(完整word版)动能定理和动量定理专题讲解
第09讲 动量定理和动能定理

2008决胜高考 专题三 动量与能量第09讲 动量定理和动能定理1.考点分析:动量定理、动能定理是近几年高考中的热点中的热点。
高考对动量定理和动能定理的运动考查频率很高。
2.考查类型说明:动量定理单独应用多以选择题为主,动量定理、动能定理综合应用主要在计算题中。
3. 考查趋势预测:动量定理、动能定理综合应用依然为命题热点。
解决这类问题,一是强调分清两定理的应用条件;二是要理清问题的物理情境;有针对的单独或综合应用往往会较顺利的解决问题。
【金题演练】1. 对于任何一个质量不变的物体,下列说法正确的是( )A. 物体的动量发生变化,其动能一定变化B. 物体的动量发生变化,其动能不一定变化C. 物体的动能发生变化,其动量一定变化D. 物体的动能发生变化,其动量不一定变化 1、解析:根据动能公式E mv k =122和动量公式p mv=知E p mk =22/或p mE k =2。
上述两个公式只是动能E k 和动量p 的量值关系,而动能和动量的显著差别在于动能E k 是标量,而动量p 是矢量,要注意其方向性。
答案:BC当质量不变的物体的动量发生变化时,可以是速度的大小发生变化,也可以只是速度的方向发生变化,还可以是速度的大小和方向都发生变化。
当只有物体的速度方向发生变化而速度大小不变时,物体的动量(矢量)要变化,但动能(标量)并不发生变化。
例如我们熟悉的匀速圆周运动,所以可得选项A 错误,而选项B 正确。
当质量不变的物体的动量发生变化时,必定是其速度的大小发生了变化,而无论其速度方向是否变化,所以物体的动量也必定发生变化,故选项C 正确,选项D 错误。
2. 一位质量为m 的运动员从下蹲状态向上起跳,经Δt 时间,身体伸直并刚好离开地面,速度为v 。
在此过程中,A .地面对他的冲量为mv +mg Δt ,地面对他做的功为21mv 2B .地面对他的冲量为mv +mg Δt ,地面对他做的功为零C .地面对他的冲量为mv ,地面对他做的功为1mv 2一、考纲指津二、三年高考D .地面对他的冲量为mv -mg Δt ,地面对他做的功为零2、解析:设地面对运动员的作用力为F ,则由动量定理得:(F -mg )Δt =F Δt =mv +mg Δt ;运动员从下蹲状态到身体刚好伸直离开地面,地面对运动员做功为零,这是因为地面对人的作用力沿力的方向没有位移。
(完整word版)高考物理动量定理和动能定理综合应用

图1高考物理动量定理和动能定理综合应用1. 动能定理和动量定理不仅适用于质点在恒力作用下的运动,也适用于质点在变力作用下的运动,这时两个定理表达式中的力均指平均力,但两个定理中的平均力的含义不同,在动量定理中的平均力F 1是指合力对时间的平均值,动能定理中的平均力F 2是合力指对位移的平均值。
(1)质量为1.0kg 的物块,受变力作用下由静止开始沿直线运动,在2.0s 的时间内运动了2.5m 的位移,速度达到了2.0m/s 。
分别应用动量定理和动能定理求出平均力F 1和F 2的值。
(2)如图1所示,质量为m 的物块,在外力作用下沿直线运动,速度由v 0变化到v 时,经历的时间为t ,发生的位移为x 。
分析说明物体的平均速度v 与v 0、v 满足什么条件时,F 1和F 2是相等的。
(3)质量为m 的物块,在如图2所示的合力作用下,以某一初速度沿x 轴运动,当由位置x =0运动至x =A 处时,速度恰好为0,此过程中经历的时间为2mt kπ=程中物块所受合力对时间t 的平均值。
2.对于一些变化的物理量,平均值是衡量该物理量大小的重要的参数。
比如在以弹簧振子为例的简谐运动中,弹簧弹力提供回复力,该力随着时间和位移的变化是周期性变化的,该力在时间上和位移上存在两个不同的平均值。
弹力在某段时间内的冲量等于弹力在该时间内的平均力乘以该时间段;弹力在某段位移内做的功等于弹力在该位移内的平均值乘以该段位移。
如图1所示,光滑的水平面上,一根轻质弹簧一端和竖直墙面相连,另一端和可视为质点的质量为m 的物块相连,已知弹簧的劲度系数为k ,O 点为弹簧的原长,重力加速度为g 。
该弹簧振子的振幅为A 。
(1)①求出从O 点到B 点的过程中弹簧弹力做的功,以及该过程中弹力关于位移x 的平均值的大小F x ̅;②弹簧振子的周期公式为2π√mk ,求从O 点到B 点的过程中弹簧弹力的冲量以及该过程中弹力关于时间t 的平均值的大小F t ̅;(2)如图2所示,阻值忽略不计,间距为l 的两金属导轨MN 、PQ 平行固定在水平桌面上,导轨左端连接阻值为R 的电阻,一阻值为r 质量为m 的金属棒ab 跨在金属导轨上,与导轨接触良好,动摩擦因数为μ,磁感应强度为B 的磁场垂直于导轨平面向里,给金属棒一水平向右的初速度v 0,金属棒运动一段时间后静止,水平位移为x ,导轨足够长,求整个运动过程中,安培力关于时间的平均值的大小F t ̅。
