推理与证明讲义
高中数学复习讲义

高中数学复习讲义一、代数1.1 一元一次方程1.2 一元二次方程1.3 平面直角坐标系1.4 解析几何与向量1.5 指数与对数1.6 三角函数与三角恒等变换1.7 数列与数学归纳法二、几何2.1 平面与立体几何基本概念2.2 直线与角2.3 三角形与三角形的性质2.4 四边形与四边形的性质2.5 圆与圆的性质2.6 空间几何与立体几何三、概率与统计3.1 随机事件与概率的计算3.2 组合与排列3.3 抽样与统计四、数学思想方法4.1 推理与证明4.2 逻辑与谬误4.3 数学建模与解题策略五、应用题本讲义将针对高中数学涵盖的主要内容进行复习总结,旨在帮助大家全面复习数学知识,掌握解题方法和技巧,为高考做好充分准备。
一、代数1.1 一元一次方程一元一次方程是数学中最基础的方程形式之一,解一元一次方程需要掌握方程的基本性质和求解方法。
我们将重点讲解常见的一元一次方程类型,并提供解题思路和方法。
掌握一元一次方程的求解技巧对于解决实际问题具有重要意义。
1.2 一元二次方程一元二次方程在高中数学中起着重要的作用,解一元二次方程需要掌握配方法、因式分解法以及求根公式等知识点。
我们将介绍一元二次方程的基本概念和解法,并通过大量例题帮助大家提高解题能力。
1.3 平面直角坐标系平面直角坐标系是研究平面几何和解析几何的基础,了解坐标系的性质和坐标变换的规律对于解决几何问题至关重要。
我们将详细介绍直角坐标系的相关概念和性质,并结合实例进行讲解,帮助大家掌握平面直角坐标系的应用。
1.4 解析几何与向量解析几何是将代数与几何相结合的重要数学分支,研究空间中点、直线、平面等几何对象的解析表达和性质。
向量是解析几何中的重要工具,学习向量的表示方法和运算规律有助于解决几何问题。
我们将讲解解析几何基本概念和向量的数学性质,并通过练习题提高大家的解题能力。
1.5 指数与对数指数和对数是高中数学中重要的数学工具和运算方法,涉及到数学表达式的简化、方程的求解等。
中考数学复习考点知识专题讲义第42讲 核心素养之逻辑推理——与圆有关的计算与证明

解图1
(2)求⊙O与Rt△ABC重叠部分的面积. 解:如解图2,连接OE,则OA=OE.
∵∠CAB=60°,∴△OAE是等边三角形.∴∠AOE=60°.∴∠EOG=120°.
作EF⊥OA于点F,则OF=1,EF= 3.
∴⊙O与Rt△ABC重叠部分的面积为:S△AOE+S扇形EOG=
1 2
×2×
3
+
120π×22 360
=
3
+43π.
解图2
例3 (2019·海陵区二模改编)如图,在△ABC中,AB=AC,以AC为直径作⊙O交 BC于点D,过点D作⊙O的切线EF,交AB于点E,交AC的延长线于点F.
求证:(1)BD=CD;
证明:如解图,连接AD.
∵AC是⊙O的直径,
∴∠ADC=90°,即AD⊥BC.
学霸笔记 本题考查圆中有关角度的计算,需要准确把握圆中有关角的结论,如圆周角定 理及推论,圆心角、弧、弦之间的关系定理、切线的性质等,准确找到相关条件产生 的特殊角及之间的数量关系,还要注意识别这些基本定理产生的平行线、直角三角 形、等腰三角形、等边三角形等基本图形,灵活应用这些角之间的关系.
例2 (2019·惠山区模拟)如图,在Rt△ABC中,∠CAB=60°,点O为斜边AB上一 点,且OA=2,以OA为半径的⊙O与BC相切于点D,与AC相交于点E.
又∵AB=AC,
∴BD=CD.
(2)∠BAC=2∠FDC.
证明:如解图,Biblioteka 接OD,则∠CAD=12∠BAC.
∵EF是⊙O的切线, ∴OD⊥EF. ∴∠ODF=90°. ∴∠FDC+∠ODC=90°.
∵OC=OD,
∴∠OCD=∠ODC.
又∵∠OCD+∠CAD=90°,
2019-2020学年高中数学选修2-2第二章推理科与证明章末复习讲义

第二章推理与证明知识系统整合规律方法收藏1.图形中的归纳推理问题主要涉及某些固定图形的个数,所以常常需要转化成数列问题来求解,常用的思路有两种:(1)直接查个数,找到变化规律后再猜想;(2)观察图形的变化规律.2.探索性问题是数学中的一类重要问题,如探讨数列的通项、前n 项和、立体几何、解析几何中的性质等,在处理时,先采用合情推理猜想、再采用演绎推理的论证方法.3.对于较为复杂的数学命题,不论是从“已知”推向“结论”,还是由“结论”靠向“已知”,都有一个比较长的过程,单靠分析或综合显得较为困难.为保证探索方向准确且过程快捷,人们又常常把分析与综合两者并列起来使用,即常采取同时从已知和结论出发,寻找问题的一个中间目标.从已知到中间目标运用综合法思索,而由结论到中间目标运用分析法思索,以中间目标为桥梁沟通已知与结论,构建出证明的有效路径.把分析法与综合法两者结合起来进行思考,寻求问题的解答途径的方式就是人们通常所说的分析综合法,也就是常说的“两路夹攻,一攻就通”的证明思路.4.解决数学中的证明问题,既要掌握常用的证明方法的思维过程、特点,又要有牢固的数学基础知识.另外,还应掌握证明的一些常用方法与技巧,证明常用的方法与技巧有以下几种:(1)换元法.换元法是结构较为复杂且量与量之间的关系不甚明了的命题,通过恰当地引入新变量,代换原命题中的部分式子,简化原有结果,使其转化为便于研究的形式.常见的有代数换元与三角换元.在应用换元法时,要注意新变量的取值范围,即代换的等价性.换元法步骤:①设元(或构造元)――→ 转化②求解――→ 等量③回代――→ 等价原则④检验(2)放缩法.放缩法常用于证明不等式.欲证A ≥B ,可通过适当放大或缩小,借助一个或多个中间量使得B ≤B 1,B 1≤B 2,…,B i ≤A 或A ≥A 1,A 1≥A 2,…,A i ≥B ,再利用传递性,以达到证明的目的,这种方法叫放缩法.应用放缩法时,放缩目标必须确定,而且要恰到好处,目标往往要从证明的结论考察,常用的放缩方法有增项、减项或利用分式的性质、不等式性质、已知不等式、函数的性质等.其放缩技巧主要有以下几种:①添加或舍去一些项,如: a 2+1>|a |;n n +1>n ;②将分子或分母放大(或缩小) 当a ,b ,c >0时,a b +c +b a +c +ca +b >a a +b +c +b a +b +c +ca +b +c;③利用基本不等式,如:lg 3·lg 5<⎝ ⎛⎭⎪⎫lg 3+lg 522=lg 15<lg 16=lg 4;④利用常用结论 ⅰ.1k的放缩:2k +k +1<22k <2k +k -1;ⅱ.1k 2的放缩(a):1kk +1<1k 2<1k k -1(程度大); ⅲ.1k 2的放缩(b):1k 2<1k 2-1=1k +1k -1=12⎝ ⎛⎭⎪⎫1k -1-1k +1(程度小);ⅳ.1k2的放缩(c):1k 2<44k 2-1=2⎝ ⎛⎭⎪⎫12k -1-12k +1(程度更小);ⅴ.分式放缩还可利用真(假)分数的性质:b a >b +m a +m (b >a >0,m >0)和b a <b +ma +m(a >b >0,m >0). (3)判别式法.判别式法是根据已知或构造出来的一元二次方程、一元二次不等式、二次函数的根、解集、函数的性质等特征确定出其判别式所应满足的不等式,从而推出结论的方法.利用判别式法证明时,应先将问题转化为与二次三项式相关的问题,再利用判别式法求解,要注意二次项系数是否为零.此外还有导数法、添项法、几何法、构造函数法等. 5.用数学归纳法证题的步骤(1)证明当n 取第一个值n 0(例如n 0=1或n 0=2)时结论正确.(2)假设当n =k (k ∈N *,k ≥n 0)时结论正确,证明当n =k +1时结论也正确. 在完成了这两个步骤以后,就可以断定结论对于从n 0开始的所有正整数n 都正确. 应用数学归纳法证明时要注意以下几点:(1)步骤要完整、规范,即“两步一结论”缺一不可,且第二步证明一定要用到归纳假设. (2)n 的第一个值n 0应根据具体问题来确定.(3)假设当n =k (k ∈N *,且k ≥n 0)时结论正确,并不一定都是证明n =k +1时结论也正确.如用数学归纳法证明“当n 为正偶数时x n-y n能被x +y 整除”,第一步应验证n =2时,命题成立;第二步归纳假设成立应写成假设当n =k 时命题成立,则当n =k +2时,命题也成立.(4)用数学归纳法可证明有关正整数的问题,但并不是所有的正整数问题都可以用数学归纳法证明的.例如:用数学归纳法证明⎝⎛⎭⎪⎫1+1n (n ∈N *)的单调性就难以实现.一般来说,从n =k 时的情形过渡到n =k +1的情形时,如果问题中存在可利用的递推关系,则数学归纳法有用武之地,否则使用数学归纳法就有困难.做题时要注意具体问题具体分析.学科思想培优一、归纳推理和类比推理的应用例1 古希腊人常用小石子在沙滩上摆成各种形状来研究数.比如:他们研究过图(1)中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,图(2)中的1,4,9,16,…,这样的数称为正方形数.下列数中既是三角形数又是正方形数的是( )A.289 B .1024 C .1225 D .1378[解析] 由图形可得三角形数构成的数列通项a n =n2(n +1),正方形数构成的数列通项b n =n 2,则由b n =n 2(n ∈N *)可排除D.又由a n =n 2(n +1),当a n =289时,即验证是否存在n ∈N *,使得n (n +1)=578,经计算n 不存在;同理,依次验证,有1225×2=49×50,且352=1225,故选C.[答案] C 拓展提升解决此类题目时,需要细心观察图形,寻找每一项与序号之间的关系,同时还要联系相关的知识,注意抽象出的是数列的哪类公式.