光磁共振
光磁共振

实验9.3 光磁共振实验引言为了研究物质内部不同层次的结构和性质,利用电磁波与物质的相互作用作为研究手段,最早使用的是光谱学方法,取得有关原子、分子结构的大量数据,促进了原子、分子物理学的发展,但由于仪器分辨率和谱线线宽的限制,对原子、分子等微观粒子内部更加细致的结构和性质得不到满意的结果,后来发展了波谱学的方法,直接观测在外磁场中原子精细结构能级、超精细结构能级和塞曼子能级间的微波或射频共振(通常称为磁共振)。
分辨率提高了,但是跟微波或射频共振相联系的能级间的能量差很小,由玻尔兹曼分布所造成的粒子在能级上的布居数之差也很小,而且磁偶极跃迁几率比电偶极跃迁几率小几个数量级,磁共振信号很弱,难于探测,迫切需要提高共振信号的强度。
凝聚态物质的波谱学如核磁共振、电子顺磁共振,实验样品浓度较大,加上高灵敏度的电子技术探测方法,可以获得很好的共振信号,在很多领域得到应用。
然而对于研究自由原子的气态波谱学来说,由于样品浓度低几个数量级,共振信号极弱,必须设法提高共振信号强度,才能进行实验观测。
实验目的1.掌握“光抽运—磁共振—光探测”的思想方法和实验技巧,研究原子超精细结构塞曼子能级间的射频磁共振。
2.测定铷原子Rb 87和Rb 85的参数:基态朗德因子g F 和原子核的自选量子数I 。
3.测定地磁场B 地和垂直分量B 地垂直、水平分量B 地水平及其倾角θ。
实验原理光磁共振是根据角动量守恒原理,用光学抽运来研究原子超精细结构塞曼子能级间微波或射频磁共振现象的双共振技术。
特点是兼有波谱学方法的高分辨率和光谱学方法的高探测灵敏度。
这里就光磁共振技术对气态铷原子样品探测的实验原理逐一进行介绍。
1.铷原子的超精细结构及其塞曼分裂铷是一价碱金属原子,有一个价电子,处于第5壳层,主量子数n =5,电子轨道量子数L =0,1,···,n −1=4,电子自旋S =12。
铷原子中价电子的轨道角动量P L 和自旋角动量P S 发生轨道—自旋耦合(LS 耦合),得到电子总角动量P J ,其数值P J = J J +1 ħ,J =L +S ,L +S −1,···,|L −S|。
光磁共振实验报告

近代物理实验题目光磁共振学院数理与信息工程学院班级物理071班学号07180132姓名骆宇哲指导教师斯剑宵浙江师范大学实验报告实验名称光磁共振班级物理071 姓名骆宇哲学号07180132同组人实验日期10/04/15 室温气温光磁共振摘要:光磁共振(光泵磁共振)利用光抽运(Optical PumPing)效应来研究原子超精细结构塞曼子能级间的磁共振。
研究的对象是碱金属原子铷(Rb),天然铷中含量大的同位素有两种:85Rb占72.15%,87Rb占27.85%。
气体原子塞曼子能级间的磁共振信号非常弱,用磁共振的方法难于观察。
本实验应用光抽运、光探测的方法,既保持了磁共振分辨率高的优点,同时将探测灵敏度提高了几个以至十几个数量级。
此方法一方面可用于基础物理研究,另一方面在量子频标、精确测定磁场等问题上都有很大的实际应用价值。
关键词:光磁共振光抽运塞曼能级分裂超精细结构引言:光磁共振实际上是使原子、分子的光学频率的共振与射频或微波频率的磁共振同时发生的一种双共振现象。
这种方法是卡斯特勒在巴黎提出并实现的。
由于这种方法最早实现了粒子数反转,成了发明激光器的先导,所以卡斯特勒被人们誉为“激光之父”。
光磁共振方法现已发展成为研究原子物理的一种重要的实验方法。
它大大地丰富了我们对原子能级精细结构和超精细结构、能级寿命、塞曼分裂和斯塔克分裂、原子磁矩和g因子、原子与原子间以及原子与其它物质间相互作用的了解。
利用光磁共振原理可以制成测量微弱磁场的磁强计,也可以制成高稳定度的原子频标。
实验方案:一、实验目的1.加深对原子超精细结构、光跃迁及磁共振的理解。
2.测定铷原子超精细结构塞曼子能级的郎德因子g。
二、实验仪器由主体单元(铷光谱灯、准直透镜、吸收池、聚光镜、光电探测器及亥姆霍兹线圈)、电源、辅助源、射频信号发生器、示波器组成。
三、实验内容1.仪器的调节①在装置加电之前,先进行主体单元光路的机械调整。
再用指南针确定地磁场方向,主体装置的光轴要与地磁场水平方向相平行。