动能定理与动量定理

动能定理的数学表达式:W总=1/2mv22-_1/2mv12动能定理只适用于宏观低速的情况,而动量定理可适用于世界上任何情况。
(前提是系统中外力之和为0)
1) 动能定义:物体由于运动而具有的能量. 用Ek表示
表达式Ek=能是标量也是过程量
单位:焦耳(J) 1kg*m^2/s^2 = 1J
(2) 动能定理内容:合外力做的功等于物体动能的变化
表达式W合=ΔEk=1/2mv^2-1/2mv0^2
适用范围:恒力做功,变力做功,分段做功,全程做功
动量定理与动能定理的区别:
动量定理Ft=mv2-mv1反映了力对时间的累积效应,是力在时间上的积分。
动能定理Fs=1/2mv^2-1/2mv0^2反映了力对空间的累积效应,是力在空间上的积分。
动能定理和动量定理专题讲解

动量定理和动能定理重点难点1.动量定理:是一个矢量关系式.先选定一个正方向,一般选初速度方向为正方向.在曲线运动中,动量的变化△P 也是一个矢量,在匀变速曲线运动中(如平抛运动),动量变化的方向即合外力的方向.2.动能定理:是计算力对物体做的总功,可以先分别计算各个力对物体所做的功,再求这些功的代数和,即W 总 = W 1+W 2+…+W n ;也可以将物体所受的各力合成求合力,再求合力所做的功.但第二种方法只适合于各力为恒力的情形.3.说明:应用这两个定理时,都涉及到初、末状状态的选定,一般应通过运动过程的分析来定初、末状态.初、末状态的动量和动能都涉及到速度,一定要注意我们现阶段是在地面参考系中来应用这两个定理,所以速度都必须是对地面的速度.规律方法【例1】05如图所示,质量m A 为4.0kg 的木板A 放在水平面C 上,木板与水平面间的动摩擦因数μ为0.24,木板右端放着质量m B 为1.0kg 的小物块B (视为质点),它们均处于静止状态.木板突然受到水平向右的12N·s 的瞬时冲量作用开始运动,当小物块滑离木板时,木板的动能E KA 为8.0J ,小物块的动能E KB 为0.50J ,重力加速度取10m/s 2,求:(1)瞬时冲量作用结束时木板的速度υ0;(2)木板的长度L .【解析】(1)在瞬时冲量的作用时,木板A 受水平面和小物块B 的摩擦力的冲量均可以忽略.取水平向右为正方向,对A 由动量定理,有:I = m A υ0 代入数据得:υ0 = 3.0m/s(2)设A 对B 、B 对A 、C 对A 的滑动摩擦力大小分别为F fAB 、F fBA 、F fCA ,B 在A 上滑行的时间为t ,B 离开A 时A 的速度为υA ,B 的速度为υB .A 、B 对C 位移为s A 、s B .对A 由动量定理有: —(F fBA +F fCA )t = m A υA -m A υ0对B 由动理定理有: F fAB t = m B υB其中由牛顿第三定律可得F fBA = F fAB ,另F fCA = μ(m A +m B )g对A 由动能定理有: —(F fBA +F fCA )s A = 1/2m A υ-1/2m A υf (1)2A o (2)f (1)20o (2)o (2)对B 由动能定理有: F fA Bf s B = 1/2m B υf (1)2B o (2)根据动量与动能之间的关系有: m A υA = ,m B υB = KA A E m 2r (2mAEKA )KB B E m 2r (2mBEKB )木板A的长度即B 相对A 滑动距离的大小,故L = s A -s B ,代入放数据由以上各式可得L = 0.50m .训练题 05质量为m = 1kg 的小木块(可看在质点),放在质量为M = 5kg 的长木板的左端,如图所示.长木板放在光滑水平桌面上.小木块与长木板间的动摩擦因数μ = 0.1,长木板的长度l = 2m .系统处于静止状态.现使小木块从长木板右端脱离出来,可采用下列两种方法:(g 取10m/s 2)(1)给小木块施加水平向右的恒定外力F 作用时间t = 2s ,则F 至少多大?(2)给小木块一个水平向右的瞬时冲量I ,则冲量I 至少是多大?答案:(1)F=1.85N(2)I=6.94NS【例2】在一次抗洪抢险活动中,解放军某部队用直升飞机抢救一重要落水物体,静止在空中的直升飞机上的电动机通过悬绳将物体从离飞机90m 处的洪水中吊到机舱里.已知物体的质量为80kg ,吊绳的拉力不能超过1200N ,电动机的最大输出功率为12k W ,为尽快把物体安全救起,操作人员采取的办法是,先让吊绳以最大拉力工作一段时间,而后电动机又以最大功率工作,当物体到达机舱前已达到最大速度.(g 取10m/s 2)求:(1)落水物体运动的最大速度;(2)这一过程所用的时间.