例2 在平面上,我们如果用一条直线去截正方形的一个角,那么截下的一个直角三角形,按图所标边长,由勾股定理有:c 2=a 2+b 2.设想正方形换成正方体,把截线换成如图所示的截面,这时从正方体上截下三条侧棱两两垂直的三棱锥O -LMN ,如果用S 1,S 2,S 3表示三个侧面面积,S 4表示截面面积,那么你类比得到的结论是________.[解析] 在进行类比推理时,应该注意平面图形中的点、线分别与空间图形中的线、面类比;平面图形的长度、面积分别与空间图形中的面积、体积类比,结论易得.[答案] S 21+S 22+S 23=S 24 拓展提升类比推理应从具体问题出发,通过观察、分析、类比、归纳而得出结论.通常情况下,平面图形的边长、面积往往类比空间几何体的面积、体积.二、演绎推理的应用例3 将下列演绎推理写成三段论的形式.(1)所有偶数都能被2整除,0 是偶数,所以0能被2整除;(2)循环小数是有理数,0.332·是循环小数,所以0.332·是有理数; (3)通项公式a n =2n +3的数列{a n }为等差数列; (4)函数f (x )=x 3是奇函数.[解] (1)所有偶数都能被2整除,(大前提) 0是偶数,(小前提) 0能被2整除.(结论)(2)循环小数是有理数,(大前提)0.332·是循环小数,(小前提)0.332·是有理数.(结论)(3)数列{a n }中,如果当n ≥2时,a n -a n -1为常数,则{a n }为等差数列,(大前提) 通项公式a n =2n +3时,若n ≥2,则a n -a n -1=2n +3-[2(n -1)+3]=2(常数),(小前提)通项公式a n =2n +3表示的数列{a n }为等差数列.(结论)(4)对于定义域关于原点对称的函数f (x ),若f (-x )=-f (x ),则函数f (x )是奇函数,(大前提)函数f (x )=x 3的定义域关于原点对称,f (-x )=(-x )3=-x 3=-f (x ),即f (-x )=-f (x ),(小前提)所以函数f (x )=x 3是奇函数.(结论) 拓展提升用三段论写推理过程时,关键是明确大、小前提;有时可省略小前提,有时甚至也可大前提与小前提同时省略,在寻找大前提时,可找一个使结论成立的充分条件作为大前提.三、直接证明例4 设a ,b ,c 为三角形三边,面积S =12(a +b +c ),且S 2=2ab ,试证:S <2a .[证明] (分析法)要证S <2a ,由于S 2=2ab ,即2a =S 2b ,所以只需证S <S 2b,即证b <S ,因为S =12(a +b +c ),所以只需证b <12(a +b +c ),即证b <a +c ,由于a ,b ,c 为三角形三边,所以上式显然成立,于是原命题成立.(综合法)因为a ,b ,c 为三角形三边,所以a +c >b ,所以a +b +c >2b , 又因为S =12(a +b +c ),即a +b +c =2S ,所以2S >2b ,所以S ·S >b ·S ,由于S 2=2ab ,所以2ab >bS ,即2a >S ,所以原命题得证. 拓展提升知识链之间的等价联系是产生一题多解的本质所在,掌握了这个“法宝”,必然会促进解题能力的逐步提高.四、反证法例5 设{a n }是公比为q 的等比数列. (1)推导{a n }的前n 项和公式;(2)设q ≠1,证明:数列{a n +1}不是等比数列. [解] (1)设{a n }的前n 项和为S n , 当q =1时,S n =a 1+a 1+…+a 1=na 1; 当q ≠1时,S n =a 1+a 1q +a 1q 2+…+a 1qn -1,①qS n =a 1q +a 1q 2+…+a 1q n ,②①-②得,(1-q )S n =a 1-a 1q n,∴S n =a 11-q n1-q,∴S n =⎩⎪⎨⎪⎧na 1,q =1,a 11-q n1-q,q ≠1.(2)证明:假设{a n +1}是等比数列,则对任意的k ∈N *, (a k +1+1)2=(a k +1)(a k +2+1),a 2k +1+2a k +1+1=a k a k +2+a k +a k +2+1,a 21q 2k +2a 1q k =a 1qk -1·a 1q k +1+a 1q k -1+a 1q k +1, ∵a 1≠0,∴2q k =qk -1+qk +1.∵q ≠0,∴q 2-2q +1=0,∴q =1,这与已知矛盾, ∴假设不成立,故{a n +1}不是等比数列. 拓展提升当命题结论中出现“至多”“至少”“不可能”“都不”“不是”等否定性词语时,常用反证法.对于“否定”型命题,从正面证明需要证明的情况太多,直接证明难以下手的命题,改变其思维方向,从结论入手进行反面思考,问题可能解决得十分干脆.五、数学归纳法例6 用数学归纳法证明:对一切n∈N *,1+122+132+…+1n 2≥3n 2n +1.[证明] (1)当n =1时,左边=1, 右边=3×12×1+1=1,不等式成立.(2)假设当n =k (k ∈N *)时,不等式成立, 即1+122+132+…+1k 2≥3k 2k +1,则当n =k +1时,要证1+122+132+…+1k 2+1k +12≥3k +12k +1+1,只需证3k 2k +1+1k +12≥3k +12k +3.因为3k +12k +3-⎣⎢⎡⎦⎥⎤3k 2k +1+1k +12=34k +12-1-1k +12=1-k +12k +12[4k +12-1]=-k k +2k +124k 2+8k +3≤0,所以3k 2k +1+1k +12≥3k +12k +3,即1+122+132+…+1k 2+1k +12≥3k +12k +1+1,所以当n =k +1时不等式成立.由(1)(2)知,不等式对一切n ∈N *都成立. 拓展提升本题在知道结果以后,执果索因,用分析法进行证明.在解题过程中数学归纳法通常与其他方法综合运用,如比较法、放缩法、配凑法、分析法和综合法.例7 已知点的序列A n (x n,0),n ∈N *,其中x 1=0,x 2=a (a >0),A 3是线段A 1A 2的中点,A 4是线段A 2A 3的中点,…,A n 是线段A n -2A n -1的中点,….(1)写出x n 与x n -1,x n -2之间的关系式(n ≥3);(2)设a n =x n +1-x n ,计算a 1,a 2,a 3,由此猜想数列{a n }的通项公式,并加以证明. [解] (1)当n ≥3时,x n =x n -1+x n -22;(2)a 1=x 2-x 1=a ,a 2=x 3-x 2=x 2+x 12-x 2=-12(x 2-x 1)=-a 2,a 3=x 4-x 3=x 3+x 22-x 3=-12(x 3-x 2)=-12⎝ ⎛⎭⎪⎫-12a =14a ,由此猜想a n =⎝ ⎛⎭⎪⎫-12n -1a (n ∈N *),用数学归纳法证明如下:①当n =1时,a 1=x 2-x 1=a =⎝ ⎛⎭⎪⎫-120a ,猜想成立;②假设当n =k (n ∈N *)时,猜想成立,即a k =⎝ ⎛⎭⎪⎫-12k -1a 成立,那么,a k +1=x k +2-x k +1=x k +1+x k2-x k +1=-12(x k +1-x k )=-12a k =-12⎝ ⎛⎭⎪⎫-12k -1a=⎝ ⎛⎭⎪⎫-12(k +1)-1a ,即当n =k +1时猜想也成立. 根据①和②,可知{a n }的通项公式为a n =⎝ ⎛⎭⎪⎫-12n -1a (n ∈N *).拓展提升由已知求出数列的前n项,提出猜想,然后再用数学归纳法证明,是不完全归纳法与数学归纳法相结合的一种重要的解决数列通项公式的方法,证明的关键是根据已知条件和假设寻找a k与a k+1或S k与S k+1之间的关系,从而为数学归纳法的实施做了必要的准备.。
高中数学 第5章 推理与证明 5.2 直接证明与间接证明 5.2.1 直接证明:分析法与综合法讲义(

5.2.1 直接证明:分析法与综合法[读教材·填要点]综合法和分析法综合法分析法定义 从数学题的已知条件出发,经过逐步的逻辑推理,最后达到待证结论或需求的问题,称为综合法从数学题的待证结论或需求问题出发,一步一步地探索下去,最后达到题设的已知条件,称为分析法特点从“已知”看“可知”,由因导果,寻找必要条件从“未知”看“需知”,执果索因,寻找充分条件[小问题·大思维]1.综合法与分析法的推理过程是合情推理还是演绎推理?提示:综合法与分析法的推理过程是演绎推理,因为综合法与分析法的每一步推理都是严密的逻辑推理,从而得到的每一个结论都是正确的,不同于合情推理中的“猜想”.2.综合法与分析法有什么区别?提示:综合法是从已知条件出发,逐步推向未知,每步寻找的是必要条件;分析法是从待求结论出发,逐步靠拢已知,每步寻找的是充分条件.综合法的应用已知a ,b 是正数,且a +b =1,求证:1a +1b≥4.[自主解答] 法一:∵a ,b ∈R +且a +b =1, ∴a +b ≥2ab . ∴ab ≤12.∴1a +1b =a +b ab =1ab≥4.当且仅当a =b =12时,取“=”号.法二:∵a ,b ∈R +, ∴a +b ≥2ab >0,1a +1b ≥21ab>0.∴(a +b )⎝ ⎛⎭⎪⎫1a +1b ≥4.又因为a +b =1, ∴1a +1b≥4.当且仅当a =b =12时,取“=”号.法三:∵a ,b ∈R +,且a +b =1, ∴1a +1b =a +b a +a +b b=1+b a +ab +1≥2+2a b ·ba=4. 当且仅当a =b =12时,取“=”号.保持例题条件不变,求证:4a +1b≥9.