电子设备热设计

合集下载

A7.电子设备热设计规范

A7.电子设备热设计规范

电子设备热设计准则1、概述1.1 热设计的目的采用适当可靠的方法控制产品内部所有电子元器件的温度,使其在所处的工作环境条件下不超过稳定运行要求的最高温度,以保证产品正常运行的安全性,长期运行的可靠性。

热设计的重点是通过器件的选择、电路设计(包括容差与漂移设计和降额设计等)及结构设计(主要是加快散热)来减少温度变化对产品性能的影响,使产品能在较宽的温度范围内可靠地工作。

1.减少设备(线路)内部产生的热量,应该是电路设计的一项指标;2.减少热阻,是电子设备结构设计的目的之一;3.保证电气性能稳定,热设计使元件不在高温条件下工作,以避免参数漂移,保持电气性能稳定;4.改善电子设备的可靠性;5.延长使用寿命。

1.2、热设计的主要内容电子设备冷却方法的选择要考虑的因素是:电子元器件(设备)的热耗散密度(即热耗散量与设备组装外壳体积之比)、元器件工作状态、设备的复杂积蓄、设备用途、使用环境条件(如海拔高度、气温等)以及经济性等。

①、元器件的热设计。

主要是减小元器件的发热量,合理地散发元器件的热量,避免热量蓄积和过热,降低元器件的温升,是设计考虑的一项主要指标。

②、印制板的热设计。

有效地把印制板上的热引导到外部。

减少热阻,是结构设计的目的之一。

③、机箱的热设计。

保证设备承受外部各种环境、机械应力的前提下,充分保证对流换热、传导、辐射,最大限度地的把设备产生的热散发出去。

⑴、热量的传递只要存在温差就有热量的传递。

热量的传递有三种基本方式:传热、对流和辐射。

它们可以单独出现,也可能两种或三种形式同时出现。

热量传递的两个基本规律:热量从高温区流向低温区;高温区发出的热量等于低温区吸收的热量。

⑵、热设计需考虑的问题系统热设计应与电路和结构设计同步进行;尽量减少电路发热量;减少发热元件的数量;选择耐热性和热稳定性好的元器件;在结构设计时应合理地选择冷却方法;进行传热通道的最佳设计;尽量减少热阻,热阻是热量传递路径上的阻力。

热设计及热仿真分析

热设计及热仿真分析

九、热电制冷器(1.25H)
1. 热电制冷的基本原理
2. 制冷器冷端净吸热的计算
3. 最大抽吸热制冷器设计方法
4. 最佳性能系数制冷器设计方法
5. 多极制冷器的性能
6. 热电制冷器的结构设计
十、热管散热器的设计(1.25H)
1. 热管的类型及其工作原理
2. 热管的传热性能
3. 热管设计
十一、电子设备的热性能评价及改进(0.5H)
1. 评价的目的与内容
2. 热性能草测
3. 热性能检查项目
4. 热性能测量
5. 确定热性能缺陷
6. 热性能改进的制约条件
7. 改进费用与寿命周期费用的权衡
8. 热设计改进示例
十二、计算机辅助热分析技术(1.5H)
1. 计算流体动力学的工作步骤
2. 计算流体动力学的分支
3. 流体流动的基本特征
4. CFD求解过程及软件结构
5. 常用的CFD商用软件
6. 三维湍流模型
7. 边界条件的应用
8. CFD应用实例
十三、热设计实例(4H)
1. 现代电子器件冷却方法动态
2. 电子设备热分析软件应用研究
3. 典型密封式电子设备热设计
4. 功率器件热设计及散热器的优化设计
5. 表面贴装元器件的热设计
6. 某3G移动基站机柜的热仿真及优化
7. 电子设备热管散热器技术现状及进展
8. 吹风冷却时风扇出风口与散热器间距离对模块散热的影响
9. 实验评估热设计软件
10. IGBT大功率器件的热设计
11. 电源模块的热设计及分析
十四、自由交流及讨论(0.5H)。