【解析】先让吊绳以最大拉力F Tm = 1200N 工作时,物体上升的加速度为a , 由牛顿第二定律有:a =m T F mg m-,代入数据得a = 5m/s 2f (FT m -mg )当吊绳拉力功率达到电动机最大功率P m = 12kW 时,物体速度为υ,由P m = T m υ,得υ = 10m /s .物体这段匀加速运动时间t 1 == 2s ,位移s 1 = 1/2at = 10m .aυf (v )f (1)21o (2)此后功率不变,当吊绳拉力F T = mg 时,物体达最大速度υm = = 15m/s .mgP m f (Pm )这段以恒定功率提升物体的时间设为t 2,由功能定理有:Pt 2-mg (h -s 1) =mυ-mυ221f (1)2m o (2)21f (1)代入数据得t 2 = 5.75s ,故物体上升的总时间为t = t 1+t 2 = 7.75s .即落水物体运动的最大速度为15m/s ,整个运动过程历时7.75s .训练题一辆汽车质量为m ,由静止开始运动,沿水平地面行驶s 后,达到最大速度υm ,设汽车的牵引力功率不变,阻力是车重的k 倍,求:(1)汽车牵引力的功率;(2)汽车从静止到匀速运动的时间. 答案:(1)P=kmgv m(2)t=(v m 2+2kgs )/2kgv m【例3】05一个带电量为-q 的液滴,从O 点以速度υ射入匀强电场中,υ的方向与电场方向成θ角,已知油滴的质量为m ,测得油滴达到运动轨道的最高点时,速度的大小为υ,求:(1)最高点的位置可能在O 点上方的哪一侧? (2)电场强度为多大?(3)最高点处(设为N )与O 点电势差绝对值为多大?【解析】(1)带电液油受重力mg 和水平向左的电场力qE ,在水平方向做匀变速直线运动,在竖直方向也为匀变速直线运动,合运动为匀变速曲线运动.由动能定理有:W G +W 电 = △E K ,而△E K = 0重力做负功,W G <0,故必有W 电>0,即电场力做正功,故最高点位置一定在O 点左侧.(2)从O 点到最高点运动过程中,运动过程历时为t ,由动量定理:在水平方向取向右为正方向,有:-qEt = m (-υ)-mυcos θ在竖直方向取向上为正方向,有:-mgt = 0-mυsin θ 上两式相比得,故电场强度为E = θθsin cos 1+=mg qE f (qE )f (1+cos θ)θθsin )cos 1(q mg +f (mg (1+cos θ))(3)竖直方向液滴初速度为υ1 = υsinθ,加速度为重力加速度g ,故到达最高点时上升的最大高度为h ,则h =2221sin 22ggυυθ=f (v \o (2,1))f (v 2sin 2θ)从进入点O 到最高点N 由动能定理有qU -mgh = △E K = 0,代入h 值得U =22sin 2m qυθf (mv 2sin 2θ)【例4】一封闭的弯曲的玻璃管处于竖直平面内,其中充满某种液体,内有一密度为液体密度一半的木块,从管的A 端由静止开始运动,木块和管壁间动摩擦因数μ = 0.5,管两臂长AB = BC = L = 2m ,顶端B 处为一小段光滑圆弧,两臂与水平面成α = 37°角,如图所示.求:(1)木块从A 到达B 时的速率;(2)木块从开始运动到最终静止经过的路程.【解析】木块受四个力作用,如图所示,其中重力和浮力的合力竖直向上,大小为F = F 浮-mg ,而F 浮 = ρ液Vg = 2ρ木Vg = 2mg ,故F = mg .在垂直于管壁方向有:F N = F cosα = mg cosα,在平行管方向受滑动摩擦力F f = μN = μmg cos θ,比较可知,F sinα= mg sinα = 0.6mg ,F f = 0.4mg ,Fsin α>F f .故木块从A 到B 做匀加速运动,滑过B 后F 的分布和滑动摩擦力均为阻力,做匀减速运动,未到C 之前速度即已为零,以后将在B 两侧管间来回运动,但离B 点距离越来越近,最终只能静止在B 处.(1)木块从A 到B 过程中,由动能定理有: FL sin α-F f L = 1/2mυf (1)2B o (2)代入F 、F f 各量得υB = = 2 = 2.83m/s.)cos (sin 2αμα-gL r(2gL(sin α-μcos α))2r (2)(2)木块从开始运动到最终静止,运动的路程设为s ,由动能定理有: FL sin α-F f s = △E K = 0 代入各量得s == 3mααcos sin m L f (Lsin α)训练题质量为2kg 的小球以4m/s 的初速度由倾角为30°斜面底端沿斜面向上滑行,若上滑时的最大距离为1m ,则小球滑回到出发点时动能为多少?(取g = 10m/s 2) 答案:E K =4J能力训练1. 