运筹学试题及答案4套
运筹学考研真题及答案

运筹学考研真题及答案【篇一:1999-2016年南京航空航天大学824运筹学考研真题及答案解析汇编】p> 我们是布丁考研网南航考研团队,是在读学长。
我们亲身经历过南航考研,录取后把自己当年考研时用过的资料重新整理,从本校的研招办拿到了最新的真题,同时新添加很多高参考价值的内部复习资料,保证资料的真实性,希望能帮助大家成功考入南航。
此外,我们还提供学长一对一个性化辅导服务,适合二战、在职、基础或本科不好的同学,可在短时间内快速把握重点和考点。
有任何考南航相关的疑问,也可以咨询我们,学长会提供免费的解答。
更多信息,请关注布丁考研网。
以下为本科目的资料清单〔有实物图及预览,货真价实〕:南京航空航天大学《运筹学》全套考研资料包含:一、南京航空航天大学《运筹学》历年考研真题及答案解析2016年南京航空航天大学《运筹学》考研真题〔含答案解析〕〔11月份统一更新〕2015年南京航空航天大学《运筹学》考研真题〔含答案解析〕2014年南京航空航天大学《运筹学》考研真题〔含答案解析〕2013年南京航空航天大学《运筹学》考研真题〔含答案解析〕2012年南京航空航天大学《运筹学》考研真题〔含答案解析〕2011年南京航空航天大学《运筹学》考研真题〔含答案解析〕2010年南京航空航天大学《运筹学》考研真题〔含答案解析〕2009年南京航空航天大学《运筹学》考研真题〔含答案解析〕2008年南京航空航天大学《运筹学》考研真题〔含答案解析〕2006年南京航空航天大学《运筹学》考研真题〔含答案解析〕2005年南京航空航天大学《运筹学》考研真题〔含答案解析〕2004年南京航空航天大学《运筹学》考研真题〔含答案解析〕2003年南京航空航天大学《运筹学》考研真题〔含答案解析〕2002年南京航空航天大学《运筹学》考研真题〔含答案解析〕2001年南京航空航天大学《运筹学》考研真题〔含答案解析〕2000年南京航空航天大学《运筹学》考研真题〔含答案解析〕1999年南京航空航天大学《运筹学》考研真题〔含答案解析〕二、南京航空航天大学《运筹学》期中期末试卷汇编三、南京航空航天大学《运筹学》考研复习笔记1、运筹学辅导讲义该部分为824运筹学辅导讲义2017版,由2016级高分学姐根据2017年考研动态编写,讲义按章节编写包含三个部分、第一个部分考研点睛〔历年考试情况分析〕、第二个部分考研知识点总结〔知识点详细划分,重要内容均作了详细标记,可以直接切入考研重难点,防止一些不必要的时间浪费〕,第三部分直击考研〔典型题型针对性联系〕。
运筹学

一、单选题(共40 道试题,共100 分。
)V 1. 对于第二类存储模型——进货能力有限,不允许缺货,下列哪项不属于起假设前提条件()A. 需求是连续,均匀的B. 进货是连续,均匀的C. 当存储降至零时,可以立即得到补充D. 每个周期的定货量需要一次性进入存储,一次性满足标准答案:D2. 在完全不确定下的决策方法不包括下列的哪一项()A. 悲观法B. 乐观法C. 最大收益法D. 等可能性法标准答案:C3. 所谓确定条件下的决策,是指在这种条件下,只存在()A. 一种自然状态B. 两种自然状态C. 三种或三种以上自然状态D. 无穷多种自然状态标准答案:A4. 单纯形法的迭代计算过程是从一个可行解转换到目标函数值更大的另一个可行解。
A. 对B. 错标准答案:B5. 下例错误的说法是A. 标准型的目标函数是求最大值B. 标准型的目标函数是求最小值C. 标准型的常数项非正D. 标准型的变量一定要非负标准答案:C6. 求般获得最好经济效益问题是求如何合理安排决策变量(即如何安排生产)使目标函数最大的问题,求最大的目标函数问题,则记为max Z;若是如何安排生产使成本是最小的问题,则记为min Z .A. 对B. 错标准答案:A7. ()是用来衡量所实现过程优劣的一种数量指标A. 状态B. 决策C. 状态转移D. 指标函数标准答案:D8. 在实际工作中,企业为了保证生产的连续性和均衡性,需要存储一定数量的物资,对于存储方案,下列说法正确的是( )A. 应尽可能多的存储物资,以零风险保证生产的连续性B. 应尽可能少的存储物资,以降低库存造成的浪费C. 应从多方面考虑,制定最优的存储方案D. 以上说法都错误标准答案:C9. 约束条件为AX=b,X≥0 的线性规划问题的可行解集是()A. 补集B. 凸集C. 交集D. 凹集标准答案:B10. 存货台套的运费应列入()A. 订货费用B. 保管费用C. 进厂价D. 其它支出标准答案:C11. 基可行解中的非零变量的个数小于约束条件数时,该LP问题可求得( )。