光磁共振实验(revise)

h 3 g F B ( BDC BS B e⁄⁄)
(6)
4/7
光磁共振实验
图 6 测量地磁场水平分量时光磁共振信号图像
由(2)式加(6)式得:
Be⁄⁄= 三、实验仪器
h( 1 3 ) 2g F B
(7)
本实验系统由主体单元、主电源、辅助源、射频信号发生器及示波器五部分组成。见图 2:
光磁共振实验
一、实验目的 1.了解光泵磁共振的原理,观察光磁共振现象; 2. 测量铷(Rb)原子的 g F 因子(和地磁场). 二、实验原理 1. 光磁共振的概念 光磁共振,是把光频跃迁和射频磁共振跃迁结合起来的一种物理过程, 是利用光抽运效应来研究原子 超精细结构塞曼子能级间的磁共振。 2. 光抽运效应 处于磁场环境中的铷原子对 D1σ+光的吸收遵守如下的选择定则: L 1, F 1,0 , M F 1 根据这一选择定则可以画出吸收跃迁图,如图 1 所 示 5S 能级中的 8 条子能级除了 MF=+2 的子能级 外, 都可以吸收 D1σ+光而跃迁到 5P 的有关子能级, MF=+2 的子能级上的原子既不能往高能级跃迁也没 有条件往低能级跃迁,所以这些原子数是不变的; 另一方面,跃迁到高能级的原子通过自发辐射等途 径很快又跃迁回 5S 低能级,发出自然光,跃迁选 择定则是: , 相应的跃迁见图 1 的右半部分。 , 退激跃迁中有一部分的状态变成了 5S 能级中的 MF=+2 的状态(而这一部分原子是不会吸收光再跃 迁到 5P 去的,那些回到其它 7 个子能级的原子都 图 1 87Rb 原子对 D1σ+光的吸收和自发辐射跃迁 可以再吸收光重新跃迁到 5P 能级) 。这样经过若干 循环之后, 5S 态中 M F 2 子能级上的粒子数就会越积越多(而其余7个子能级上的原子数越来越少) , 即大量粒子被“抽运”到基态的 MF=+2 的子能级上,这就是光抽运效应。 各子能级上粒子数的这种不均匀分布叫做“偏极化” ,光抽运的目的就是要造成偏极化,有了偏极化就 可以在子能级之间得到较强的磁共振信号。 3. 光磁共振跃迁 持续的光抽运,样品对 D1σ+光的吸收越来越弱,透过样品的光强度逐渐增加,当 M F 2 子能级上的 粒子数达到饱和,透过样品的光强达到最大值。 在“粒子数反转”后,如果在垂直于静磁场 B 和垂直于光传播方向上加一射频振荡的磁场,并且调整 射频频率 ,使之满足 h g F B B (1) 这时将出现“射频受激辐射” ,在射频场的扰动下,处于 MF=+2 子能级上的原子会放出一个频率为 ν、 方向和偏振态与入射量子完全一样的量子而跃迁到 MF=+1 的子能级,MF=+2 上的原子数就会减少;同样, MF=+1 子能级上的原子也会通过“射频受激辐射”跃迁到 MF=0 的子能级上„如此下去,5S 态的上面 5 个子 能级很快就都有了原子,于是光吸收过程重又开始,光强测量值又降低;跃迁到 5P 态的原子在退激过程中 可以跃迁到 5S 态的最下面的 3 个子能级上,所以,用不了多久,5S 态的 8 个子能级上全有了原子。由于此 时 MF=+2 子能级上的原子不再能久留,所以,光跃迁不会造成新的“粒子数反转” 。 通过以上的分析得到了如下的结论: 处于静磁场中的铷原子对偏振光 D1σ+的吸收过程能够受到一个射频信号的控制,当没有射频信号时, 铷原子对 D1σ+光的吸收很快趋于零,而当加上一个能量等于相邻子能级的能量差的射频信号(即公式( 1)
光磁共振_精品文档

光磁共振1. 实验目的1.1. 掌握光抽运、磁共振、光检测的思想方法和实验技巧,研究原子超精细结构塞曼子能 级间的磁共振。
1.2. 测定铷同位素Rb 87和Rb 85的gF 因子,测定地磁场。
2. 实验仪器实验仪器包括:光(泵)磁共振实验仪、射频信号发生器、数字频率计、二通道型数字存储示波器、直流数字电压表等。
其中,光(泵)磁共振实验仪由主体单元和辅助源两部分组成。
主体单元是实验的核心部分,基本结构如图6-1所示。
图6-1 光(泵)磁共振实验仪主题单元示意图3. 实验原理3.1. 铷原子的超精细结构及其塞曼分裂铷是一价碱金属原子、天然铷中含有两种同位素: Rb 87和Rb 85。