电子行业电子设备热设计基础

电子行业电子设备热设计基础

电子行业电子设备热设计基础引言在电子行业中,电子设备的热设计是非常重要的。

随着电子设备的不断发展,其功能越来越强大,性能越来越高,工作时产生的热量也越来越大。

如果电子设备的热量不能有效地散出去,会导致设备过热,影响设备的性能甚至损坏设备。

因此,合理的热设计对于电子设备的可靠性和稳定性至关重要。

本文将介绍电子行业电子设备热设计的基础知识,包括热传导、热辐射、热对流等方面的内容,帮助读者了解电子设备热设计的重要性并掌握一些基本的设计原则和方法。

热传导热传导是指热能通过物质的传导方式传递的过程。

在电子设备中,常见的热传导方式有三种:导热、对流和辐射。

导热导热是通过物质内部的分子或电子的碰撞传递热能的过程。

导热的速度和效率取决于物质的热导率和传热面的接触情况。

为了提高导热效率,我们可以采用导热材料,如铜、铝等,作为散热板或散热片,将其与电子元件紧密接触以增大接触面积。

对流对流是指热量通过流体(如空气)的对流传递的过程。

当电子设备工作时产生的热量无法直接通过导热方式散出去时,就需要依靠对流来进行热散热。

在设计电子设备时,我们需要合理设置散热孔和散热风扇等设备,以增加热量与周围空气的接触面积,提高对流散热效率。

辐射辐射是指热能以电磁辐射的形式传递的过程。

热辐射是无需传递介质的热传递方式,在电子设备中发挥重要作用。

通过合理设置散热片、散热器等辐射表面,可以增大辐射能量的发射和吸收。

此外,还可以利用红外线热成像等技术来监测电子设备中的热辐射情况,及时发现问题并采取相应的措施。

设计原则和方法在进行电子设备热设计时,需要遵循一些基本的设计原则和方法,以确保设备的稳定运行和长寿命。

合理布局在电子设备的布局设计中,需要考虑到热量的产生和散热的位置。

将产热元件和散热结构合理布置,减少热量在设备内部的积聚,有利于热量的迅速散出,提高散热效率。

优化散热结构为了提高散热效果,可以采用散热片、散热器等散热结构来增大热量与周围环境的接触面积。

电子设备“三防”设计和热设计..

电子设备“三防”设计和热设计..

5.防霉菌设计 克服霉菌危害的主要措施有以下几个方面:
选择不易长霉和耐霉性好的材料; 将设备严格密封,并使其内部空气保持干燥(相对湿度低于 65)、清洁; 设备表面涂覆防霉剂或防霉漆; 利用紫外线照射防霉并消灭已生长的霉菌; 在密封设备中充以高浓度的臭氧来消灭霉菌。
(二)合理的结构形式和表面镀涂层设计
在电子设备的结构设计中,设计是否合理,对环境适应能力 的影响最大,也是最主要的。因为大多数的腐蚀问题都能通过合 理的结构设计来避免。 1. 设备尤其是舱室外设备应尽量避免易积存腐蚀介质、雨水或冷凝
水的结构,采用各种行之有效的设计措施,进行排水、排液通风。
如焊接结构应采用连续焊缝设计,尽可能消除缝隙和凹坑结构, 防止积水、灰尘和盐雾。
破坏的主要形式
根据材料的相容性,合理选用不同类型的金属和镀层是极为重 要的。设计时必须综合材料的电气、力学、物理、化学以及加工性 能等特性而优选耐蚀性好的金属材料和不长霉、耐老化的非金属材 料。 耐腐蚀性能好的金属材料:金、铬、镍、钛及钛合金、
铝合金、铜合金和不锈钢等。
不长霉、耐老化的非金属材料:聚四氟乙烯、聚碳酸酯、 改性聚苯乙烯、有机玻璃和硅橡胶等。 考虑到经济因素,通常选铝合金、铜合金、不锈钢和优质碳素 钢等再镀覆金属层和涂覆非金属层联合保护。通常我们优先选择 经认证或多年实践证明是可靠的金属材料和非金属材料。对选用 的新材料,特别注意考虑其可靠性、工艺稳定性、供应的可能性。
电子设备“三防”设计和热设计
现代“三防”技术的范畴,已不单纯是一 项工艺技术的实施,而应当涉及到电路、结构、 工艺和综合性技术管理的各个方面,其中结构 设计是将“三防”贯彻到产品设计中的关键, 必须重视“三防设计”,而并非单纯的在产品 完成后进行“三防设计”。