05在北戴河旅游景点之一的北戴河滑沙场有两个坡度不同的滑道AB 和AB ′(均可看作斜面).甲、乙两名旅游者分别乘坐两个完全相同的滑沙撬从A 点由静止开始分别沿AB 和AB ′滑下,最后都停止在水平沙面BC 上,如图所示.设滑沙撬和沙面间的动摩擦因数处处相同,斜面与水平面连接处均可认为是圆滑时,滑沙者保持一定的姿势在滑沙撬上不动.则下列说法中正确的是(ABD)A .甲在B 点速率一定大于乙在B ′点的速率 B .甲滑行的总路程一定大于乙滑行的总路程C .甲全部滑行的水平位移一定大于乙全部滑行的水平位移D .甲在B 点的动能一定大于乙在B ′的动能 2.05下列说法正确的是(BCD)A .一质点受两个力的作用而处于平衡状态(静止或匀速直线运动),则这两个力在同一作用时间内的冲量一定相同B .一质点受两个力的作用而处于平衡状态,则这两个力在同一时间内做的功都为零,或者一个做正功,一个做负功,且功的绝对值相等C .在同一时间内作用力和反作用力的冲量一定大小相等,方向相反D .在同一时间内作用力和反作用力有可能都做正功3.05质量分别为m 1和m 2的两个物体(m 1>m 2),在光滑的水平面上沿同方向运动,具有相同的初动能.与运动方向相同的水平力F 分别作用在这两个物体上,经过相同的时间后,两个物体的动量和动能的大小分别为P 1、P 2和E 1、E 2,则(B)A .P 1>P 2和E 1>E 2 B .P 1>P 2和E 1<E 2C .P 1<P 2和E 1>E 2D .P 1<P 2和E 1<E 24.05如图所示,A 、B 两物体质量分别为m A 、m B ,且m A >m B ,置于光滑水平面上,相距较远.将两个大小均为F 的力,同时分别作用在A 、B 上经相同距离后,撤去两个力,两物体发生碰撞并粘在一起后将( C )A .停止运动B .向左运动C .向右运动D .不能确定5.05在宇宙飞船的实验舱内充满CO 2气体,且一段时间内气体的压强不变,舱内有一块面积为S 的平板紧靠舱壁,如图3-10-8所示.如果CO 2气体对平板的压强是由于气体分子垂直撞击平板形成的,假设气体分子中分别由上、下、左、右、前、后六个方向运动的分子个数各有,且每个分子的速度均为υ,设气体分子与平板碰撞后仍以原速反弹.已知实验舱中单位体积内CO 2f (1)的摩尔数为n ,CO 2的摩尔质量为μ,阿伏加德罗常数为N A ,求:(1)单位时间内打在平板上的CO 2分子数;(2)CO 2气体对平板的压力.答案:(1)设在△t 时间内,CO 2分子运动的距离为L ,则 L =υ△t打在平板上的分子数△N=n L S N A 61故单位时间内打在平板上的C02的分子数为tNN ∆∆=得 N=n S N A υ61(2)根据动量定理 F △t=(2mυ)△N μ=N A m解得F=nμSυ2 31CO2气体对平板的压力 F / = F =nμSυ2 316.05如图所示,倾角θ=37°的斜面底端B 平滑连接着半径r =0.40m 的竖直光滑圆轨道。
动能定理动量定理联立推导公式

动能定理动量定理联立推导公式动能定理和动量定理是物理学中的两个基本定理,它们可以用来描述质点的运动,并在各种领域都发挥了重要作用。
本文将介绍动能定理和动量定理的定义及其推导公式,着重讨论它们的关系,设计出一个联立的推导公式。
动能定理定义:动能定理指出,当质点受到力作用时,由于动能的定义为K=\frac{1}{2}mv^2 ,因此质点的动能变化量是由力所做的功量决定的,即W=ΔK。
其中 W 是力所做的功量,ΔK 是质点动能的变化量,m 是质点的质量,v 是质点的速度。
动量定理定义:动量定理是描述质点动力学的重要定律之一,表述如下:当质量为m的质点受到力F作用时,它的动量的变化率与这个力的大小和作用时间有关系,即\frac{\Deltap}{\Delta t}=F。
\Delta p是质点动量的变化量,\Delta t是力作用时间的变化量,F是力的大小。
联立动能定理和动量定理:动能定理和动量定理都描述运动物体的性质。
它们之间的联系可以通过联立运用公式来得到。
如果一只质点受到一定的力作用,它的速度将发生变化。
假设在时间\Delta t内,质点的速度从v_1变为v_2,力的大小为F,则根据动量定理:F\Delta t=\frac{\Delta p}{\Delta t}=m\frac{\Delta v}{\Delta t}=ma\Delta v=v_2-v_1,a是质点受到力作用后的加速度。
将动量定理中的F\Delta t=ma带入到动能定理W=ΔK中得到:W=F\Delta x=ma\Delta x=m\frac{\Delta v}{\Delta t}a\Delta x=m\frac{\Deltav}{\Delta t}\Delta (1/2mv^2)=\Delta (1/2mv^2)Δx是质点移动的距离,m和v是质点的质量和速度。