运筹学试卷及答案完整版

《运筹学》模拟试题及参考答案一、判断题(在下列各题中,你认为题中描述的内容为正确者,在题尾括号内写“√”,错误者写“×”。
)1. 图解法提供了求解线性规划问题的通用方法。
( )2. 用单纯形法求解一般线性规划时,当目标函数求最小值时,若所有的检验数C j-Z j ≥0,则问题达到最优。
( )3. 在单纯形表中,基变量对应的系数矩阵往往为单位矩阵。
( )4. 满足线性规划问题所有约束条件的解称为基本可行解。
( )5. 在线性规划问题的求解过程中,基变量和非基变量的个数是固定的。
( )6. 对偶问题的目标函数总是与原问题目标函数相等。
( )7. 原问题与对偶问题是一一对应的。
( )8. 运输问题的可行解中基变量的个数一定遵循m+n-1的规则。
( )9. 指派问题的解中基变量的个数为m+n。
( )10. 网络最短路径是指从网络起点至终点的一条权和最小的路线。
( )11. 网络最大流量是网络起点至终点的一条增流链上的最大流量。
( )12. 工程计划网络中的关键路线上事项的最早时间和最迟时间往往不相等。
( )13. 在确定性存贮模型中不许缺货的条件下,当费用项目相同时,生产模型的间隔时间比订购模型的间隔时间长。
( )14. 单目标决策时,用不同方法确定的最佳方案往往是一致的。
( )15. 动态规划中运用图解法的顺推方法和网络最短路径的标号法上是一致的。
( )三、填空题1. 图的组成要素;。
2. 求最小树的方法有、。
3. 线性规划解的情形有、、、。
4. 求解指派问题的方法是。
5. 按决策环境分类,将决策问题分为、、。
6. 树连通,但不存在。
A 111四、下列表是线性规划单纯形表(求Z max ),请根据单纯形法原理和算法。
1. 计算该规划的检验数2. 计算对偶问题的目标函数值3. 确定上表中输入,输出变量五、已知一个线性规划原问题如下,请写出对应的对偶模型21max 6x x S +=⎪⎩⎪⎨⎧≥≥+≤+0,16327212121x x x x x x六、下图为动态规划的一个图示模型,边上的数字为两点间的距离,请用逆推法求出S 至F 点的最短路径及最短路长。
运筹学试卷及参考答案

运筹学试卷及参考答案运筹学试卷一、选择题(每小题2分,共20分)1、下列哪个不是线性规划的标准形式?() A. min z = 3x1 + 2x2B. max z = -4x1 - 3x2C. s.t. 2x1 - x2 <= 1D. s.t. x1 + x2 >= 0答案:C2、以下哪个是最小生成树的Prim算法?() A. 按照权值从小到大的顺序选择顶点 B. 按照权值从大到小的顺序选择顶点 C. 按照距离从小到大的顺序选择顶点 D. 按照距离从大到小的顺序选择顶点答案:B3、下列哪个不是网络流模型的典型应用?() A. 道路交通流量优化 B. 人员部署 C. 最短路径问题 D. 生产计划答案:C4、下列哪个是最小化问题中常用的动态规划解法?() A. 自顶向下的递推求解 B. 自底向上的递推求解 C. 分治算法 D. 回溯法答案:A5、下列哪个是最大流问题的 Ford-Fulkerson 算法?() A. 增广路径的寻找采用深度优先搜索 B. 增广路径的寻找采用广度优先搜索 C. 初始流采用最大边的二分法求解 D. 初始流采用最小边的二分法求解答案:B二、简答题(每小题10分,共40分)1、请简述运筹学在现实生活中的应用。
答案:运筹学在现实生活中的应用非常广泛。
例如,线性规划可以用于生产计划、货物运输和资源配置等问题;网络流模型可以用于解决道路交通流量优化、人员部署和生产计划等问题;动态规划可以用于解决最短路径、货物存储和序列安排等问题;图论模型可以用于解决最大流、最短路径和最小生成树等问题。
此外,运筹学还可以用于医疗资源管理、金融风险管理、军事战略规划等领域。
总之,运筹学的理论和方法可以帮助人们更好地解决实际生活中的问题,提高决策的效率和准确性。