电子设备热设计方法

电子设备热设计方法
? ? ? / A ? 2.5C? t1.25 / D0.25
式中: φ —— 热流密度,W/m 2; A —— 换热面积,m2; C —— 系数,由表2-1查得; D —— 特征尺寸,m;
Δt —— 换热表面与流体(空气)的温差,℃。

2-1
自 然 对 流 准 则 方 程 中 的 C 和 n 值
ln( r2 r1 )
R?
2? ? l
?W ?
长度为 l 的圆筒 壁的导热热阻
接触热阻
实际固体表面不是理想平整的,所以两固体表面直接接触的界 面容易出现点接触,或者只是部分的而不是完全的和平整的面 接触 —— 给导热带来额外的热阻
减小散热器与器件之间的接触热阻
影响接触热阻的因素较多,迄今没有一个普遍适用 的经验公式加以归纳,因此工程设计中都是根据实验或 参考实测数据来选择接触热阻。
c. 根据上述两条规定,确定每个元器件的允许温升
d. 确定每个元器件冷却时所需的热阻
? 热阻的计算
Rt
?
?t ?
式中Rt 为整个传热面积上的热阻,℃/W。
a.
平壁导热热阻:
Rt
?
? ?A
b.
对流换热热阻:
Rt
?
1 hc A
3冷却方法的选择
3.1冷却方法的分类 3.2冷却方法的选择 3.3冷却方法选择示例
3.1 冷却方法的分类
? 按冷却剂与被冷元件之间的. 自然冷却(包括导热、自然对流和辐射换热的单独 作用或两种以上 换热形式的组合)
b. 强迫冷却(包括强迫风冷和强迫液体冷却等) c. 蒸发冷却 d. 热电致冷 e. 热管传热 f. 其它冷却方法
λ —— 流体的导热系数, W/(m·℃); β —— 流体的体积膨胀系数, ℃-1; g —— 重力加速度, m/s2; ρ —— 流体的密度, kg/m3; μ —— 流体的动力粘度, Pa·s;

热设计-电子科技大学

热设计-电子科技大学
3
概述
❖风路的设计方法 :通过典型应用案例,让学员掌握风路
布局的原则及方法。
❖产品的热设计计算方法 :通过实例分析,了解散热器
的校核计算方法、风量的计算方法、通风口的大小的计算方法。
❖ 风扇的基本定律及噪音的评估方法:了解风扇的
基本定律及应用;了解噪音的评估方法。
❖ 海拔高度对热设计的影响及解决对策:了解海拔
λ=0.3164/Re 0.25
19
热设计的基础理论
❖ 流体动力学基础
➢ 非园管道沿程阻力的计算 引入当量水力半径后所有园管的计算方法与公式均可适用非园
管,只需把园管直径换成当量水力直径。
de=4A/x
➢ 局部阻力
hj=ξρV2/2
ξ-局部阻力系数 突然扩大: 按小面积流速计算的局部阻力系数:ζ1=(1-A1/A2) 按大面积流速计算的局部阻力系数:ζ2=(1-A2/A1) 突然缩小: 可从相关的资料中查阅经验值。
交流配电单元
监控模块 整流模块
进风口
直流配电单元
交流配电单元
监控模块 风道
整流模块
进风口
直流配电单元
7
风路设计方法
❖ 强迫冷却的风路设计
➢ 设计要点
✓ 如果发热分布均匀, 元器件的间距应均匀,以使风均匀流过每一个发 热源.
✓ 如果发热分布不均匀,在发热量大的区域元器件应稀疏排列,而发热量 小的区域元器件布局应稍密些,或加导流条,以使风能有效的流到关键 发热器件。
➢ 层流、紊流与雷诺数 层流:流体质点互不混杂,有规则的层流运动。
Re=Vde/ν<2300 层流
紊流:流体质点相互混杂,无规则的紊流运动。 显然层流状态下只存在粘性引起的摩檫阻力,而紊流状态下除摩檫阻力 外还存在由于质点相互碰撞、混杂所造成的惯性阻力,因此紊流的阻力 较层流阻力大的多。