根据LS 耦合产生精细结构,它们的基态是52S 1/2,最低激发态是52P 1/2和52P 3/2的双重态。
对Rb 87,52P 1/2--52S 1/2跃迁为D 1线(7948Åλ=),52P 3/2-52S 1/2为D 2线(7200Åλ=)。
铷原子具有核自旋I ,相应的核自旋角动量为PI ,核磁矩为μI 。
在弱磁场中要考虑核自旋角动量的耦合,即PI 和PJ 耦合成总角动量PF ,F 为总量子数:F=I +J .…,|I-J|。
对Rb87,I=3/2,因此Rb87的基态有两个值:F=2和F=1。
对Rb85,I=5/2,因此85Rb 的基态有F =3和F =2。
由量子数F 标定的能级称为超精细结构能级。
原子总角动量F P 与总磁矩F μ之间的关系2F FF eg P mcμ=- (6-1) 其中()()()()F F 1J J 1I I 1g =g 2F F 1F J+++-++ (6-2)当非磁性物质铷原子处于弱的外磁场B 中时,铷原子获得附加的能量F m F F F B E m g B μ=-⋅=μB (6-3)其中B μ为玻尔磁子,F m 为磁量子数,共有21F +个数值,1,...,F m F F F =--因此,对应于总量子数F 的超精细结构能级分裂成21F +个塞曼子能级。
光磁共振实验报告

光磁共振实验报告光磁共振实验报告引言:光磁共振是一种先进的科学技术,它利用光和磁场之间的相互作用,实现了对物质微观结构的研究。
本实验旨在探索光磁共振的原理和应用,通过实验数据的收集和分析,进一步了解光磁共振在材料科学和生物医学领域的潜在应用。
实验方法:本实验使用了一台先进的光磁共振仪器,结合光学和磁学的原理,对样品进行了测试。
首先,我们选择了一种具有特定光学性质的材料作为样品,然后将样品放置在仪器中心,通过调节仪器的磁场强度和频率,观察样品的光学响应。
在实验过程中,我们记录下了不同磁场强度和频率下的光学响应数据,并进行了分析。
实验结果:通过对实验数据的分析,我们发现样品在特定磁场强度和频率下,会出现明显的光学响应。
在这些条件下,样品的透射光谱会发生明显的变化,出现新的吸收峰或波谷。
这种现象表明样品的光学性质受到了磁场的调控。
进一步的实验结果显示,当磁场强度和频率达到一定值时,样品的光学响应会发生剧烈变化,出现明显的共振现象。
这种光磁共振现象是由于磁场和光场之间的相互作用导致的。
实验讨论:光磁共振的发现和研究对材料科学和生物医学领域具有重要意义。
首先,在材料科学领域,光磁共振可以用来研究材料的微观结构和性质。
通过调节磁场的强度和频率,可以实现对材料的精确控制和调控。
这对于开发新型材料和改良材料性能具有重要意义。
其次,在生物医学领域,光磁共振可以用来研究生物分子的结构和功能。
通过将生物分子与磁性纳米粒子结合,可以实现对生物分子的高灵敏度检测和精确控制,为生物医学研究和临床诊断提供了新的手段。
实验结论:本实验通过光磁共振仪器的使用,成功地观察到了样品的光学响应和光磁共振现象。
实验结果表明,光磁共振是一种重要的科学技术,具有广泛的应用前景。
光磁共振可以用来研究材料的微观结构和性质,为材料科学的发展提供新的思路和方法。
同时,光磁共振还可以用来研究生物分子的结构和功能,为生物医学研究和临床诊断提供新的手段和工具。
光磁共振实验讲义

3.观察光磁共振信号
(1)测量朗德 因子
扫场采用三角波,方向置于与地磁场水平分量相同德方位上,并使水平磁场调到某一个确定值。由磁共振条件得到:
调节射频频率 产生磁共振, 由示波器确定或由频率计给出。从上式中可以看出,如知H便可求出 ,H是使原子塞曼分裂的总磁场(包括水平场,地磁水平分量,扫场直流分量)。实验中,可以这样考虑,先确定 ( 与 对应),再拨动水平开关,使其水平磁场反向与地磁场水平分量和扫场方向相反,改变频率( ),读出频率 ( 与 对应),取共振频率 ,这样可以排除地磁场水平分量及扫场直流分量的影响。水平磁场的H数值由水平亥姆霍兹线圈参数及加其上的电压或电流来确定。测量 因子原理图如图6所示,由于Rb85和Rb87的 值不同(Rb85的 ,Rb87的 ),因此每次固定水平场调节射频频率时,会出现两次(7.35.6)所示共振波形,要加以区分,当水平场恒定时,频率高的为Rb87共振信号,频率低的为Rb85共振信号。