证明:法一:∵a >0,b >0,且a +b =1. ∴4a +1b=4a +b a +a +b b =4+4b a +ab+1 ≥5+24b a ·ab=5+4=9.当且仅当4b a =a b ,即a =2b =23时等号成立.法二:∵a >0,b >0,且a +b =1. ∴4a +1b=(a +b )·⎝ ⎛⎭⎪⎫4a +1b =4+4b a +a b+1≥5+24b a ·ab=5+4=9.当且仅当4b a =a b ,即a =2b =23时等号成立.综合法证明问题的步骤(1)分析条件,选择方向:确定已知条件和结论间的联系,合理选择相关定义、定理等. (2)转化条件,组织过程:将条件合理转化,书写出严密的证明过程. 特别地,根据题目特点选取合适的证法可以简化解题过程.1.在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,若a 2=b (b +c ),求证:A =2B . 证明:∵a 2=b (b +c ),∴cos A =b 2+c 2-a 22bc =b 2+c 2-b 2+bc 2bc =c -b 2b,cos 2B =2cos 2B -1=2⎝ ⎛⎭⎪⎫a 2+c 2-b 22ac 2-1=2⎝ ⎛⎭⎪⎫b +c 2a 2-1=b +c 2-2b b +c 2b b +c =c -b 2b , ∴cos A =cos 2B .又A ,B 是三角形的内角,∴A =2B .分析法的应用当a +b >0时,求证:a 2+b 2≥22(a +b ). [自主解答] 要证 a 2+b 2≥22(a +b ), 只需证(a 2+b 2)2≥⎣⎢⎡⎦⎥⎤22a +b 2, 即证a 2+b 2≥12(a 2+b 2+2ab ),即证a 2+b 2≥2ab .因为a 2+b 2≥2ab 对一切实数恒成立, 所以a 2+b 2≥22(a +b )成立.综上所述,不等式得证.分析法的证明过程及书写形式(1)证明过程:确定结论与已知条件间的联系,合理选择相关定义、定理对结论进行转化,直到获得一个显而易见的命题即可.(2)书写形式:要证…,只需证…,即证…,然后得到一个明显成立的条件,所以结论成立.2.已知a>6,求证:a-3-a-4<a-5-a-6.证明:法一:要证a-3-a-4<a-5-a-6,只需证a-3+a-6<a-5+a-4⇐(a-3+a-6)2<(a-5+a-4)2⇐2a-9+2a-3a-6<2a-9+2a-5a-4⇐a-3a-6<a-5a-4⇐(a-3)(a-6)<(a-5)(a-4)⇐18<20,因为18<20显然成立,所以原不等式a-3-a-4<a-5-a-6成立.法二:要证a-3-a-4<a-5-a-6,只需证1a-3+a-4<1a-5+a-6,只需证a-3+a-4>a-5+a-6.∵a>6,∴a-3>0,a-4>0,a-5>0,a-6>0.又∵a-3>a-5,∴a-3>a-5,同理有a-4>a-6,则a-3+a-4>a-5+a-6.∴a-3-a-4<a-5-a-6.综合法与分析法的综合应用已知△ABC的三个内角A,B,C为等差数列,且a,b,c分别为角A,B,C的对边,求证:(a+b)-1+(b+c)-1=3(a+b+c)-1.[自主解答] 法一:要证(a+b)-1+(b+c)-1=3(a +b +c )-1, 只需证1a +b +1b +c =3a +b +c, 即证a +b +c a +b +a +b +cb +c=3, 化简,得c a +b +ab +c=1,即c (b +c )+(a +b )a =(a +b )(b +c ). 所以只需证c 2+a 2=b 2+ac .因为△ABC 的三个内角A ,B ,C 成等差数列, 所以B =60°,所以cos B =a 2+c 2-b 22ac =12.所以a 2+c 2-b 2=ac ,所以原式成立.法二:因为△ABC 的三个内角A ,B ,C 成等差数列, 所以B =60°.由余弦定理,有b 2=c 2+a 2-2ac cos 60°, 所以c 2+a 2=ac +b 2. 两边加ab +bc ,得c (b +c )+a (a +b )=(a +b )(b +c ),两边同时除以(a +b )(b +c ),得ca +b +ab +c=1,所以⎝ ⎛⎭⎪⎫c a +b +1+⎝ ⎛⎭⎪⎫a b +c +1=3. 即1a +b +1b +c =3a +b +c. 所以(a +b )-1+(b +c )-1=3(a +b +c )-1.综合法与分析法的适用X 围 (1)综合法适用的X 围:①定义明确的题型,如证明函数的单调性、奇偶性,求证无条件的等式或不等式问题等; ②已知条件明确,且容易通过找已知条件的必要条件逼近欲得结论的题型.(2)分析法适用的X围:已知条件不明确,或已知条件简便而结论式子较复杂的问题.3.(1)设x≥1,y≥1,证明:x+y+1xy ≤1x+1y+xy;(2)设1<a≤b≤c,证明:log a b+log b c+log c a≤log b a+log c b+log a c. 证明:(1)由于x≥1,y≥1,所以x+y+1xy≤1x+1y+xy⇔xy(x+y)+1≤y+x+(xy)2.将上式中的右式减左式,得[y+x+(xy)2]-[xy(x+y)+1]=[(xy)2-1]-[xy(x+y)-(x+y)]=(xy+1)(xy-1)-(x+y)(xy-1)=(xy-1)(xy-x-y+1)=(xy-1)(x-1)(y-1).又x≥1,y≥1,所以(xy-1)(x-1)(y-1)≥0,从而所要证明的不等式成立.(2)设log a b=x,log b c=y,由对数的换底公式得log c a=1xy ,log b a=1x,log c b=1y,log a c=xy.于是,所要证明的不等式即为x+y+1xy≤1x+1y+xy,其中x=log a b≥1,y=log b c≥1.故由(1)可知所要证明的不等式成立.已知a,b,c∈R且不全相等,求证:a2+b2+c2>ab+bc+ca. [证明] 法一:(分析法)要证a2+b2+c2>ab+bc+ca,只需证2(a2+b2+c2)>2(ab+bc+ca),只需证(a2+b2-2ab)+(b2+c2-2bc)+(c2+a2-2ca)>0,只需证(a -b )2+(b -c )2+(c -a )2>0, 因为a ,b ,c ∈R ,所以(a -b )2≥0,(b -c )2≥0,(c -a )2≥0. 又因为a ,b ,c 不全相等, 所以(a -b )2+(b -c )2+(c -a )2>0. 所以原不等式a 2+b 2+c 2>ab +bc +ca 成立. 法二:(综合法) 因为a ,b ,c ∈R ,所以(a -b )2≥0,(b -c )2≥0,(c -a )2≥0. 又因为a ,b ,c 不全相等, 所以(a -b )2+(b -c )2+(c -a )2>0.所以(a 2+b 2-2ab )+(b 2+c 2-2bc )+(c 2+a 2-2ca )>0. 所以2(a 2+b 2+c 2)>2(ab +bc +ca ). 所以a 2+b 2+c 2>ab +bc +ca .1.命题“对于任意角θ,cos 4θ-sin 4θ=cos 2θ”的证明过程:“cos 4θ-sin 4θ=(cos 2θ-sin 2θ)(cos 2θ+sin 2θ)=cos 2θ-sin 2θ=cos 2θ”,此过程应用了( )A .分析法B .综合法C .综合法、分析法综合使用D .间接证明法解析:结合推理及分析法和综合法的定义可知,B 正确. 答案:B2.在△ABC 中,若sin B sin C =cos 2A2,则下列等式一定成立的是( )A .A =B B .A =C C .B =CD .A =B =C解析:∵sin B sin C =cos 2A 2=1+cos A 2=1-cos B +C 2, ∴cos(B +C )=1-2sin B sin C ,∴cos B cos C -sin B sin C =1-2sin B sin C , ∴cos B cos C +sin B sin C =1,∴cos(B -C )=1.又0<B <π,0<C <π,∴-π<B -C <π,∴B =C . 答案:C3.分析法又称执果索因法,若用分析法证明“设a >b >c ,且a +b +c =0,求证:b 2-ac <3a ”索的因应是( )A .a -b >0B .a -c >0C .(a -b )(a -c )>0D .(a -b )(a -c )<0解析:b 2-ac <3a ⇔b 2-ac <3a 2⇔(a +c )2-ac <3a 2⇔a 2+2ac +c 2-ac -3a 2<0⇔-2a 2+ac +c 2<0⇔2a 2-ac -c 2>0⇔(a -c )(2a +c )>0⇔(a -c )(a -b )>0. 答案:C4.命题“函数f (x )=x -x ln x 在区间(0,1)上是增函数”的证明过程“对函数f (x )=x -x ln x 求导得f ′(x )=-ln x ,当x ∈(0,1)时,f ′(x )=-ln x >0,故函数f (x )在区间(0,1)上是增函数”应用了________的证明方法.解析:由证明过程可知,该证明方法为综合法. 答案:综合法5.将下面用分析法证明a 2+b 22≥ab 的步骤补充完整:要证a 2+b 22≥ab ,只需证a 2+b 2≥2ab ,也就是证______,即证________,由于________显然成立,因此原不等式成立.答案:a 2+b 2-2ab ≥0 (a -b )2≥0 (a -b )2≥06.