2、请简述单纯形法求解线性规划的过程。
答案:单纯形法是一种求解线性规划问题的常用方法。
它通过不断迭代和修改可行解,最终找到最优解。
具体步骤如下: (1) 将线性规划问题转化为标准形式; (2) 根据标准形式构造初始可行基,通常选取一个非基变量,使其取值为零,其余非基变量的取值均为零; (3) 根据目标函数的系数,计算出目标函数值; (4) 通过比较目标函数值和已选取的非基变量的取值,选取最优的非基变量进行迭代; (5) 在迭代过程中,不断修正基变量和非基变量的取值,直到找到最优解或确定无解为止。
《运筹学》课程考试试卷试题(含答案)

《运筹学》课程考试试卷试题(含答案)一、选择题(每题5分,共25分)1. 运筹学的核心思想是()A. 最优化B. 系统分析C. 预测D. 决策答案:A2. 在线性规划中,约束条件可以用()表示。
A. 等式B. 不等式C. 方程组D. 矩阵答案:B3. 以下哪个不是运筹学的基本模型?()A. 线性规划B. 整数规划C. 非线性规划D. 随机规划答案:D4. 在目标规划中,以下哪个术语描述的是决策变量的偏离程度?()A. 目标函数B. 约束条件C. 偏差变量D. 权重系数答案:C5. 在动态规划中,以下哪个概念描述的是在决策过程中,某一阶段的最优决策对后续阶段的影响?()A. 最优子结构B. 无后效性C. 最优性原理D. 阶段性答案:B二、填空题(每题5分,共25分)1. 运筹学是一门研究在复杂系统中的______、______和______的科学。
答案:决策、优化、实施2. 在线性规划中,若目标函数为最大化,则其标准形式为______。
答案:max z = c^T x3. 在非线性规划中,若目标函数和约束条件均为凸函数,则该规划问题为______。
答案:凸规划4. 在目标规划中,若决策变量x_i的权重系数为w_i,则目标函数可以表示为______。
答案:min Σ(w_i d_i^+ + w_i d_i^-)5. 在动态规划中,若状态变量为s_n,决策变量为u_n,则状态转移方程可以表示为______。
答案:s_{n+1} = f(s_n, u_n)三、判断题(每题5分,共25分)1. 线性规划问题的最优解一定在可行域的顶点处取得。
()答案:正确2. 在整数规划中,若决策变量为整数,则目标函数和约束条件也必须为整数。
()答案:错误3. 目标规划中的偏差变量可以是负数。
()答案:正确4. 在动态规划中,最优策略具有最优子结构。
()答案:正确5. 在非线性规划中,若目标函数为凸函数,则约束条件也必须为凸函数。
运筹学考试试卷及答案

运筹学考试试卷及答案一、选择题(每题2分,共20分)1. 线性规划问题的标准形式是:A. 所有变量都非负B. 目标函数是最大化C. 所有约束条件都是等式D. 所有约束条件都是不等式答案:A2. 单纯形法中,如果某个变量的检验数为负数,那么:A. 该变量可以增大B. 该变量可以减小C. 该变量保持不变D. 该变量不能进入基答案:A3. 在运输问题中,如果某种资源的供应量大于需求量,那么应该:A. 增加供应量B. 减少需求量C. 增加需求量D. 减少供应量答案:C4. 动态规划的基本原理是:A. 递归B. 迭代C. 回溯D. 分解答案:D5. 决策树中,每个节点代表:A. 一个决策B. 一个状态C. 一个结果D. 一个概率答案:A6. 排队论中,M/M/1队列的特点是:A. 到达时间服从泊松分布,服务时间服从指数分布,且只有一个服务台B. 到达时间服从指数分布,服务时间服从泊松分布,且只有一个服务台C. 到达时间服从泊松分布,服务时间服从指数分布,且有两个服务台D. 到达时间服从指数分布,服务时间服从泊松分布,且有两个服务台答案:A7. 网络流问题中,最大流最小割定理说明:A. 最大流等于最小割B. 最大流小于最小割C. 最大流大于最小割D. 最大流与最小割无关答案:A8. 整数规划问题中,分支定界法的基本思想是:A. 将问题分解为多个子问题B. 将问题转化为线性规划问题C. 将问题转化为非线性规划问题D. 将问题转化为动态规划问题答案:A9. 在多目标决策中,如果目标之间存在冲突,通常采用的方法是:A. 目标排序B. 目标加权C. 目标合并D. 目标替换答案:B10. 敏感性分析的目的是:A. 确定最优解的稳定性B. 确定最优解的唯一性C. 确定最优解的可行性D. 确定最优解的最优性答案:A二、填空题(每题2分,共20分)1. 线性规划问题的可行域是由所有_________约束条件构成的集合。