光磁共振讲义
一、讲课形式(时间安排)
40分钟理论及相关知识的讲述,15分钟仪器介绍及操作演示。
二、教学要求
1通过研究铷原子基态的光磁共振,加深对原子超精细结构的的 因子和测定地磁场。
三、实验原理
1.概念介绍
1)光抽运(光泵):利用光照射打破原子在所研究能级间的热平衡态,造成期望集居数差,它基于光和原子间的相互作用。
2)如何提高探测灵敏度:采用光探测,探测原子对光量子的吸收而不是采用一般的磁共振的探测方法(直接探测原子对射频量子的吸收),因光量子能量比射频量子能量高几个数量级,因而大大提高探测灵敏度。
3)光磁共振:是将光抽运、磁共振、光探测技术结合起来研究气态原子精细和超精细结构的一种实验技术,加深了人们对原子磁矩、因子、能级寿命、能级精细结构、超精细结构及原子间相互作用的认识。
光磁共振
102实验二十四 光 磁 共 振光抽运(Optical Pumping ,也称光泵)由克斯特勒(A. Kastler )等人于本世纪五十年代初提出。
光磁共振是指通过“光抽运一磁共振一光探测”来研究原子细微结构的一种实验方法,它解诀了光谱方法及核磁共振、电子顺磁共振方法不能满意解决的微观粒子内部细微结构和变化的许多问题。
光磁共振光探测技术是原子结构研究的重要手段,在激光、电子频率标准和精测弱磁场等方面也有重要应用。
【实验目的】1.了解光磁共振的基本原理和实验方法。
2.观察铷原于基态塞曼光抽运信号和磁共振信号,测定g 因子值。
3.运用光磁共振方法测量地磁场。
【实验原理】1.铷原子能级的超精细结构及塞曼分裂原子的核磁矩与电子磁矩的相互作用会产生原子能级的超精细结构。
而原子的总磁矩与磁场的相互作用, 使超精细结构进一步分裂(塞曼效应)。
我们知道,在磁场中,原子总磁矩与磁场B 的相互作用能为B m g B E B F F F μμ=⨯-=→→(1)式中F m 一原子总角动量J 在磁场方向的投影,称为磁量子数。
共有2F +1个值,F 为原子总量子数:μB 一玻尔磁子,为一物理常数;B 一磁场的磁通密度,F g 一朗德因子,其值在理论上为)1(2)1()1()1(++-+++=F F I I J J F F g g JF)1(2)1()1()1(1++++-++=J J S S L L J J g J(S 一电子自旋量了数:L 一电子轨道量子数;I 一原子核自旋量了数;J 一L 与S 的合成量子数,从(1)式可知,相邻两塞曼了能级间的能量差为B g E B F μ=∆ (2)铷(Rb )属碱金属,天然铷同位素有两种, 85Rb 占72.15%, 87Rb 占27.85%,原子能级基态是2/125S (,对应L =0,S =1/2,J=1/2),最低激发态2/125P 与2/325P 是的双重态(对应L=1,S =1/2,J=1/2,3/2),基态2/125S 跃迁到最低激发态2/125P 与2/325P 的D 1 线波长是794.8nm ,D 2 线波长是780.0nm ,以87Rb 为例,图1表示它在磁场中的精细结构及塞曼分裂。
光磁共振
光磁共振物理041班04180132 吕永平摘要:掌握观测光抽运效应的条件和方法,观察和测量共振信号的扫场法,超精细结构的理解,掌握以光抽运为基础的光检测磁共振方法,进而测定铷原子超精细结构塞曼能级的朗德因子。
引言:光磁共振由法国物理学家Kastler在1950年首创的。
它的基本思想是利用光的抽运效应造成原子基态Zeeman能级上粒子布居的偏极化,即偏离热平衡时所遵循的Boltzmann分布。
然后利用磁共振效应对这种偏极化布局进行扰动,使光的抽运速率变化。
通过对抽运速率变化的探测来研究原子塞曼能级超精细结构。
把光频跃迁和射频磁共振跃迁结合起来,由于气体原子塞曼子能级间的磁共振信号非常弱,用磁共振的方法难于观察。
本实验中应用了光探测的方法,既保持了磁共振分辨率高的优点,同时将探测灵敏度提高了几个以至十几个数量级。
此方法可用于基础物理研究,在量子频标、精确测定磁场等问题上也都有很大的实际应用价值。