已知x >0,y >0,且x +y =1,试分别用综合法与分析法证明:⎝⎛⎭⎪⎫1+1x ⎝⎛⎭⎪⎫1+1y ≥9.证明:法一:(综合法) 左边=⎝ ⎛⎭⎪⎫1+x +y x ⎝ ⎛⎭⎪⎫1+x +y y =⎝ ⎛⎭⎪⎫2+y x ⎝ ⎛⎭⎪⎫2+x y =4+2⎝⎛⎭⎪⎫y x +xy+1≥5+4=9. 当且仅当x =y =12时等号成立.法二:(分析法)要证⎝⎛⎭⎪⎫1+1x ⎝⎛⎭⎪⎫1+1y ≥9成立,∵x ,y ∈R +且x +y =1,∴y =1-x . 只需证明⎝ ⎛⎭⎪⎫1+1x ⎝ ⎛⎭⎪⎫1+11-x ≥9成立,即证(1+x )(1-x +1)≥9x (1-x ), 即证2+x -x 2≥9x -9x 2,即证4x 2-4x +1≥0,即证(2x -1)2≥0,此式显然成立, 所以原不等式成立.一、选择题1.已知a ,b ,c ∈R ,那么下列命题中正确的是( ) A .若a >b ,则ac 2>bc 2B .若a c >b c,则a >b C .若a 3>b 3且ab <0,则1a >1bD .若a 2>b 2且ab >0,则1a <1b解析:对于A :若c =0,则A 不成立,故A 错; 对于B :若c <0,则B 不成立,B 错; 对于C :若a 3>b 3且ab <0, 则⎩⎪⎨⎪⎧a >0,b <0,所以1a >1b,故C 对;对于D :若⎩⎪⎨⎪⎧a <0,b <0,则D 不成立.答案:C2.设a >0,b >0,若3是3a 与3b的等比中项,则1a +1b的最小值为( )A .8B .4C .1 D.14解析:3是3a 与3b 的等比中项⇒3a ·3b =3⇒3a +b=3⇒a +b =1,因为a >0,b >0,所以ab ≤a +b 2=12⇒ab ≤14, 所以1a +1b =a +b ab =1ab ≥114=4.答案:B3.已知△ABC 中,cos A +cos B >0,则必有( ) A .0<A +B <πB .0<A +B <π2C.π2<A +B <π D.π2≤A +B <π 解析:由cos A +cos B >0,得cos A >-cos B , ∴cos A >cos(π-B ).∵0<A <π,0<B <π,且y =cos x 在x ∈(0,π)上单调递减. ∴A <π-B .∴A +B <π,即0<A +B <π. 答案:A4.已知实数a ,b ,c 满足a +b +c =0,abc >0,则1a +1b +1c的值( )A .一定是正数B .一定是负数C .可能是零D .正、负不能确定解析:∵a +b +c =0,∴(a +b +c )2=0. ∴a 2+b 2+c 2+2(ab +bc +ac )=0. ∴ab +bc +ac =-12(a 2+b 2+c 2)<0.又abc >0,∴1a +1b +1c =ab +bc +acabc<0.答案:B 二、填空题5.如果a a +b b >a b +b a ,则实数a ,b 应满足的条件是________________. 解析:a a +b b >a b +b a ⇔a a -a b >b a -b b ⇔a (a -b )>b (a -b )⇔(a -b )(a -b )>0 ⇔(a +b )(a -b )2>0, 故只需a ≠b 且a ,b 都不小于零即可.答案:a ≥0,b ≥0且a ≠b6.若a =ln 22,b =ln 33,c =ln 55,则a ,b ,c 的大小关系为____________. 解析:利用函数单调性.设f (x )=ln x x ,则f ′(x )=1-ln x x2, ∴0<x <e 时,f ′(x )>0,f (x )单调递增;x >e 时,f ′(x )<0,f (x )单调递减.又a =ln 44,∴b >a >c . 答案:c <a <b7.已知p =a +1a -2(a >2),q =2-a 2+4a -2(a >2),则p 与q 的大小关系是________. 解析:p =a -2+1a -2+2≥2a -2·1a -2+2=4,当且仅当a =3时等号成立. -a 2+4a -2=2-(a -2)2<2,∴q <22=4≤p .答案:p >q8.若对任意x >0,x x 2+3x +1≤a 恒成立,则a 的取值X 围是________. 解析:∵a ≥x x 2+3x +1=1x +1x+3对任意x >0恒成立, 设μ=x +1x+3(x >0). ∴只需a ≥1μ恒成立即可. 又∵μ=x +1x+3≥5,当且仅当x =1时“=”成立. ∴0<1μ≤15.∴a ≥15. 答案:⎣⎢⎡⎭⎪⎫15,+∞ 三、解答题9.已知数列{a n }的首项a 1=5,S n +1=2S n +n +5,(n ∈N *).(1)证明数列{a n +1}是等比数列. (2)求a n .解:(1)证明:由条件得S n =2S n -1+(n -1)+5(n ≥2)①又S n +1=2S n +n +5,②②-①得a n +1=2a n +1(n ≥2),所以a n +1+1a n +1=2a n +1+1a n +1=2a n +1a n +1=2. 又n =1时,S 2=2S 1+1+5,且a 1=5,所以a 2=11,所以a 2+1a 1+1=11+15+1=2, 所以数列{a n +1}是以2为公比的等比数列.(2)因为a 1+1=6,所以a n +1=6×2n -1=3×2n , 所以a n =3×2n -1.10.已知a ,b ,m 为非零实数,且a 2+b 2+2-m =0,1a 2+4b2+1-2m =0. (1)求证:1a 2+4b 2≥9a 2+b 2; (2)求证:m ≥72. 证明:(1)(分析法)要证1a 2+4b 2≥9a 2+b2成立, 只需证⎝ ⎛⎭⎪⎫1a 2+4b 2(a 2+b 2)≥9, 即证1+4+b 2a 2+4a 2b 2≥9,即证b 2a 2+4a 2b2≥4. 根据基本不等式,有b 2a 2+4a 2b2≥2 b 2a 2·4a 2b 2=4成立, 所以原不等式成立.(2)(综合法)因为a 2+b 2=m -2,1a 2+4b2=2m -1, 由(1),知(m -2)(2m -1)≥9,即2m 2-5m -7≥0,解得m ≤-1或m ≥72. 因为a 2+b 2=m -2>0,1a 2+4b 2=2m -1>0, 所以m ≥72.。
2020高考数学(理)二轮回归教材考点讲义《1集合、常用逻辑用语、不等式与推理证明》

回扣1集合、常用逻辑用语、不等式与推理证明1.集合(1)集合的运算性质①交换律:A∪B=B∪A;A∩B=B∩A;②结合律:(A∪B)∪C=A∪(B∪C);(A∩B)∩C=A∩(B∩C);③分配律:(A∩B)∪C=(A∪C)∩(B∪C);(A∪B)∩C=(A∩C)∪(B∩C);④∁U(A∪B)=(∁U A)∩(∁U B);∁U(A∩B)=(∁U A)∪(∁U B);⑤A∪B=A⇔B⊆A;A∩B=B⇔B⊆A.(2)子集、真子集个数计算公式对于含有n个元素的有限集合M,其子集、真子集、非空子集、非空真子集的个数依次为2n,2n-1,2n-1,2n-2.(3)集合运算中的常用方法若已知的集合是不等式的解集,用数轴求解;若已知的集合是点集,用数形结合法求解;若已知的集合是抽象集合,用Venn图求解.2.四种命题及其相互关系(1)(2)互为逆否命题的两个命题同真同假.3.含有逻辑联结词的命题的真假(1)命题p∨q:若p,q中至少有一个为真,则命题p∨q为真命题,p,q同时为假命题时,命题p∨q为假命题,简记为:一真则真,同假则假.(2)命题p∧q:若p,q中至少有一个为假,则命题p∧q为假命题,p,q同为真时,命题才为真命题,简记为:一假则假,同真则真.(3)命题綈p:与命题p真假相反.4.全称命题、特称(存在性)命题及其否定(1)全称命题p:∀x∈M,p(x),其否定为特称(存在性)命题:綈p:∃x0∈M,綈p(x0).(2)特称(存在性)命题p:∃x0∈M,p(x0),其否定为全称命题:綈p:∀x∈M,綈p(x).5.充分条件与必要条件的三种判定方法(1)定义法:正、反方向推理,若p⇒q,则p是q的充分条件(或q是p的必要条件);若p⇒q,且q⇏p,则p是q的充分不必要条件(或q是p的必要不充分条件).(2)集合法:利用集合间的包含关系.例如,命题p:x∈A,命题q:x∈B,若A⊆B,则p是q 的充分条件(q是p的必要条件);若A B,则p是q的充分不必要条件(q是p的必要不充分条件);若p=q,则p是q的充要条件.(3)等价法:将命题等价转化为另一个便于判断真假的命题.6.一元二次不等式的解法解一元二次不等式的步骤:一化(将二次项系数化为正数);二判(判断对应方程Δ的符号);三解(解对应的一元二次方程);四写(大于取两边,小于取中间).解含有参数的一元二次不等式一般要分类讨论,往往从以下几个方面来考虑:①二次项系数,它决定二次函数的开口方向;②判别式Δ,它决定根的情形,一般分Δ>0,Δ=0,Δ<0三种情况;③在有根的条件下,要比较两根的大小.7.一元二次不等式的恒成立问题(1)ax 2+bx +c >0(a ≠0)恒成立的条件是⎩⎪⎨⎪⎧ a >0,Δ<0. (2)ax 2+bx +c <0(a ≠0)恒成立的条件是⎩⎪⎨⎪⎧ a <0,Δ<0. 8.分式不等式f (x )g (x )>0(<0)⇔f (x )g (x )>0(<0); f (x )g (x )≥0(≤0)⇔⎩⎪⎨⎪⎧f (x )g (x )≥0(≤0),g (x )≠0. 9.基本不等式(1)基本不等式:a +b 2≥ab (a ,b ∈(0,+∞)),当且仅当a =b 时取等号. 