答案:可行2. 在单纯形法中,如果目标函数的系数都是正数,则该问题为_________问题。
运筹学试题及答案

运筹学试题及答案考试时间:120分钟命题人:XXX一、选择题(共60分)1. 运筹学的核心思想是:A. 尽可能地满足需求B. 确定最优决策C. 提高运营效率D. 预测未来趋势答案:B2. 下列哪个不是运筹学的应用领域?A. 生产调度B. 金融风险管理C. 市场营销D. 交通规划答案:C3. 线性规划是研究下列问题的数学方法:A. 最大化目标函数B. 最小化目标函数C. 求解等式系统D. 优化约束条件答案:D4. 整数规划是线性规划的扩展,其特点是:A. 变量只能取整数值B. 变量可以取任意实数值C. 目标函数必须是整数D. 约束条件必须是整数答案:A5. 运筹学中的最短路径问题是指:A. 在有向图中找到从起点到终点的最短路径B. 在无向图中找到连接所有节点的最短路径C. 在网络中找到连接所有节点的最短路径D. 在带权图中找到权值最小的路径答案:A二、计算题(共40分)1. 某工厂有3个生产车间,分别需要完成4个任务。
完成每个任务所需时间如下:车间1:10小时车间2:8小时车间3:6小时为了提高效率,每个车间只能同时进行一个任务。
请问应如何分配任务,才能使得所有任务完成的时间最短?答案:将任务按照时间从大到小排序分配,先将任务分配给车间1和车间2,然后再将任务分配给车间3。
具体分配如下:车间1:10小时(任务1)车间2:8小时(任务2)车间3:6小时(任务3)车间1:18小时(任务1+任务4)车间2:16小时(任务2+任务4)车间3:12小时(任务3)总时间为18小时。
2. 某物流公司需要将货物从发货仓库A送至目的地仓库B。
货物可通过3条不同的路径运送,分别需要的运输时间为:路径1:6小时路径2:8小时路径3:10小时若考虑各路径的运输成本,路径1的运输成本为100元/小时,路径2的运输成本为150元/小时,路径3的运输成本为120元/小时。
请问应如何选择路径,使得运输成本最低?答案:计算各路径的单位成本,并选择单位成本最低的路径。
数学:运筹学试题及答案(强化练习)

数学:运筹学试题及答案(强化练习)1、单选不属一般系统,特别是人造系统特征的是()A.整体性B.集合性C.目的性D.规模性正确答案:D2、名词解释概率向量正确答案:任意一个向量u=(u1,u2,…,un),如果(江南博哥)它内部的各种元素为非负数,且总和等于1,则此向量称为概率向量。
3、填空题影子价格实际上是与原问题各约束条件相联系的()的数量表现。
正确答案:对偶变量4、单选关于线性规划和其对偶规划的叙述中,正确的是()A.极大化问题(原始规划)的任意一个可行解所对应的目标函数值是对偶问题最优目标函数值的一个下界B.极小化问题(对偶规划)的任意一个可行解所对应的目标函数值是原始问题最优目标函数值的一个下界C.若原始问题可行,则其目标函数无界的充要条件是对偶问题有可行解D.若对偶问题可行,则其目标函数无界的充要条件是原始问题可行正确答案:A5、单选为建立运输问题的改进方案,在调整路线中调整量应为()。
A.奇数格的最小运量B.奇数格的最大运量C.偶数格的最小运量D.偶数格的最大运量正确答案:A6、单选下述选项中结果一般不为0的是()。
A.关键结点的结点时差B.关键线路的线路时差C.始点的最早开始时间D.活动的专用时差正确答案:D7、填空题动态规划中,把所给问题的过程,分为若干个相互联系的()正确答案:阶段8、多选系统评价常用的理论有()A.数量化理论B.效用理论C.最优化理论D.不确定性理论E.模糊理论正确答案:A, B, C, D9、填空题常用的两种时差是工作()和工作自由时差。
正确答案:总时差10、填空题()(EOQ)是使总的存货费用达到最低的某种存货台套的最佳订货量。
正确答案:经济订货量11、填空题分枝定界法一般每次分枝数量为()正确答案:2个12、单选用单纯形法求解线性规划时,不论是极大化或是极小化问题,均用最小比值原则确定出基变量,该说法()。