由于光磁共振的应用价值,Kastler获得了1966年的诺贝尔奖。
实验方案:实验仪器:本实验总体系统由光泵磁共振实验仪主体单元、辅助源、射频信号发生器及示波器四部分组成。
下此图为实验装置示意图:实验原理:光抽运(光泵):利用光照射打破原子在所研究能级间的热平衡态,造成期望集居数差,它基于光和原子间的相互作用。
采用光探测,探测原子对光量子的吸收而不是采用一般的磁共振的探测方法(直接探测原子对射频量子的吸收),因光量子能量比射频量子能量高几个数量级,因而大大提高探测灵敏度。
光磁共振:是将光抽运、磁共振、光探测技术结合起来研究气态原子精细和超精细结构的一种实验技术,加深了人们对原子磁矩、 因子、能级寿命、能级精细结构、超精细结构及原子间相互作用的认识。
铷原子的能级分裂(精细结构的形成)由电子的自旋与轨道运动相互作用(L-S 耦合)发生能级分裂,用J 表示电子总角动量量子数,对于基态,L=0,S=1/2,得J=1/2,标记为;对于最低激发态,L=1,S=1/2,得J=3/2,1/2,标记为,如右图所示,形成两条谱线。
对光磁共振实验中测量gf值的方法的评述和改进
对光磁共振实验中测量gf值的方法的评述和改进光磁共振(EPR)是一种非常重要的物理技术,可以专门用来研究电子态的本征属性。
其中,对电子本征态的关键参数之一是“g因子”,即gf值,这个参数表示电子态具有多大的磁矩。
因此,测量和准确地确定gf值非常重要,有助于我们更好地理解电子态的本征态。
传统的gf测量方法是基于大型实验装置的,它仅能在实验室范围内完成。
此外,在传统的测量方法中,由于涉及到大型实验装置,操作起来非常复杂,耗时耗力,并且容易受到环境因素的干扰。
此外,因为需要大量实验运行,成本也是一个重大问题。
近年来,随着科学技术的发展,新的测量gf值的方法出现了。
这种新的方法以激光技术和半导体技术为基础,可以节省成本,操作更加方便,并且可以在非实验室环境中完成测量。
新技术的出现也改变了测量gf值的方法,主要是以激光发射技术和半导体技术为基础,采用复杂的软件测量策略,实现定量测量,有助于减小测量过程中的误差,提高测量灵敏度。
另外,利用光学探测技术,可以在更低的温度环境下完成测量,从而减少由高温环境引入的不确定性,同时,利用激光器可以获得更准确的测量结果。
此外,利用高光谱结构可以使测量过程更加精准,这样就可以获得更准确的测量结果。
此外,改进的gf测量方法也改变了实验所需的时间,有助于改善实验的效率。
新的技术还有助于节约环境资源,比如减少碳排放,减少实验过程中所消耗的能源。
总之,新的技术出现,使得测量gf值的方法得以改进,不仅有助于提高精度,提高测量效率,而且有助于节约环境资源,减少能源消耗。
未来,还有很多可以改进的地方,如研究较低温度和更精确的测量系统,以便在更宽的温度范围内准确测量gf值。
综上所述,在光磁共振实验中测量gf值的方法已经有了很大的改进,采用更加复杂的软件技术和光学探测技术,实现了更加准确、高效、环保的测量。
未来,我们有期待地等待着更多的技术和发展,以便更好地理解电子态的本征态。
光磁共振实验原理
光磁共振实验原理一.实验目的1. 掌握光抽运—磁共振的原理和实验方法。
2. 研究原子超精细结构塞曼子能级间的磁共振。
3. 测定铷同位素87Rb 和85Rb 的g F 因子。
4. 测定地磁场。
二.实验原理光抽运或称光泵技术巧妙地将光抽运,磁共振和光探测技术综合起来,用以研究汽态原子的精细和超精细结构。
克服了用普通的方法对气态样品观测时,共振信号非常微弱的困难。
用这个方法可以使磁共振分辨率提高到1110T -。
实验是以天然37号元素铷(87Rb 和85Rb )为样品,核外电子状态为1s 22s 22p 63s 23p 63d 104s 24p 65s 1,研究碱金属铷原子的基态52S 1/2磁共振。
加外磁场使原子能级分裂,光照使原子从基态跃迁激发态,特别是从52S 1/2态向52P 1/2态跃迁,跃迁过程吸收光子因而检测到的光信号微弱,当偏极化饱和时跃迁吸收停止,检测到的光信号又增强到光源的光强。