通过上述推导,我们可以发现动能定理和动量定理之间存在非常紧密的关系。
动能定理描述了质点(静止的或运动的)所具有的动能如何与力作用量相比较和联系起来。
(完整版)知识讲解动量动量定理(基础).doc

物理总复习:动量动量定理编稿:刘学【考纲要求】1、理解动量的概念;2、理解冲量的概念并会计算;2、理解动量变化量的概念,会解决一维的问题;3、理解动量定理,熟练应用动量定理解决问题。
【知识网络】【考点梳理】考点一、动量和冲量1、动量(1)定义:运动物体的质量与速度的乘积。
(2)表达式:p mv。
单位:kg m / s(3)矢量性:动量是矢量,方向与速度方向相同,运算遵守平行四边形定则。
( 4)动量的变化量:p p2 p1,p 是矢量,方向与v 一致。
( 5)动量与动能的关系:E k 1 mv2 (mv)2 p2 p2mE k2 2m 2m要点诠释:对“动量是矢量,方向与速度方向相同”的理解,如:做匀速圆周运动的物体速度的大小相等,动能相等(动能是标量),但动量不等,因为方向不同。
对“ p是矢量,方向与v 一致”的理解,如:一个质量为m 的小钢球以速度v 竖直砸在钢板上,假设反弹速度也为 v ,取向上为正方向,则速度的变化量为v v ( v)2v ,方向向上,动量的变化量为:p2mv 方向向上。
2、冲量( 1)定义:力与力的作用时间的乘积。
( 2)表达式: I Ft 单位: N s( 3)冲量是矢量:它由力的方向决定考点二、动量定理( 1)内容:物体所受的合外力的冲量等于它的动量的变化量。
( 2)表达式: Ftp 2p 1 或 Ftp( 3)动量的变化率:根据牛顿第二定律v 2 v 1 p 2 p 1即 Fp,这是动量的变化率,物体所受合外力等于F ma mt t tmg 。
动量的变化率。
如平抛运动物体动量的变化率等于重力 要点诠释:( 1)动量定理的研究对象可以是单个物体,也可以是物体系统。
对物体系统,只需分析系统受的外力,不必考虑系统内力。
系统内力的作用不改变整个系统的总动量。
( 2)用牛顿第二定律和运动学公式能求解恒力作用下的匀变速直线运动的间题,凡不 涉及加速度和位移的,用动量定理也能求解,且较为简便。
动量定理和动能定理

动量定理和动能定理动量定理和动能定理是物理学中两个重要的定理,它们分别描述了物体运动中的动量和动能的变化规律。
本文将分别介绍这两个定理的概念、公式和应用。
一、动量定理动量定理是描述物体运动中动量变化规律的定理。
动量是物体运动的重要物理量,它等于物体的质量乘以速度。
动量定理指出,当物体受到外力作用时,它的动量会发生变化,变化的大小等于外力作用时间内物体所受的合力乘以时间。
动量定理的公式为:FΔt=Δp,其中F为物体所受的合力,Δt为外力作用时间,Δp为物体动量的变化量。
这个公式表明,当物体所受的合力越大,外力作用时间越长,物体的动量变化量就越大。
动量定理的应用非常广泛。
例如,在汽车碰撞事故中,当两辆车发生碰撞时,它们所受的合力会导致它们的动量发生变化,从而产生撞击力和损坏。
此外,在运动员比赛中,动量定理也可以用来计算运动员的速度和力量,以便评估他们的表现。
二、动能定理动能定理是描述物体运动中动能变化规律的定理。
动能是物体运动的另一个重要物理量,它等于物体的质量乘以速度的平方再乘以1/2。
动能定理指出,当物体受到外力作用时,它的动能会发生变化,变化的大小等于外力作用时间内物体所受的功。
动能定理的公式为:W=ΔK,其中W为外力所做的功,ΔK为物体动能的变化量。
这个公式表明,当外力所做的功越大,物体的动能变化量就越大。
动能定理的应用也非常广泛。
例如,在机械工程中,动能定理可以用来计算机械设备的能量转换效率,以便优化机械设计。
此外,在物理实验中,动能定理也可以用来验证能量守恒定律,以便深入理解物理学中的基本原理。
动量定理和动能定理是物理学中两个非常重要的定理,它们分别描述了物体运动中动量和动能的变化规律。
这些定理不仅可以用来解释自然现象,还可以应用于工程设计和科学研究中,具有广泛的实际意义。
动能定理和动量定理

动能定理: 1,动能定理:w总=mv22/2–mv12/2 1)w总= ) W1 + W2 F合• s• cosą 1) F合t 为合外力的冲量。 ) 为合外力的冲量。 为动量的变化。 2) mv2–mv1为动量的变化。 ) 2)∆Ε=E末–E初 )
动量定理: 2,动量定初速v0竖直上抛一个质量为 m=0.1kg的小球 的小球, m=0.1kg的小球,当小球返回出发点时 的速度大小为3V /4,若取g=10m/S 的速度大小为3V0/4,若取g=10m/S2, 则小球受到的空气平均阻力为多大? 则小球受到的空气平均阻力为多大?