A.正确B.不正确C.可能正确D.以上都不对正确答案:A13、名词解释安全库存量正确答案:也称保险库存量,是为了预防可能出现的缺货现象而保持的额外库存量14、填空题若线性规划问题有(),必在某顶点上得到。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《运筹学》试卷一
一、(15分)用图解法求解下列线性规划问题
二、(20分)下表为某求极大值线性规划问题的初始单纯形表及迭代后的表,、
为松弛变量,试求表中到的值及各变量下标到的值。
-13
1
1
6
1
1-200
2-1
1
1/2
1/2
1
4
07
三、(15分)用图解法求解矩阵对策,
其中
四、(20分)
(1)某项工程由8个工序组成,各工序之间的关系为
工序a b c d e f g h 紧前工序——a a b,c b,c,d b,c,d e 试画出该工程的网络图。
(2)试计算下面工程网络图中各事项发生的最早、最迟时间及关键
线路(箭线下的数字是完成该工序的所需时间,单位:天)
五、(15分)已知线性规划问题
其对偶问题最优解为,试根据对偶理论求原问题的最优解。
六、(15分)用动态规划法求解下面问题:
七、(30分)已知线性规划问题
用单纯形法求得最优单纯形表如下,试分析在下列各种条件单独变化的情况下,最优解将如何变化。
2 -1 1 0 0
2 3 1
1
3
1
1
1
1
1
6
10 0 -3 -1 -2 0
(1)目标函数变为;
(2)约束条件右端项由变为;
(3)增加一个新的约束:
八、(20分)某地区有A、B、C三个化肥厂向甲、乙、丙、丁四个销地供应同一种化肥,已知产地产量、销地需求量和各产地运往不同销地单位运价如下表,试用最小元素法确定初始调运方案,并调整求最优运输方案
销地
产地
甲乙丙丁产量
A41241116
B2103910
C8511622需求量814121448
《运筹学》试卷二
一、(20分)已知线性规划问题:
(a)写出其对偶问题;
(b)用图解法求对偶问题的解;
(c)利用(b)的结果及对偶性质求原问题的解。
二、(20分)已知运输表如下:
销地
产地B1B2B3B4供应量
50
A 1
3 2 7 6
A 2
60
7 5 2 3
25
A 3 2
5 4 5
需求量60 40 20 15
(1)用最小元素法确定初始调运方案;
(2)确定最优运输方案及最低运费。
三、(35分)设线性规划问题
maxZ=2x1+x2+5x3+6x4
的最优单纯形表为下表所示:
x
Β
b x1x2x3x4 x 5 x6
x3
42 -2 1 0
2 -1
x4
4
0 2 0 1 -1 1
-8 -1 0 0
-4 -1
利用该表求下列问题:
(1)要使最优基保持不变,C3应控制在什么范围;
(2)要使最优基保持不变,第一个约束条件的常数项b1应控制在什么范围;
(3)当约束条件中x1的系数变为时,最优解有什么变化;
(4)如果再增加一个约束条件3x1+2x2+x3+3x4≤14,最优解有什么变化。
工
作
人员
A B C D E
甲382103
乙87297
丙64275
丁84235
戊9106910
问指派哪个人去完成哪项工作,可使总的消耗时间最小?
五、(20分)用图解法求解矩阵对象G=(S1,S2,A),其中
六、(20分)已知资料如下表:
工序紧前
工序
工序
时间(天)
工序
紧前
工序
工序
时间
(天)
工
序
紧前
工序
工序
时间(天) a
b
c
d
e
f
--
a
a
a
a
a
60
14
20
30
21
10
g
h
i
j
k
l
b,c
e,f
f
d,g
h
j,k
7
12
60
10
25
10
m
n
o
p
q
j,k
i,l
n
m
o,p
5
15
2
7
5
(1)绘制网络图;
(2)确定关键路线,求出完工工期。
七、(15分)某工厂有100台机器,拟分四个周期使用,在每一周期有两种生产
任务。
据经验,把机器x1台投入第一种生产任务,则在一个生产周期中将 x1
台机器作废;余下的机器全部投入第二种生产任务,则有机器作废。
如果干第一种生产任务每台机器可收益10,干第二种生产任务每台机器可收益7,问怎
样分配机器,使总收益最大?