1. 铷(Rb )原子能级的超精细结构和塞曼分裂铷的两种同位数87Rb 和85Rb 的核自旋量子数I 分别是3/2和5/2。
原子能级的超精细结构是原子的核磁矩和电子磁矩的耦合作用而形成的。
当原子处于弱磁场B 中时,原子的总磁矩和外磁场发生作用,造成能级分裂形成等间距的塞曼子能级,其能量为(μB =9.274×10-24Joule/特斯拉,真空磁导率μ0=4π×10-7 Second*Volt/(Ampere*Meter)):;,1,.......,1,...||;,1,...||F F F B F E B g m B m F F F F I J I J I J J L S L S L S μμ=-⋅==--=++--=++-- (1) (1)(1)(1)(1)(1)(1)1,2(1)2(1)J F J J J L L S S F F J J I I g g g J J F F +-++++++-+=+=++ (2) 其中F 为原子的总角动量量子数,S 为外层电子自旋角动量量子数,L 为外层电子轨道角动量量子数,J 为核外外层电子轨道角动量L 与电子自旋角动量S 耦合L+S 的量子数,原子感受到的外磁场B 可以分解为水平磁场B ∥和垂直磁场B ┴,水平磁场B ∥包括地磁场B E 、水平磁场B h 、水平扫描磁场B s 、垂直磁场B v ,即B ┴=B v +B E ┴, B ∥=B h +B s +B E ∥,如果选择垂直场电流方向和电流大小,使外加垂直磁场正好抵消地磁场垂直分量,即-B v +B E ┴=0,则铷原子感受到的外磁场只有水平分量B ∥=B h +B s +B E ∥,由于磁场存在形成的相邻塞曼能级能量差为(最小可取△m F =1):∆E=△m F g F μB B =△m F g F μB (B h +B s +B E ∥) (3) 原子状态可用2S+1X J 表示,而且,当L={0,1,2,3…}时,X={S,P,D,F …}. 铷原子的基态为52S 1/2,即L=0,S=1/2,J=1/2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、实验目的1、熟悉光磁共振原理及仪器使用;2、观察光抽运现象,测量朗德因子值;3、培养实验报告规范与处理能力,作图作表与数据处理能力;4、基本实验的测试能力。
二、实验原理1、铷原子基态和最低激发态能级.本实验的研究对象为铷原子,天然铷有两种同位素; 85Rb(占72.15%)和87Rb(占27.85%).选用天然铷作样品,既可避免使用昂贵的单一同位素,又可在一个样品上观察到两种原子的超精细结构塞曼子能级跃迁的磁共振信号.铷原子基态和最低激发态的能级结构如图9.4.1所示.铷原子核自旋不为零,两个同位素的核自旋量子数I也不相同.87Rb的I=3 ⁄ 2,85Rb的I=5 ⁄ 2.核自旋角动量与电子总角动量耦合,得到原子的总角动量.由于I J耦合,原子总角动量的量子数F=I+J,I+J-1,……,|I-J|.故87Rb基态的F=1和2;85Rb基态的F=2和3。
.这些由F量子数标定的能级称为超精细结构.设原子的总角动量所对应的原子总磁矩为μF,μF与外磁场B0相互作用的能量为E=-μF·B0=gF mF μF B0 (9.4.1)这正是超精细塞曼子能级的能量.式中玻尔磁子μB=9.2741×10-24J·T -1 ,朗德因子gF= gF [F(F+1)+J(J+1)-I(I+1)] ⁄ 2F(F+1)(9.4.2)其中gJ= 1+[J(J+1)-L(L+1)+S(S+1)] ⁄ 2J(J+1)(9.4.3)上面两个式子是由量子理论导出的,把相应的量子数代入很容易求得具体数值.由式(9.4.1)可知,相邻塞曼子能级之间的能量差ΔE=gF μB B0 ,(9.4.4)式中ΔE与B0成正比关系,在弱磁场B0=0,则塞曼子能级简并为超精细结构能级.2.光抽运效应.在热平衡状态下,各能级的粒子数遵从玻耳兹曼分布,其分布规律由式(9.0.12)表示.由于超精细塞曼子能级间的能量差ΔE很小,可近似地认为这些子能级上的粒子数是相等的.这就很不利于观测这些子能级之间的磁共振现象.为此,卡斯特勒提出光抽运方法,即用圆偏振光激发原子.