电子设备热设计基本知识(ppt 51页)

电子设备热设计基本知识(ppt 51页)
紊流:层流底层以外(边界层以外)
所发生的流体不规则流动。
对流换热的基本定律
对流换热系数
对流传热系数的数值范围
过程
h/[W(m2k)]
自然对流 空气 水 强迫对流
气体 高压水蒸气
水 水的相变换热
沸腾 蒸汽凝结
1~10 200~1000
20~100 500~3500 1000~15000
2500~3500 5000-25000
电子设备热设计
付桂翠
北京航空航天大学
电子设备热设计
一.热设计基本知识 二.热设计理论基础 三.热设计的方法 四.热分析 五.热试验
热设计基本知识
热对系统可靠性的影响 热设计的目的 热设计的有关概念 热控制的基本形式
热对系统可靠性的影响
高温对大多数元器件将产生严重影响,它导致元器件 性能改变甚至失效,从而引起整个电子设备的故障。
摘自 美空军整体计划分析报告
热量产生的原因
电子设备经受的热应力来源于以下几个方面: (1)工作过程中,功率元件耗散的热量。 (2)电子设备周围的工作环境,通过导热、对流和辐射的形式,将热量传 递给电子设备。 (3)电子设备与大气环境产生相对运动时,各种摩擦引起的增温。
热设计的目的
电子设备的热设计系指利用热传递特性对电子设备的耗 热元件以及整机或系统采用合适的冷却技术和结构设计, 以对它们的温升进行控制,从而保证电子设备或系统正常、 可靠地工作。
热设计目标温度资源约束电子设备结构体积大小等热设计方案热设计工程经验主要散热方法自然冷却强迫冷却冷板冷却散热器辐射散热其它散热方法冷却方法的选择元器件的安装与布局印制电路板的散热设计机箱的结构散热设计权衡分析改进设计满足热设计目标和相关要求满足热设计目标和相关要求热设计报告热分析原理样机热性能评估热设计热设计流程热设计目标的确定热设计目标通常根据设备的可靠性指标与设备的工作环境条件来确定已知设备的可靠性指标依据gjb299b1998电子设备可靠性预计手册中元器件失效率与工作温度之间的关系可以计算出元器件允许的最高工作温度此温度即为热设计目标

电子设备热分析、热设计及热测试技术综述及进展

电子设备热分析、热设计及热测试技术综述及进展

电子设备热分析、热设计及热测试技术综述及进展一、本文概述随着电子技术的飞速发展和广泛应用,电子设备热分析、热设计及热测试技术在保障电子设备性能稳定、提升系统可靠性以及延长设备寿命等方面发挥着越来越重要的作用。