基本不等式的变形:①a 2+b 2≥2ab (a ,b ∈R ),当且仅当a =b 时取等号;②⎝⎛⎭⎫a +b 22≥ab (a ,b ∈R ),当且仅当a =b 时取等号.(2)在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,满足基本不等式中“正”、“定”、“等”的条件.10.线性规划(1)可行域的确定,“线定界,点定域”.(2)线性目标函数的最大值、最小值一般在可行域的顶点处取得.(3)线性目标函数的最值也可在可行域的边界上取得,这时满足条件的最优解有无数多个.11.推理推理分为合情推理与演绎推理,合情推理包括归纳推理和类比推理;演绎推理的一般模式是三段论.12.证明方法(1)综合法.(2)分析法.(3)反证法.(4)数学归纳法.1.描述法表示集合时,一定要理解好集合的含义——抓住集合的代表元素.如{x|y=lg x}——函数的定义域;{y|y=lg x}——函数的值域;{(x,y)|y=lg x}——函数图象上的点集.2.易混淆0,∅,{0}:0是一个实数;∅是一个集合,它含有0个元素;{0}是以0为元素的单元素集合,但是0∉∅,而∅⊆{0}.3.集合的元素具有确定性、无序性和互异性,在解决有关集合的问题时,尤其要注意元素的互异性.4.空集是任何集合的子集.由条件A⊆B,A∩B=A,A∪B=B求解集合A时,务必分析研究A =∅的情况.5.区分命题的否定与否命题,已知命题为“若p,则q”,则该命题的否定为“若p,则綈q”,其否命题为“若綈p,则綈q”.6.在对全称命题和特称(存在性)命题进行否定时,不要忽视对量词的改变.7.对于充分、必要条件问题,首先要弄清谁是条件,谁是结论.8.判断命题的真假要先明确命题的构成.由命题的真假求某个参数的取值范围,还可以从集合的角度来思考,将问题转化为集合间的运算.9.不等式两端同时乘一个数或同时除以一个数时,如果不讨论这个数的正负,容易出错.10.解形如ax2+bx+c>0(a≠0)的一元二次不等式时,易忽视系数a的讨论导致漏解或错解,要注意分a>0,a<0进行讨论.11.求解分式不等式时应正确进行同解变形,不能把f(x)g(x)≤0直接转化为f(x)·g(x)≤0,而忽视g(x)≠0.12.容易忽视使用基本不等式求最值的条件,即“一正、二定、三相等”导致错解,如求函数f (x )=x 2+2+1x 2+2的最值,就不能利用基本不等式求最值;求解函数y =x +3x (x <0)时应先转化为正数再求解.13.解线性规划问题,要注意边界的虚实;注意目标函数中y 的系数的正负;注意最优整数解. 14.求解线性规划问题时,不能准确把握目标函数的几何意义导致错解,如y -2x +2是指已知区域内的点(x ,y )与点(-2,2)连线的斜率,而(x -1)2+(y -1)2是指已知区域内的点(x ,y )到点(1,1)的距离的平方等.15.类比推理易盲目机械类比,不要被表面的假象(某一点表面相似)迷惑,应从本质上类比.用数学归纳法证明时,易盲目以为n 0的起始值为1,另外注意证明传递性时,必须用n =k 成立的归纳假设.。
MBA经典逻辑论证推理讲义

A.小张输入的密码是错误的 B.小张的计算机不属于这个域 C.如果小张的计算机属于这个域,那么他输入的密码是错误的 D.只有小张输入的密码是正确的,它的计算机才属于这个域 E.如果小张输入的密码是正确的,那么它的计算机属于这个域
2011
华章MBA
Created by 薛睿
例题47
提干:是否属于域 and 登录帐户存在 and 密码正确 允许登录 逆否:拒绝登录 不属于域 or 登录帐户不存在 or 密码不正确 提干说登录帐号正确,说明
不属于域 or 密码不正确, 那么 属于域 密码不正确 或者 密码正确不属于域 均为正确选项,选C D:属于域密码正确 E:密码正确属于域 均错误。
2011 逻辑讲义
主讲人:薛睿
2011
华章MBA
Created by 薛睿
逻辑真题题型分类
一、形式逻辑 1)直言命题 2)文氏图/三段论/模态命题转换
3)选言/假言命题的简单推理(按照逻辑连词画箭头)
二 、判断推理 1)假设 (连逻辑,指出不同,指出前提) 2)质疑/削弱 (前真后假,前假后真,指出不同,弊大于利) 3)支持 (指出相同,利大于弊)
引入前提 选C
2011
华章MBA
Created by 薛睿
假设例题4
北京一下雨,路就会很滑,所以下雨的时候,北京车祸总是很多。上述结 论成立所需要的假设是什么? A:一些国外的大城市比如伦敦、东京等城市在雨季车祸也很多 B:北京在秋季来临的时候总是阴雨连绵 C:北京市车祸比率在全国是最高的,绝大多数时间车祸都很多。 D:路滑会引起车祸的增多 E:全国在雨季的时候车祸都很多
蔬菜供应增加
农民增收 or 福利增加
5推理与证明-拔高难度-讲义

推理与证明知识讲解一、推理推理:根据一个或几个已知事实(或假设)得出一个判断.这种思维方式就是推理.从结构上说,推理一般由两部分组成,一部分是已知的事实(或假设),叫做前提;一部分是由已知推出的判断,叫做结论.推理一般分为合情推理与演绎推理.1.合情推理:前提为真,结论可能为真的推理.归纳推理和类比推理是数学中常用的合情推理.归纳推理:根据一类事物的部分对象具有某种性质,推出这类事物的所有对象都具有这种性质的推理,叫做归纳推理(简称归纳).归纳是从特殊到一般的过程.归纳推理的一般步骤:第1步通过观察个别情况发现某些相同的性质;第2步从已知的相同性质中推出一个明确表述的一般性命题(猜想).类比推理:根据两类不同事物之间具有某些类似(或一致)性,推测其中一类事物具有与另一类事物类似(或相同)的性质的推理,叫做类比推理(简称类比).类比推理的一般步骤:第1步找出两类事物之间的相似性或一致性;第2步用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).2.演绎推理:根据一般性的真命题(或逻辑规则)导出特殊性命题为真的推理.演绎推理的特征是:当前提为真时,结论必然为真.几种数学中常用的演绎推理规则:⇒,p真,⑴假言推理:通过验证结论的充分条件为真,判断结论为真.符号语言:若p q则q真;⇒.⑵三段论推理:如果b c a b⇒⇒,,则a c“三段论”是演绎推理的一般模式;包括:①大前提——已知的一般原理;(通常是已知的定义、定理、公式等)②小前提——所研究的特殊情况;(通常是已知条件或前面推理的结论)③结论——据一般原理,对特殊情况做出的判断.⑶传递性关系推理:如果aRb bRc,,则aRc,其中R表示具有传递性的关系.⑷完全归纳推理:把所有情况都考虑在内的演绎推理规则.二、证明证明:分成直接证明与间接证明.1.直接证明:从命题的条件或结论出发,根据已知的定义、公理、定理,直接推证结论的真实性.常用的直接证明方法有综合法与分析法.①综合法:从已知条件出发,经过逐步的推理,最后达到待证结论.是从原因推导到结果的思维方法;②分析法:从待证结论出发,一步一步寻求结论成立的充分条件,最后达到题设的已知条件或已被证明的事实.是一种从结果追溯到产生结果的原因的思维方法.2.间接证明:常用的有反证法.反证法:先否定结论,在否定结论的基础上,运用演绎推理,导出矛盾,从而肯定结论的真实性.常见矛盾:与假设矛盾;与数学公理、定理、公式、定义或已被证明了的结论矛盾;与公认的简单事实矛盾;与原命题中的已知结论矛盾等.典例精讲一.选择题(共12小题)1.(2018春•龙岩期中)有一个偶数组成的数阵排列如下:2 4 8 14 22 32 …6 10 16 24 34 ……12 18 26 36 ………20 28 38 …………30 40 ……………42 …………………………………则第20行第4列的数为()A.546B.540C.592D.5982.(2017秋•大武口区校级期中)某校高二(1)班每周都会选出两位“迟到之星”,期中考试之前一周“迟到之星”人选揭晓之前,小马说:“两个人选应该是在小赵、小宋和小谭三人之中产生”,小赵说:“一定没有我,肯定有小宋”,小宋说:“小马、小谭二人中有且仅有一人是迟到之星”,小谭说:“小赵说的对”.已知这四人中有且只有两人的说法是正确的,则“迟到之星”是()A.小赵、小谭B.小马、小宋C.小马、小谭D.小赵、小宋3.(2017•迎泽区校级一模)以下数表的构造思路源于我国南宋数学家杨辉所著的《详解九章算术》一书中的“杨辉三角形”.该表由若干行数字组成,从第二行起,每一行中的数字均等于其“肩上”的两数之和,表中最后一行仅是一个数,则这个数为()A .2018×22016B .2018×22015C .2017×22016D .2017×220154.(2017春•阳春市校级月考)等差数列有如下性质:若数列{a n }为等差数列,则当b n =a 1+a 2+⋯+a nn时,数列{b n }也是等差数列;类比上述性质,相应地,若数列{c n }是正项等比数列,当d n =____________时,数列{d n }也是等比数列,则d n 的表达式为( ) A .d n =c 1+c 2+⋯+c n nB .d n =c 1⋅c 2⋅⋯⋅c nnC .d n =√c 1⋅c 2⋅⋯⋅c n nD .d n =√c 1n ⋅c 2n ⋅⋯⋅c n nnn5.(2017春•蕲春县期中)给出下面四个类比结论正确的个数是( ) ①实数a ,b ,若ab=0,则a=0或b=0;类比复数z 1、z 2,若z 1z 2=0,则z 1=0或z 2=0; ②实数a ,b ,若ab=0,则a=0或b=0;类比向量a →,b →,若a →•b →=0,则a →=0→或b →=0→; ③实数a ,b ,有a 2+b 2=0,则a=b=0;类比复数z 1,z 2,有z 12+z 22=0,则z 1=z 2=0; ④实数a ,b ,有a 2+b 2=0,则a=b=0;类比向量a →,b →,有a →2+b →2=0,则a →=b →=0→.A .0B .1C .2D .36.