练习2 在不计空气阻力的情况下, 练习2:在不计空气阻力的情况下,质量 的物体从距地面H高处由静止开始下 为m的物体从距地面 高处由静止开始下 的物体从距地面 落地后陷进淤泥D米深 米深, 落,落地后陷进淤泥 米深,求: 淤泥对物体平均阻力的大小? 1)淤泥对物体平均阻力的大小? 物体在淤泥中的运动时间? 2)物体在淤泥中的运动时间?
区别和联系: 区别和联系:
1,合外力所做的功等于动能的变化。跟位移有关。 合外力所做的功等于动能的变化。跟位移有关。 而合外力的冲量等于动量的变化。跟时间有关。 而合外力的冲量等于动量的变化。跟时间有关。
动能和动能的变化都是标量; 2,动能和动能的变化都是标量;动量和动量 的变化都是失量。 的变化都是失量。 都跟速度的大小有关。 3,都跟速度的大小有关。
二,巩固练习 练习1 质量为10g的子弹, 600m/s的 练习1:质量为10g的子弹,以600m/s的 10g的子弹 速度射入木块,木块的厚度为20cm 20cm, 速度射入木块,木块的厚度为20cm,木 块对子弹的平均阻力是8000N 8000N则子弹从木 块对子弹的平均阻力是8000N则子弹从木 块中穿出时的速度为多大? 块中穿出时的速度为多大?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动量定理和动能定理重点难点1.动量定理:是一个矢量关系式.先选定一个正方向,一般选初速度方向为正方向.在曲线运动中,动量的变化△ P 也是一个矢量,在匀变速曲线运动中(如平抛运动),动量变化的方向即合外力的方向.2.动能定理:是计算力对物体做的总功,可以先分别计算各个力对物体所做的功,再求这些功的代数和,即 W总 =W1 2 n+W + +W ;也可以将物体所受的各力合成求合力,再求合力所做的功.但第二种方法只适合于各力为恒力的情形.3.说明:应用这两个定理时,都涉及到初、末状状态的选定,一般应通过运动过程的分析来定初、末状态.初、末状态的动量和动能都涉及到速度,一定要注意我们现阶段是在地面参考系中来应用这两个定理,所以速度都必须是对地面的速度.规律方法【例 1】( 05 年天津)如图所示,质量m A为 4.0kg 的木板 A 放在水平面 C 上,木板与水平面间的动摩擦因数μ为 0.24,木板右端放着质量m B为 1.0kg 的小物块 B(视为质点),它们均处于静止状态.木板突然受到水平向右的 12N·s 的瞬时冲量作用开始运动,当小物块滑离木板时,木板的动能E KA为 8.0J,小物块的动能 E KB为 0.50J,重力加速度取10m/s2,求:(1)瞬时冲量作用结束时木板的速度υ0;(2)木板的长度 L.【解析】( 1)在瞬时冲量的作用时,木板 A 受水平面和小物块B的摩擦力的冲量均可以忽略.取水平向右为正方向,对 A 由动量定理,有: I = m Aυ0 代入数据得:υ0 = 3.0m/s( 2)设 A 对 B、B 对 A、 C 对 A 的滑动摩擦力大小分别为 F fAB、F fBA、F fCA,B 在 A 上滑行的时间为t ,B 离开 A 时 A 的速度为υ, B 的速度为υ. A、 B 对 C 位移为 s 、 s .A B A B对 A 由动量定理有:—( F fBA fCA AA A0+F ) t = m υ-m υ对 B 由动理定理有:F fAB t = m BυB其中由牛顿第三定律可得 F fBA = F fAB,另 F fCA = μ( m A+m B) g对 A 由动能定理有: 2 2—( F fBA+F fCA) s A = 1/2 m Aυ -1/2m AυA 0对 B 由动能定理有:F fA Bf B B 2s = 1/2 m υB根据动量与动能之间的关系有:m A A ,m B Bυ = 2m A E KA υ =2m B E KB木板A 的长度即 B 相对 A 滑动距离的大小,故L = s A-s B,代入放数据由以上各式可得L = 0.50m.训练题(05年济南)质量为m = 1kg 的小木块(可看在质点),放在质量为M = 5kg 的长木板的左端,如图所示.长木板放在光滑水平桌面上.小木块与长木板间的动摩擦因数μ= 0.1,长木板的长度l = 2m.系统处于静止状态.