使原子能级的粒子数分布产生重大改变.现在以铷灯作光源.由图9.4.1可见,铷原子由5 2P1⁄2→5 2S1⁄2的跃迁产生D1线,波长为0.7948μm;由5 2P3⁄2→5 2S1⁄2的跃迁产生D2线,波长为o.7800μm.这两条谱线在铷灯光谱中特别强,铷原子将会吸收它们的能量而引起相反方向的跃迁过程.由理论推导可得跃迁的选择定则为ΔL=±1 ΔF=0,±1 ΔmF=±1 (9.4.5)所以,当入射光为D1σ﹢光,作用87Rb时,由于87Rb的5 2S1⁄2态和5 2P1⁄2态的磁量子数mF的最大值均为±2,而σ﹢光角动量为ħ只能引起ΔmF =+1的跃迁,故D1σ﹢光只能把基态中除mF=+2以外各子能级上的原子激发到5 2P1⁄2的相应子能级上,如图9.4.2(a)所示.图9.4.2(b)表示跃迁到5 2P1⁄2上的原子经过大约10-8s后,通过自发辐射以及无辐射跃迁两种过程,以相等概率回到基态5 2S1⁄2各个子能级上.这样,经过多次循环之后,基态mF=+2子能级上的粒子数就会大大增加,即基态其他能级上大量的粒子被“抽运”到基态mF=+2子能级上.这就是光抽运效应.同理,如果用D1σ-光照射,则大量粒子将被“抽运”到mF=-2子能级上.但是,π光照射是不可能发生光抽运效应的.对于铷85Rb,若用D1σ+光照射,粒子将会“抽运”到mF=+3子能级上.3.弛豫过程.光抽运使得原子系统能级分布偏极化而处于非平衡状态时,将全通过弛缘过程回复到热平衡分布状态.弛豫过程的机制比较复杂,但在光抽运的情况下,铷原子与容器壁碰撞是失去偏极化的主要原因.通常在铷样品泡内充入氮、氖等作为缓冲气体,其密度比样品泡中铷蒸气的原子密度约大6个数量级,可大大减少铷原子与容器壁碰撞的机会.缓冲气体的分子磁矩非常小,可认为它们与铷原子碰撞时不影响这些原子在磁能级上的分布,从而能保持铷原子系统有较高的偏极化程度.但缓冲气体不可能使铷原子能级之间的跃迁完全被抑制,故光抽运也就不可能把基态上的原子全部“抽运”到特定的子能级上.由实验得知.样品泡中充入缓冲气体后,弛豫时间为10-2s数量级.在一般情况下,光抽运造成塞曼子能级之间的粒子差数,比玻耳兹曼分布造成的差数大几个数量级.不过得注意的是,温度高低对铷原子系统的弛豫过程有很大的影响.温度升高则铷蒸气的原子密度增加,铷原子与容器壁之间以及铷原子相互之间的碰撞都增加,将导致铷原子能级分布的偏极化减少;而温度过低时铷蒸气的原子数目太少,则抽运信号的幅度必然很小.因此,实验时把样品泡的温度要控制在40~50℃之间.1.磁共振与光检测.式(9.4.4)给出了铷原子在弱磁场B0作用下相邻塞曼子能级的能量差.要实现这些子能级的共振跃迁,还必须在垂直于恒定磁场B0的方向上施加一射频场B1作用于样品.当射频场的频率ν满足共振条件 h ν=ΔE = gF μB B0 . (9.4.6)时,便发生基态超精细塞曼子能级之间的共振跃迁现象.若作用在样品上的是D1σ+光,对于87Rb来说.是由mF=+2跃迁到mF=+1子能级.接着也相继有mF=+1的原子跃迁到mF=0,…….与此同时,光抽运又把基态中非mF=+2的原子抽运引mF=+2子能级上.因此,兴振跃迁与光抽运将会达到一个新的动态平衡.发生磁共振时,处于基态mF=+2子能级上的原子数小于未发生磁共振时的原子数.也就是说,发生磁共振时.能级分布布的偏极化程度降低了,从而必然会增大对D1σ+光的吸收,如图9.4.3所示.三、实验仪器以及实验内容实验装置的方框图如图9.4.4所示,由光泵磁振实验装置的主体单元及其辅助设备(包括辅助源,射频信号发生器,频率计和示波器等)组成.1、观察光抽运信号。
2、分析87Rb和85Rb的共振信号3、由于本实验是在弱磁场作用下的磁共振实验,地磁场水平分量和扫场直流分量的影响不可忽略,由施加到水平轴向的亥姆霍兹线圈上的电压V来求得的磁场值并不完全等于共振磁场B0,这样求得的gF值必然存在着系统误差,需要采取有效的方法来消除.通常选用下述方法:使施加的水平恒定磁场换向,分别测出这两个方向的共振频率ν'和ν",再取平均值ν=(ν'+ν")/2作为该恒定磁场相应的共振顿率,以抵销地磁水平分量扣扫场直流分量的影响。