(2017•蚌埠三模)现有10支队伍参加篮球比赛,规定:比赛采取单循环比赛制,即每支队伍与其他9支队伍各比赛一场;每场比赛中,胜方得2分,负方得0分,平局双方各得1分.下面关于这10支队伍得分的叙述正确的是( ) A .可能有两支队伍得分都是18分 B .各支队伍得分总和为180分 C .各支队伍中最高得分不少于10分D.得偶数分的队伍必有偶数个7.(2017春•新华区校级月考)有三张卡片,分别写有1和2,1和3,2和3,甲乙丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上没有的数字是()A.不确定B.3C.2D.18.(2017•和平区校级模拟)我们知道:在平面内,点(x0,y0)到直线Ax+By+C=0的距离公式为d=00√A2+B2,通过类比的方法,可求得:在空间中,点(2,4,1)到平面x+2y+3z+3=0的距离为()A.3B.5C.8√147D.3√59.(2017•永州二模)有四人在海边沙滩上发现10颗精致的珍珠,四人约定分配方案:四人先抽签排序①②③④,再由①号提出分配方案,四人表决,至少要有半数的赞成票才算通过,若通过就按此方案分配,否则提出方案的①号淘汰,不再参与分配,接下来由②号提出分配方案,三人表决…,依此类推.假设:1.四人都守信用,愿赌服输;2.提出分配方案的人一定会赞成自己的方案;3.四人都会最大限度争取个人利益.易知若①②都淘汰,则③号的最佳分配方案(能通过且对提出方案者最有利)是(10,0)(表示③、④号分配珍珠数分别是10和0).问①号的最佳分配方案是()A.(4,2,2,2)B.(9,0,1,0)C.(8,0,1,1)D.(7,0,1,2)10.(2017•淄博一模)如图所示,由直线x=a,x=a+1(a>0),y=x2及x轴围成的曲边梯形的面积介于相应小矩形与大矩形的面积之间,即a2<∫a+1ax2dx<(a +1)2.类比之,若对∀n ∈N*,不等式1n+1+1n+2+⋯+12n<A <1n +1n+1+…+12n−1恒成立,则实数A 等于( )A .ln 52B .ln 2C .12ln 2D .12ln 511.(2017•大连模拟)“一支医疗救援队里的医生和护士,包括我在内,总共是13名,下面讲到人员情况,无论是否把我计算在内,都不会有任何变化,在这些医务人员中:①护士不少于医生;②男医生多于女护士;③女护士多于男护士;④至少有一位女医生.”由此推测这位说话人的性别和职务是( ) A .男护士 B .女护士 C .男医生 D .女医生12.(2016秋•房山区期末)对于100个黑球和99个白球的任意排列(从左到右排成一行),则一定( )A .存在一个白球,它右侧的白球和黑球一样多B .存在一个黑球,它右侧的白球和黑球一样多C .存在一个白球,它右侧的白球比黑球少一个D .存在一个黑球,它右侧的白球比黑球少一个二.填空题(共6小题)13.(2018春•邢台期末)已知函数f (x )=xlnx ,设f 1(x )=f′(x )=1+lnx ,f 2(x )=f1′(x )=1x,f 3(x )=f2′(x )=−1x 2,f 4(x )=f 3′(x )=2x 3…,则f10(1)=.(用数字作答)1×2×3×4×5×6×714.(2018春•赣榆区期中)当△DEF和正△ABC具有如图所示的位置关系时,我们称△DEF内接于正△ABC.已知n边形A1A2…A n内接于边长为1的正n边形A1′A2′…A n′(n≥3),若n边形A1A2…A n中至少有一边的长不小于a,则a的最小值是.(用含有n的表达式表示)15.(2018•济南一模)如图所示,将平面直角坐标系中的格点(横、纵坐标均为整数的点)按如下规则标上标签:原点处标数字0,记为a0;点(1,0)处标数字1,记为a1;点(1,﹣1)处标数字0,记为a2;点(0,﹣1)处标数字﹣1,记为a3;点(﹣1,﹣1)处标数字﹣2,记为a4;点(﹣1,0)处标数字﹣1,记为a5;点(﹣1,1)处标数字0,记为a6;点(0,1)处标数字1,记为a7;…以此类推,格点坐标为(i,j)的点处所标的数字为i+j(i,j均为整数),记S n=a1+a2+…+a n,则S2018=.16.(2018春•铜山区期中)已知a n=3n,把数列{a n}的各项排成如下的三角形:记A(s,t)表示第s行的第t个数,则A(12,13)=.17.(2017•上海)如图,用35个单位正方形拼成一个矩形,点P1、P2、P3、P4以及四个标记为“▲”的点在正方形的顶点处,设集合Ω={P1,P2,P3,P4},点P∈Ω,过P作直线l P,使得不在l P上的“▲”的点分布在l P的两侧.用D1(l P)和D2(l P)分别表示l P一侧和另一侧的“▲”的点到l P的距离之和.若过P的直线l P中有且只有一条满足D1(l P)=D2(l P),则Ω中所有这样的P为.18.(2014•天心区校级模拟)第1行:21+20第2行:22+20,22+21第3行:23+20,23+21,23+22第4行:24+20,24+21,24+22,24+23…由上述规律,则第n行的所有数之和为.三.解答题(共4小题)19.(2018春•福州期中)在学习数学的过程中,我们通常运用类比猜想的方法研究问题.(1)已知动点P 为圆O :x 2+y 2=r 2外一点,过P 引圆O 的两条切线PA 、PB ,A 、B 为切点,若PA →⋅PB →=0,求动点P 的轨迹方程; (2)若动点Q 为椭圆M :x 29+y 24=1外一点,过Q 引椭圆M 的两条切线QC 、QD ,C 、D 为切点,若QC →⋅QD →=0,求出动点Q 的轨迹方程; (3)在(2)问中若椭圆方程为x 2a 2+y 2b 2=1(a >b >0),其余条件都不变,那么动点Q 的轨迹方程是什么(直接写出答案即可,无需过程).20.(2018春•运城期中)已知数列{a n }的前n 项和为S n ,a 1=−23,满足S n +1S n+2=a n (n ≥2),计算S 1,S 2,S 3,S 4,并猜想S n 的表达式.21.(2017秋•浦东新区校级期中)对在直角坐标系的第一象限内的任意两点作如下定义:若a b >cd ,那么称点(a ,b )是点(c ,d )的“上位点”,同时点(c ,d )是点(a ,b )的“下位点”.(1)试写出点(3,5)的一个“上位点”坐标和一个“下位点”坐标;(2)已知点(a ,b )是点(c ,d )的“上位点”,判断是否一定存在点P 满足是点(c ,d )的“上位点”,又是点(a ,b )的“下位点”,若存在,写出一个点P 坐标,并证明;若不存在,则说明理由;(3)设正整数n 满足以下条件,对集合m ∈{t |0<t <2017,t ∈Z },总存在k ∈N *,使得点(n ,k )既是点(100,m )的“下位点”,又是点(101,m +1)的“上位点”,求正整数n 的最小值.22.(2017春•景德镇期中)如图所示,在Rt△ABC中,AC⊥BC,有AC2+BC2=AB2;类比猜想:直角四面体P﹣ABC(即PA⊥PB,PB⊥PC,PC⊥PA)的四个面的面积关系,证明你的猜想.。
2020高中数学 第二章 推理与证明 2. 数学归纳法讲义 2-2

2.3 数学归纳法1.数学归纳法的内容如下:一个错误!与正整数有关的命题,如果(1)错误!当n取第一个值n0(例如n0=1或n0=2等)时结论正确,(2)错误!假设当n=k(k∈N*,且k≥n0)时结论正确,能够证明当n=k+1时结论也正确,那么可以断定错误!这个命题对n∈N*且n≥n0的所有正整数都成立.2.数学归纳法的步骤中,第一步的作用是错误!递推的基础,第二步的作用是错误!递推的依据.3.数学归纳法实质上是错误!演绎推理法的一种,它是一种错误!严格的证明方法,它只能错误!证明结论,不能发现结论,并且只能证明错误!与正整数相关的命题.4.常把归纳法和数学归纳法结合起来,形成错误!归纳—猜想-证明的思想方法,既可以错误!发现结论,又能错误!给出严格的证明,组成一套完整的数学研究的思想方法.5.用数学归纳法证明命题时,两步错误!缺一不可,并且在第二步的推理证明中必须用错误!归纳假设,否则不是数学归纳法.对数学归纳法本质的理解数学归纳法可能与同学们以前所接触的证明方法差别很大,为了达到“知其然,知其所以然”的效果,可对比以下问题理解数学归纳法的实质.(1)有n个骨牌排成如图所示的一排,现推倒第一张骨牌,会有什么现象?(2)要使骨牌全部倒下,骨牌的摆放有什么要求?(骨牌的间距不大于骨牌的高度)(3)这样做的原因是什么?这样摆放可以达到什么样的效果?(前一张骨牌倒下,适当的间距导致后一张骨牌也倒下)(4)如果推倒的不是第一张骨牌,而是其他位置上的某一张骨牌,能使所有的骨牌倒下吗?(5)能够成功地推倒排成一排的骨牌的条件是什么?(通过观察和思考,可以得到的结论是:①第一张骨牌被推倒;②若某一张骨牌倒下,则其后面的一张骨牌必定倒下)错误!错误!错误!错误!错误!错误!…运用类比的方法,我们不难将推倒骨牌的原理进行迁移、升华,进而得到数学归纳法证明的步骤:(1)当n=1时,结论成立;(2)假设当n=k时结论成立,证明n=k+1时结论也必定成立.错误!错误!错误!错误!错误!错误!…1.判一判(正确的打“√”,错误的打“×")(1)与正整数n有关的数学命题的证明只能用数学归纳法.()(2)数学归纳法的第一步n0的初始值一定为1.()(3)数学归纳法的两个步骤缺一不可.( )答案(1)×(2)×(3)√2.