现使小木块从长木板右端脱离出来,可采用下列两种方法:( g 取 10m/s2)( 1)给小木块施加水平向右的恒定外力 F 作用时间 t = 2s,则 F 至少多大?( 2)给小木块一个水平向右的瞬时冲量I,则冲量I 至少是多大?答案:(1) F=1 . 85N(2) I=6 . 94NS【例 2】在一次抗洪抢险活动中,解放军某部队用直升飞机抢救一重要落水物体,静止在空中的直升飞机上的电动机通过悬绳将物体从离飞机90m 处的洪水中吊到机舱里.已知物体的质量为80kg,吊绳的拉力不能超过1200N ,电动机的最大输出功率为12kW ,为尽快把物体安全救起,操作人员采取的办法是,先让吊绳以最大拉力工作一段时间,而后电动机又以最大功率工作,当物体到达机舱前已达到最大速度.(g 取 10m/s2)求:(1)落水物体运动的最大速度;(2)这一过程所用的时间.【解析】先让吊绳以最大拉力 F Tm = 1200N 工作时,物体上升的加速度为a,由牛顿第二定律有: a = FT m mg ,代入数据得 a = 5m/s2 m当吊绳拉力功率达到电动机最大功率P m = 12kW 时,物体速度为υ,由 P m = T mυ,得υ= 10m/s.物体这段匀加速运动时间t1=1 2= 10m.a = 2s,位移 s = 1/2at 1此后功率不变,当吊绳拉力 F T= mg 时,物体达最大速度mP m= 15m/s.υ = mg这段以恒定功率提升物体的时间设为t2,由功能定理有:1 2 1 2Pt2-mg( h-s1) = mυ - mυ2 m 2代入数据得 t2 = 5. 75s,故物体上升的总时间为t = t1+t2 = 7.75s.即落水物体运动的最大速度为15m/s,整个运动过程历时 7.75s.训练题一辆汽车质量为m,由静止开始运动,沿水平地面行驶s 后,达到最大速度υm,设汽车的牵引力功率不变,阻力是车重的k 倍,求:(1)汽车牵引力的功率;(2)汽车从静止到匀速运动的时间.答案:( 1) P=kmgv m(2) t= ( v m2+2kgs ) /2kgv m【例 3】( 05 年如东) 一个带电量为 -q 的液滴,从 O 点以速度 υ射入匀强电场中, υ的方向与电场方向成 θ角,已知油滴的质量为m ,测得油滴达到运动轨道的最高点时,速度的大小为υ,求:( 1)最高点的位置可能在 O 点上方的哪一侧?( 2)电场强度为多大?( 3)最高点处(设为 N )与 O 点电势差绝对值为多大?【解析】( 1)带电液油受重力 mg 和水平向左的电场力qE ,在水平方向做匀变速直线运动,在竖直方向也为匀变速直线运动,合运动为匀变速曲线运动.由动能定理有: W G +W 电 = △ E K ,而△ E K = 0重力做负功, W G < 0,故必有 W 电 > 0,即电场力做正功,故最高点位置一定在O 点左侧.( 2)从 O 点到最高点运动过程中,运动过程历时为t ,由动量定理:在水平方向取向右为正方向,有:-qEt = m (- υ) -m υcos θ在竖直方向取向上为正方向,有:-mgt = 0- m υsin θ上两式相比得 qE1 cos ,故电场强度为 E =mg(1cos )mg sinq sin( 3)竖直方向液滴初速度为 υ1 = υ sin ,θ加速度为重力加速度 g ,故到达最高点时上升的最大高度为 h ,则 h =2 2sin 212g2g从进入点 O 到最高点 N 由动能定理有m 2 sin 2qU -mgh = △E K = 0 ,代入 h 值得 U =2q【例 4】一封闭的弯曲的玻璃管处于竖直平面内,其中充满某种液体,内有一密度为液体密度一半的木块,从管的 A 端由静止开始运动,木块和管壁间动摩擦因数 μ= 0.5,管两臂长 AB = BC = L = 2m ,顶端B 处为一小段光滑圆弧,两臂与水平面成α= 37 角°,如图所示.求:( 1)木块从 A 到达 B 时的速率;( 2)木块从开始运动到最终静止经过的路程.【解析】木块受四个力作用,如图所示,其中重力和浮力的合力竖直向上,大小为 F = F 浮 -mg ,而 F 浮 = ρ液 Vg = 2ρ木 Vg = 2mg ,故 F = mg .在 垂直于管壁方向有: F N = Fcos α mgcos= α,在平行管方向受滑动摩擦力F f = μN = μ mgcos θ,比较可知, Fsin α =mgsin α = 0mg.6,F f = 0.4mg ,Fsin α> F f .