/7,0,0,0 )TMax z=102/7(2)解法一:大M 法z '=-z 有max z '=-min (-z ')=-min z 化成标准形:Max z '=-21x -32x -3x +04x +05x -M 6x -M 7x S.T.1x +42x +23x -4x +6x =4 31x +22x -5x +7x =6 1x ,2x ,3x ,4x ,5x ,6x ,7x ≥0 (单纯性表计算略)线性规划最优解X=(4/5,9/5,0,0,0 ,0)T 目标函数最优值 min z=7非基变量3x 的检验数3σ=0,所以有无穷多最优解。

两阶段法:第一阶段最优解X=(4/5,9/5,0,0,0,0 )T 是基本可行解,min w=0 第二阶段最优解(4/5,9/5,0,0,0,0 )T min z=7 非基变量3x 的检验数3σ=0,所以有无穷多最优解。

相关文档
最新文档