做一做(1)已知f(n)=错误!+错误!+错误!+…+错误!,则f(n)共有________项,f(2)=________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1 归纳推理【学习要求】1.了解归纳推理的含义,能利用归纳推理进行简单的推理.2.了解归纳推理在数学发展中的作用.【学法指导】一,基础知识回顾:归纳是推理常用的思维方法,其结论不一定正确,但具有猜测和发现结论,探索和提供思路的作用,有利于创新意识的培养1.归纳推理定义:根据一类事物中部分事物具有某种属性,推断该类事物中每一个事物都有这种属性,我们将这种推理方式称为归纳推理.2.归纳推理的思维过程大致是实验、观察→概括、推广→猜测一般性结论.3.归纳推理具有如下的特点:(1)归纳推理是由部分到整体,由个别到一般 的推理;(2)由归纳推理得到的结论不一定 正确;(3)归纳推理是一种具有创造性的推理.二,问题探究探究点一:归纳推理的定义例1:在日常生活中我们常常遇到这样一些问题:看到天空乌云密布,燕子低飞,蚂蚁搬家等现象时,我们会得出一个判断——天要下雨了;张三今天没来上课,我们会推断——张三一定生病了;谚语说:“八月十五云遮月,来年正月十五雪打灯”等,像上面的思维方式就是推理,请问你认为什么是推理?答:根据一个或几个已知的命题得出另一个新的命题的思维过程就叫作推理.变式迁移1:观察下面两个推理,回答后面的两个问题:(1)哥德巴赫猜想:6=3+3 8=3+5 10=5+5 12=5+7 14=7+7 16=5+11…… 1 000=29+971 1 002=139+863……猜想:任何一个不小于6的偶数都等于两个奇质数之和.(2)铜、铁、铝、金、银等金属都能导电,猜想:一切金属都能导电.回答 ①以上两个推理在思维方式上有什么共同特点?②其结论一定正确吗?答:①共同特点:部分推出整体,个别推出一般.(这种推理称为归纳推理) ②其结论不一定正确.小结 归纳推理定义:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理(简称归纳). 探究点二:归纳推理在数列中的应用例2:在数列{a n }中,a 1=1,a n +1=2a n 2+a n,n ∈N *,猜想这个数列的通项公式,这个猜想正确吗?请说明理由.解:在{a n }中,a 1=1,a 2=2a 12+a 1=23,a 3=2a 22+a 2=12=24,a 4=2a 32+a 3=25,…,所以猜想{a n }的通项公式为a n =2n +1.这个猜想是正确的,证明如下:因为a 1=1,a n +1=2a n 2+a n ,所以1a n +1=2+a n 2a n =1a n +12,即1a n +1-1a n =12,所以数列⎩⎨⎧⎭⎬⎫1a n 是以1a 1=1为首项,12为公差的等差数列,所以1a n =1+(n -1)×12=12n +12,所以通项公式a n =2n +1变式迁移2:已知数列{a n }满足a 1=1,a n +1=2a n +1(n =1,2,3,…)(1)求a 2,a 3,a 4,a 5;(2)归纳猜想通项公式a n .解:(1)当n =1时,知a 1=1,由a n +1=2a n +1得a 2=3,a 3=7,a 4=15,a 5=31. (2)由a 1=1=21-1,a 2=3=22-1,a 3=7=23-1,a 4=15=24-1,a 5=31=25-1,可归纳猜想出a n =2n -1(n ∈N *).探究点三:归纳推理在图形变化中的应用例3:在法国巴黎举行的第52届世乒赛期间,某商场橱窗里用同样的乒乓球堆成若干堆“正三棱锥”形的展品,其中第1堆只有一层,就一个球;第2,3,4,…堆最底层(第一层)分别按图所示方式固定摆放,从第二层开始,每层的小球自然垒放在下一层之上,第n 堆第n 层就放一个乒乓球,以f(n)表示第n 堆的乒乓球总数,则f(3)=10_;f(n)=n n +1n +26(答案用含n 的代数式表示). 解析:观察图形可知:f(1)=1,f(2)=4,f(3)=10,f(4)=20,…,故下一堆的个数是上一堆个数加上下一堆第一层的个数,即f(2)=f(1)+3;f(3)=f(2)+6;f(4)=f(3)+10;…;f(n)=f(n -1)+n n +12.将以上(n -1)个式子相加可得f(n)=f(1)+3+6+10+…+n n +12=12[(12+22+…+n 2)+(1+2+3+…+n)]=12[16n(n +1)(2n +1)+n n +12]=n n +1n +26. 变式迁移:3:在平面内观察:凸四边形有2条对角线,凸五边形有5条对角线,凸六边形有9条对角线,…由此猜想凸n(n≥4且n∈N *)边形有几条对角线?解:凸四边形有2条对角线,凸五边形有5条对角线,比凸四边形多3条,凸六边形有9条对角线,比凸五边形多4条,于是猜想凸n 边形比凸(n -1)边形多(n -2)条对角线. 于是猜想凸n 边形比凸(n -1)边形多(n -2)条对角线.因此凸n 边形的对角线条数为2+3+4+5+…+(n -2)=12n(n -3)(n ≥4且n ∈N *) 探究点四:归纳推理在算式问题中的应用例4:观察下列等式,并从中归纳出一般法则.(1)1=12, 1+3=22,1+3+5=32, 1+3+5+7=42,1+3+5+7+9=52,……(2)1=12, 2+3+4=32, 3+4+5+6+7=52 4+5+6+7+8+9+10=72,5+6+7+8+9+10+11+12+13=92, ……解:(1)对于(1),等号左端是整数,且是从1开始的n 项的和,等号的右端是项数的平方; 对于(2),等号的左端是连续自然数的和,且项数为2n -1,等号的右端是项数的平方.∴(1)猜想结论:1+3+5+…+(2n -1)=n 2(n ∈N *).:(2)猜想结论:n +(n +1)+…+[n+(3n -2)]=(2n -1)2(n ∈N *).变式迁移4:在△ABC 中,不等式1A +1B +1C ≥9π成立;在四边形ABCD 中,不等式1A +1B +1C +1D ≥162π成立;在五边形ABCDE 中,不等式1A +1B +1C +1D +1E ≥253π成立.猜想在n 边形A 1A 2…A n 中成立的不等式为1A 1+1A 2+…+1A n ≥n 2n -2π(n ≥3且n ∈N *).. 三,练一练1.已知2+23=223,3+38=338,4+415=4415,…, 若6+a b =6a b(a 、b 均为实数).请推测a =6,b =35 解析:本题考查归纳推理能力,由前面三个等式,发现被开方数的整数与分数的关系:整数和这个分数的分子相同,而分母是这个分子的平方减1,由此推测6+a b中,a =6,b =62-1=35. 2.将全体正整数排成一个三角形数阵:按照以上排列的规律,第n 行(n ≥3)从左向右的第3个数为n 2-n +62解析:前n -1行共有正整数1+2+…+(n -1)个,即n 2-n 2个,因此第n 行第3个数是全体正整数中第n 2-n 2+3个,即为n 2-n +62. 3.已知正项数列{a n }满足S n =12(a n +1a n),求出a 1,a 2,a 3,a 4,并推测a n . 解:a 1=S 1=12(a 1+1a 1),又因为a 1>0,所以a 1=1. 当n ≥2时,S n =12(a n +1a n ),S n -1=12(a n -1+1a n -1),两式相减得:a n =12(a n +1a n )-12(a n -1+1a n -1),即a n -1a n =-(a n -1+1a n -1).所以a 2-1a 2=-2,又因为a 2>0,所以a 2=2-1. a 3-1a 3=-22,又因为a 3>0,所以a 3=3- 2. a 4-1a 4=-23,又因为a 4>0,所以a 4=2- 3.将上面4个式子写成统一的形式:a 1=1-0,a 2=2-1,a 3=3-2,a 4=4-3,由此可以归纳推测:a n =n -n -1. 四,课时小结归纳推理的一般步骤(1)对有限的资料进行观察、分析、归纳、整理,发现某些相同的性质;(2)从已知的相同性质中推出一个明确表述的一般命题,提出带有规律性的结论,即猜想.注意:一般性的命题往往要用字母表示,这时需注明字母的取值范围.五,作业设计:1. 数列5,9,17,33,x ,…中的x 等于 (B)A .47B .65C .63D .1282. 观察(x 2)′=2x ,(x 4)′=4x 3,(cos x)′=-sin x ,由归纳推理可得:若定义在R 上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)等于(D)A .f(x)B .-f(x)C .g(x)D .-g(x) 3. f(n)=1+12+13+…+1n (n ∈N *),计算得f(2)=32,f(4)>2,f(8)>52,f(16)>3,f(32)>72,推测当n ≥2时,有f(2n )>n +224. 已知sin 230°+sin 290°+sin 2150°=32,sin 25°+sin 265°+sin 2125°=32. 通过观察上述两等式的规律,请你写出一个一般性的命题sin 2(α-60°)+sin 2α+sin 2(α+60°)=325. 已知a 1=3,a 2=6且a n +2=a n +1-a n ,则a 33=36. 设x ∈R ,且x ≠0,若x +x -1=3,猜想x2n +x -2n (n ∈N *)的个位数字是77. 如图,观察图形规律,在其右下的的空格处画上合适的图形,应为①8. 