《运筹学》试卷三
一、(15分)用图解法求解下列线性规划问题
二、(30分)已知线性规划问题
用单纯形法求的最终表如下表所示:
X
B
b x1x2x3 x4 x5
x26 x5 101 1 1 1 0 0 3 1 1 1 0 -3 -1 -2 0
试说明分别发生下列变化时,新的最优解是什么?
(1)目标函数变为;
(2)约束条件右端项由变为;
(3)增添一个新的约束。
三、(20分)
(1)某工程由9项工作组成,它们之间的逻辑关系为:
工
作
A B C D E F G H L
紧前工作-A-A D,L E B,F-C,H 要求画出该工程的网络图。
(2)某工程的网络图为
箭线下的数字表示完成该项工作所需天数。
试求
a)各个事项所发生的最早、最迟时间;
b)工程的关键线路。
四、(15分)写出下列线性规划问题的对偶问题
五、(20分)矩阵对策,其中局中人Ⅰ的赢得矩阵为:
试用图解法求解。
六、(25分)设有物资从A1,A2,A3处运往B1,B2,B3,B4处,各处供应量、需求量及单位运价见下表。
问应如何安排运输方案,才能使总运费最少?
销地
产地B1B2B3B4供应量
A1 3 7 6 4 5
A2 2 4 3 2 2
A3 4 3 8 5 3
需求量 3 2 3 2 10
七、(25分)甲、乙双方合资办厂,根据协议,乙方负责提供全部1000台设备,甲方承担其余义务,生产的产品双方共享。
5年合同期满后,工厂全部归甲方所有。
假定设备可在高低两种负荷下运转,在高负荷下生产,产品生产量s1与高负荷运转设备数量u1关系为s1=8u1,此时设备折损后年完好率α=0.7;在低负荷下生产,年产量s2与低负荷下设备数量u2关系为s2=5u2,此时设备折损后年完好率β=0.9。
在排除其它影响前提下,问甲方应如何安排5年的生产计划,使5年后完好设备台数500台,同时5年总产量最大?
《运筹学》试卷四
一、(10分)写出下列线性规划问题的对偶问题:
二、(20分)下表是某线性规划问题的一个单纯形表。
已知该线性规划问题的目标函数为
,约束条件均为“”型不等式,其中为松弛变量,表中解对应的目标函数值
01
1/5
1
2
-1
(1)求到的值;
(2)表中给出的解是否为最优解?
三、(10分)已知线性规划问题:
其对偶问题的最优解为,试用对偶的互补松弛性求解原问题的最优解。
四、(20分)已知整数规划问题:
0 1 1
7/22
-1/22
1/22
3/22
7/2
9/2
0 0 -28/11 -15/11
试用割平面法求整数规划问题最优整数解。
五、(20分)某项研制新产品工程的各个工序与所需时间以及它们之间的相互关系如下表:
工序紧后工序工序时间(天)
a b,c,d,e60
b L45
c f10
d g,h20
e h40
f L18
g k30
h L15
k L25
L-35
(1)绘制该工程网络图;
(2)计算时间参数,确定关键路线,求出完工工期。
六、(20分)已知运输表如下:
销地
产地B1B2B3B4供应量
A1
3 11 3 10
7
A2
1 9
2 8
4
A3 7
4 10 5
9
需求量 3 6 5 6 20
(1)用最小元素法确定初始调运方案;
(2)确定最优运输方案及最低运费;
(3)产地A1至销地B4的单位运价C14在什么范围内变化时最优调运方案不变。
七、(20分)用图解法求解矩阵对策G=(S1,S2,A),其中
八、(20分)需要指派5人去做5项工作,每人做各项工作所消耗的时间如下表
工
作
人员
A B C D E
甲4871512
乙79171410
丙691287
丁6714610
戊6912106问指派哪个人去完成哪项工作,可使总的消耗时间最小?
九、(10分)某批发站每月需某种产品100件,每次订购费为5元。
若每次货物到达后存入仓库,每件每月要付出0.4元存储费。
若假设消耗是均匀连续发生的,且不许缺货。
求最佳订货周期及最佳订购批量。