四、实验数据处理数据记录:表中最大共振幅度的频率分别是583,314.6,354.9,432.6kHz 为85Rb 的共振信号水平:0.207A 垂直:0.013V 亥姆霍兹线圈参数: 共振信号对准波谷时,求得朗德因子g 及其相对误差: h ν=μB g F B B=B 水平+B 水平扫场+B 水平地磁场当共振信号对准波谷时,分别测得改变方向的2个频率ν谷1=432.6kHz 和ν谷2=314.6 kHz ,水平地磁场方向与水平磁场方向一致和相反时合磁场分别为B 1=B 水平+B 地水平,B 2=B 水平-B 地水平则h(ν谷1+ν谷2)= μB g F (B 1+B 2)h(ν谷1+ν谷2)/2= μB g F B 水平ν=(ν谷1+ν谷2)/2g F =h ν/μB B则综上公式代入数据可计算得g F=0.307 而g F理论= hν理论/μB B=0.334相对误差为Δε=8%共振信号对准波峰时,求得朗德因子g及其相对误差:当共振信号对准波峰时,分别测得改变方向的2个频率ν峰1=583kHz 和ν峰2=354.9 kHz,水平地磁场方向与水平磁场方向一致和相反时合磁场分别为B3=B水平+B地水平,B4=B水平-B地水平则hν峰1=μB g F(B3+B扫) hν峰2=μB g F(B4-B扫)h(ν峰1+ν峰2)= μB g F(B3+B4) h(ν峰1+ν峰2)/2= μB g F B水平ν=(ν峰1+ν峰2)/2g F=hν/μB B则综上公式代入数据可计算得g F=0.306 而g F理论= hν理论/μB B=0.334相对误差为Δε=8.4%五、思考题1.为什么要滤去D2光?用π光为什么不能实现光抽运?用D1σ-光照射85Rb将如何?答:滤去D2光的原因是它不利于D1光的搬运,跃迁到52P1/2上的原子通过自发辐射以及无辐射跃迁两种过程回到基态52S1/2各个子能级上,经过多次循环之后,基态其他能级上大量的例子被搬运到基态m F=+2子能级上,为此光抽运,而当用π光时,由于△m F=0,则不产生光抽运效应,且此时85Rb原子对光有强的吸收,而用D1σ-光照射时,σ-光有与σ+光同样的作用,不过它是将大量粒子抽运到m F=-2的能级上。
2.铷原子超精细结构塞曼子能级间的磁共振信号是用什么方法检测的?实验过程中如何区分87Rb和85Rb的磁共振信号?答:磁共振信号是通过测量透射光强的变化得到的,光检测罚利用磁共振时伴随着σ+光强的变化,巧妙的将一个频率较低的射频两字转换成一个射频较高的光频量子的变化,使观察信号的功率提高了7-8个数量级。
当水平场不变时,频率高的为87Rb共振信号,频率较低的为85Rb共振信号。
3.试计算出87Rb和 85Rb的g F因子理论值.解:87Rb:ν=0.7006 x 104B o85Rb:ν=0.4761 x 104Bo则87Rb: g F=hν/μB B o=(6.626 x 10-34x 0.7006 x 104x 106)/(9.2741 x 10-24 )= 0.50185Rb:gν/μB B o=(6.626 x 10-34x 0.4761 x 104x 106)/(9.2741 F=hx 10-24 )= 0.5014.你测定g F因子的方法是否受到地磁场和扫场直流分量的影响?为什么?答:不受影响。
(1)当共振信号对准波谷时,分别侧得改变方向的2个频率为ν谷1和ν谷2水平地磁场方向与水平磁场方向一致和相反时合磁场分别为B1=B水平+B地水平,B2=B水平-B地水平则h(ν谷1+ν谷2)= μB g F(B1+B2) h(ν谷1+ν谷2)/2= μB g F B水平(2)当共振信号对准波峰时,分别侧得改变方向的2个频率ν峰1和ν峰2,水平地磁场方向与水平磁场方向一致和相反时合磁场分别为B3=B水平+B地水平,B4=B水平-B地水平则hν峰1=μB g F(B3+B扫) hν峰2=μB g F(B4-B扫)h(ν峰1+ν峰2)= μB g F(B3+B4) h(ν峰1+ν峰2)/2= μB g F B水平综上所诉,测出两个方向的共振频率ν’和ν”,再取ν=(ν’+ν”)/2作为相应的共振频率,以消除地磁场和扫场直流分量的影响。