本文旨在对电子设备热分析、热设计及热测试技术的当前综述及进展进行全面探讨,以期为相关领域的研究与应用提供有益的参考。

本文将首先概述电子设备热分析、热设计及热测试技术的基本概念、原理及其在电子设备中的重要性。

随后,将详细介绍当前热分析技术的最新进展,包括数值分析、实验测量以及仿真模拟等方面的技术突破和应用实例。

在热设计方面,本文将探讨新型散热结构、材料以及优化算法的研究与应用,以提高电子设备的散热效率和可靠性。

本文将综述热测试技术的发展动态,包括新型测试方法、测试设备以及测试标准的制定与实施。

通过本文的综述,读者可以对电子设备热分析、热设计及热测试技术的现状和发展趋势有更为深入的了解,为相关领域的研究与实践提供有益的启示和借鉴。

二、电子设备热分析技术随着电子设备向高度集成化、小型化和高功率密度方向发展,热分析技术在电子设备设计中的重要性日益凸显。

电子设备热分析技术主要包括稳态热分析和瞬态热分析两大类。

稳态热分析主要关注设备在稳定工作状态下的热量分布和温度场。

通过稳态热分析,可以预测设备在长时间运行过程中的热性能,评估其散热设计的合理性。

常用的稳态热分析方法包括有限元法(FEM)、有限差分法(FDM)和边界元法(BEM)等。

这些方法可以通过建立设备的热模型,模拟其在稳定工作状态下的热传导、对流和辐射等热传递过程,从而得到设备的温度分布和热流密度等信息。

瞬态热分析则主要关注设备在启动、关机、负荷变化等瞬态过程中的热性能。

瞬态热分析对于评估设备在极端条件下的热稳定性和可靠性具有重要意义。

常用的瞬态热分析方法包括瞬态热网络法、瞬态热有限元法等。

这些方法可以模拟设备在瞬态过程中的热传递和热响应,从而得到设备在不同时间点的温度分布和热流密度等信息。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题1
1. 平壁的厚度为δ,两表面温度分别为t 1和t 2,且t 1>t 2。

平壁材料之导热系数与温度的关系呈线性,即()01t λλβ=+。

试求热流密度和壁内温度分布的表达式。

2. 变压器的钢片束由n 片钢片组成,每一钢片的厚度为0.5mm ,钢片之间敷设有厚度为0.05mm 的绝缘纸板。

钢的导热系数为58.15W/(m ·℃),绝缘纸的导热系数为0.116 W/(m ·℃)。

试求热流垂直通过钢片束时的当量导热系数。

3. 用稳定平板导热法测定固体材料导热系数的装置中,试件做成圆形平板,平行放置于冷、热两表面之间。

已知试件直径为150mm ,通过试件的热流量Φ=60W ,热电偶测得热表面的温度和冷表面的温度分别为180℃和30℃。

检查发现,由于安装不好,试件冷、热表面之间均存在相当于0.1mm 厚空气隙的接触热阻。

试问这样测得的试件导热系数有多大的误差?
4. 蒸汽管道的外直径为30mm ,准备包两层厚度均为15mm 的不同材料的热绝缘层。

第一种材料的导热系数λ1=0.04W/(m ·℃),第二种材料的导热系数λ2=0.1W/(m ·℃)。

若温差一定,试问从减少热损失的观点看下列两种方案:⑴第一种材料在里层,第二种材料在外层;⑵第二种材料在里层,第一种材料在外层。

哪一种好?为什么?
5. 导热复合壁,由λ1=386W/(m ·℃)的铜板,λ2=0.16W/(m ·℃)的石棉层及λ3=0.038W/(m ·℃)的玻璃纤维层组成,它们的厚度分别为2.5cm 、3.2mm 和5cm 。

复合壁的总温差为560℃,试求单位面积的热流量为多少?
6. 内径为300mm 、厚度为8mm 的钢管,表面依次包上一层厚度为25mm 厚的保温材料(λ=0.116W/(m ·℃))和一层厚度为3mm 的帆布(λ=0.093W/(m ·℃))。

钢的导热系数为46.5W/(m ·℃)。

试求此情况下的导热热阻比裸管时增加了多少倍?
7. 蒸汽管道材料为铝,导热系数为204W/(m ·℃),内、外直径分别为86mm 和100mm ,内表面温度为150℃。

用玻璃棉(λ=0.038W/(m ·℃))保温,若要求保温层外表面温度不超过40℃,且蒸汽管道允许的热损失为φ1=50W/m ,试求玻璃棉保温层的厚度至少应为多少?
8.内、外直径分别为10cm和20cm的圆筒壁,内表面温度为300℃,外表面温度为100℃。

试确定壁内距外表面2cm处的温度。

9.试将圆筒壁的热阻与同材料、同厚度的平壁的热阻进行比较。

若温度条件相同,而平
壁的面积等于圆筒壁的内表面积,试问哪一种情况下热阻较大?。

相关文档
最新文档