故木块从 A 到 B 做匀加速运动,滑过 B 后 F 的分布和滑动摩擦力 均为阻力, 做匀减速运动, 未到 C 之前速度即已为零, 以后将在 B 两侧管间来回运动, 但离 B 点距离越来 越近,最终只能静止在B 处.( 1)木块从 A 到 B 过程中,由动能定理有:FLsin α-F f L = 1/2 m υ2B代入 F 、 F f 各量得 υB =2gL(sin cos ) = 2 2 = 2.83m/s .( 2)木块从开始运动到最终静止,运动的路程设为 s ,由动能定理有:FL sin α-F f s = △ E K = 0代入各量得 s =L sin= 3mmcos训练题 质量为 2kg 的小球以 4m/s 的初速度由倾角为 30°斜面底端沿斜面向上滑行, 若上滑时的最大距离为 1m ,则小球滑回到出发点时动能为多少?(取g = 10m/s 2 )答案: E K =4J能力训练1.(05 年苏州) 在北戴河旅游景点之一的北戴河滑沙场有两个坡度不同的滑道AB 和 AB ′(均可看作斜面).甲、乙两名旅游者分别乘坐两个完全相同的滑沙撬从A 点由静止开始分别沿AB 和AB ′滑下,最后都停止在水平沙面BC 上,如图所示.设滑沙撬和沙面间的动摩擦因数处处相同,斜面与水平面连接处均可认为是圆滑时,滑沙者保持一定的姿势在滑沙撬上不动.则下列说法中正确的是(ABD)A .甲在B 点速率一定大于乙在B ′点的速率B .甲滑行的总路程一定大于乙滑行的总路程C .甲全部滑行的水平位移一定大于乙全部滑行的水平位移D .甲在B 点的动能一定大于乙在B ′的动能2.( 05 年无锡) 下列说法正确的是(BCD)A .一质点受两个力的作用而处于平衡状态(静止或匀速直线运动),则这两个力在同一作用时间内的冲量一定相同B .一质点受两个力的作用而处于平衡状态,则这两个力在同一时间内做的功都为零,或者一个做正功,一个做负功,且功的绝对值相等C .在同一时间内作用力和反作用力的冲量一定大小相等,方向相反D .在同一时间内作用力和反作用力有可能都做正功3.( 05 年东城区) 质量分别为 m 和 m 的两个物体( m >m ),在光滑的水平面上沿同方向运动,具1212有相同的初动能.与运动方向相同的水平力 F 分别作用在这两个物体上,经过相同的时间后,两个物体的动量和动能的大小分别为P 1 、P 2 和 E 1、 E 2,则(B )A .P 1> P 2 和 E >E 2B .P >P 和E <E2 1121C .P <P 2 和E >ED .P <P 和E <E21121 2 14.( 05 年潍坊) 如图所示, A 、 B 两物体质量分别为 m 、m ,且 m > m ,置于光滑水平面上,相距ABAB较远.将两个大小均为 F 的力,同时分别作用在 A 、 B 上经相同距离后,撤去两个力,两物体发生碰撞并 粘在一起后将(C)A .停止运动B .向左运动C .向右运动D .不能确定5.( 05 年苏、锡、常、镇四市) 在宇宙飞船的实验舱内充满 CO 2 气体,且一段时间内气体的压强不变,舱内有一块面积为S 的平板紧靠舱壁, 如图 3-10-8 所示.如果 CO 2 气体对平板的压强是由于气体分子垂直撞击平板形成的,假设气体分子中分别由上、下、左、右、前、后六个方向运动的分子个数各有,且每个分子的速度均为 υ,设气体分子与平板碰撞后仍以原速反弹.已知实验舱中单位体积内CO 2 的摩尔质量为 μ,阿伏加德罗常数为 N A ,求:( 1)单位时间内打在平板上的CO 2 分子数;( 2) CO 2 气体对平板的压力.答案: (1)设在△ t 时间内, CO 2 分子运动的距离为L ,则 L =υ△ t打在平板上的分子数1 n L S N A△ N=6N 故单位时间内打在平板上的C02 的分子数为 Nt1得N= n S N A υ6(2) 根据动量定理 F △ t=(2m υ)△ NAμ =N m解得1 2F= n μ S υ31CO2 气体对平板的压力/2F= F =n μ S υ36.( 05 年南通) 如图所示,倾角 θ=37°的斜面底端 B 平滑连接 着半径 r =0.40m 的竖直光滑圆轨道。