如图所示四个图形中,着色三角形的个数依次构成一个数列的前4项,则这个数列的一个通项公式为a n =3n -1(n ∈N *) 9. 如图所示,图(a)是棱长为1的小正方体,图(b)、图(c)是由这样的小正方体摆放而成.按照这样的方法继续摆放,自上而下分别叫第1层,第2层,…,第n 层.第n 层的小正方体的个数记为S n .解答下列问题:(1)按照要求填表:(2)S 10=55 (3)S n =n (n +1)210画点或用小石子表示数.他们研究过如图所示的三角形数:将三角形数1,3,6,10,…记为数列{a n },将可被5整除的三角形数按从小到大的顺序组成一个新数列{b n },可以推测:(1)b 2 012是数列{a n }中的第5 030项;(2)b 2k -1=5k (5k -1)2.(用k 表示) 11.已知数列{a n }的前n 项和为S n ,a 1=1且S n -1+1S n+2=0(n ≥2),计算S 1,S 2,S 3,S 4,并猜想S n 的表达式.解:当n =1时,S 1=a 1=1;当n =2时,1S 2=-2-S 1=-3,∴S 2=-13;当n =3时,1S 3=-2-S 2=-53,∴S 3=-35;当n =4时,1S 4=-2-S 3=-75,∴S 4=-57.猜想:S n =-2n -32n -1(n ∈N *).12.一条直线将平面分成2个部分,两条直线最多将平面分成4个部分.(1)3条直线最多将平面分成多少部分?(2)设n 条直线最多将平面分成f(n)部分,归纳出f(n +1)与f(n)的关系; (3)求出f(n). 解:(1)3条直线最多将平面分成7个部分.(2)f(n +1)=f(n)+n +1.(3)f(n)=[f(n)-f(n -1)]+[f(n -1)-f(n -2)]+…+[f(2)-f(1)]+f(1)=n +(n -1)+(n -2)+…+2+2=n 2+n +22. 13.在一容器内装有浓度为r%的溶液a 升,注入浓度为p%的溶液14a 升,搅匀后再倒出溶液14a 升,这叫一次操作,设第n 次操作后容器内溶液的浓度为b n ,计算b 1、b 2、b 3,并归纳出计算公式.解:b 1=a 〃r 100+a 4〃p 100a +a 4=1100(45r +15p);b 2=ab 1+a 4〃p 100a +a 4=1100[(45)2r +15p +452p];b 3=ab 2+a 4〃p 100a +a 4=1100[(45)3r +15p +452p +453p].归纳得b n =1100[(45)n r +15p +452p +…+4n -15n p] 1.2 类比推理【学习要求】1.通过具体实例理解类比推理的意义;2.会用类比推理对具体问题作出判断.【学法指导】类比推理是在两类不同的事物之间进行对比,找出若干相同或相似点之后,推测在其他方面也可以存在相同或相似之处的一种推理模式.归纳和类比是合情推理常用的思维方法,其结论不一定正确.一,基础知识回顾:1.类比推理:由于两类不同对象具有某些类似的特征,在此基础上,根据一类对象的其他特征,推断另一类对象也具有类似的其他特征 ,我们把这种推理过程称为类比推理. 类比推理是两类事物特征之间的推理.2.合情推理:合情推理是根据实验 和实践的结果、个人的经验和直觉、已有的事实 和正确的结论(定义、公理、定理等),推测出某些结果的推理方式.合情推理的结果不一定正确.二,问题探究探究点一:平面图形与立体图形间的类比例1:如图所示,面积为S 的平面凸四边形的第i 条边的边长记为a i (i =1,2,3,4),此四边形内任一点P 到第i 条边的距离记为h i (i =1,2,3,4),若a 11=a 22=a 33=a 44=k ,则h 1+2h 2+3h 3+4h 4=2S k,类比以上性质,体积为V 的三棱锥的第i 个面的面积记为S i (i =1,2,3,4),若S 11=S 22=S 33=S 44=K ,则H 1+2H 2+3H 3+4H 4等于多少? 解:对平面凸四边形:S =12a 1h 1+12a 2h 2+12a 3h 3+12a 4h 4=12(kh 1+2kh 2+3kh 3+4kh 4) =k 2(h 1+2h 2+3h 3+4h 4),所以h 1+2h 2+3h 3+4h 4=2S k ;类比在三棱锥中,V =13S 1H 1+13S 2H 2+13S 3H 3+13S 4H 4 =13(KH 1+2KH 2+3KH 3+4KH 4) =K 3(H 1+2H 2+3H 3+4H 4).故H 1+2H 2+3H 3+4H 4=3V K. 变式迁移1:在平面几何里,有勾股定理:“设△ABC 的两边AB 、AC 互相垂直,则AB 2+AC2=BC 2”.拓展到空间(如图),类比平面几何的勾股定理,研究三棱锥的侧面面积与底面面积间的关系,可以得出的结论是____________.解析:类比条件:两边AB 、AC 互相垂直侧面ABC 、ACD 、ADB互相垂直.结论:AB 2+AC 2=BC 2 S 2△A B C +S 2△A C D +S 2△A D B =S 2△B C D .答案:设三棱锥A —BCD 的三个侧面ABC 、ACD 、ADB 两两互相垂直,则S 2△ABC +S 2△ACD +S 2△ADB =S 2△BCD探究点二:内似两事物之间的内比例2:根据等式的性质猜想不等式的性质.等式的性质: 猜想不等式的性质:(1)a =b ⇒a +c =b +c; (1)a>b ⇒a +c>b +c ;(2)a =b ⇒ac =bc; (2)a>b ⇒ac>bc ;(3)a =b ⇒a 2=b 2等等. (3)a>b ⇒a 2>b 2等等.例3:在等差数列{a n }中,若a 10=0,证明:等式a 1+a 2+…+a n =a 1+a 2+…+a 19-n (n<19,n∈N *)成立,并类比上述性质相应的在等比数列{b n }中,若b 9=1,则有等式_______成立.解析:在等差数列{a n }中,由a 10=0,得a 1+a 19=a 2+a 18=…=a n +a 20-n =a n +1+a 19-n =2a 10=0,∴a 1+a 2+…+a n +…+a 19=0,即a 1+a 2+…+a n =-a 19-a 18-…-a n +1,又∵a 1=-a 19,a 2=-a 18,…,a 19-n=-a n +1,∴a 1+a 2+…+a n =-a 19-a 18-…-a n +1=a 1+a 2+…+a 19-n .相应地,类比此性质在等比数列{b n }中,可得b 1b 2…b n =b 1b 2…b 17-n ,(n<17,n ∈N *).变式迁移3:设等差数列{a n }的前n 项和为S n ,则S 4,S 8-S 4,S 12-S 8,S 16-S 12成等差数列.类比以上结论有:设等比数列{b n }的前n 项积为T n ,则T 4,T 8T 4:,T 12T 8,T 16T 12成等比数列. 三,练一练1.下列说法正确的是 (B )A .由合情推理得出的结论一定是正确的B .合情推理必须有前提有结论C .合情推理不能猜想D .合情推理得出的结论不能判断正误解析:根据合情推理可知,合情推理必须有前提有结论.2.在平面上,若两个正三角形的边长比为1∶2,则它们的面积比为1∶4.类似地,在空间中,若两个正四面体的棱长比为1∶2,则它们的体积比为1∶8解析:∵两个正三角形是相似的三角形,∴它们的面积之比是相似比的平方.同理,两个正四面体是两个相似几何体,体积之比为相似比的立方,∴它们的体积比为1∶8.3.若数列{c n }是等差数列,则当d n =c 1+c 2+…+c n n时,数列{d n }也是等差数列,类比上述性质,若数列{a n }是各项均为正数的等比数列,则当b n =n a 1a 2…a n时,数列{b n }也是等比数列.4.对命题“正三角形的内切圆切于三边中点”可类比猜想:正四面体的内切球切于四面各正三角形的中心.四,课时小结1.合情推理主要包括归纳推理和类比推理.数学研究中,在得到一个新结论前,合情推理能帮助猜测和发现结论,在证明一个数学结论之前,合情推理常常能为证明提供思路与方向.2.合情推理的过程概括为: 从具体问题出发―→观察、分析、比较、联想―→归纳、类比―→提出猜想 五,作业设计:1. 下列推理正确的是 (D)A .把a(b +c)与log a (x +y)类比,则有log a (x +y)=log a x +log a yB .把a(b +c)与sin (x +y)类比,则有sin (x +y)=sin x +sin yC .把a(b +c)与a x +y 类比,则有a x +y =a x +a y D .把a(b +c)与a ·(b +c )类比,则有a ·(b +c )=a ·b +a ·c2. 下面几种推理是合情推理的是 (C) ①由圆的性质类比出球的有关性质;②由直角三角形、等腰三角形、等边三角形的内角和是180°,归纳出所有三角形的内角和都是180°;③张军某次考试成绩是100分,由此推出全班同学的成绩都是100分;④三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,由此得凸多边形内角和是(n -2)·180°.A .①②B .①③C .①②④D .②④3. 把下面在平面内成立的结论类比地推广到空间,结论仍然正确的是(B) A .如果一条直线与两条平行线中的一条相交,则也与另一条相交B .如果一条直线与两条平行线中的一条垂直,则也与另一条垂直C .如果两条直线同时与第三条直线相交,则这两条直线相交或平行D .如果两条直线同时与第三条直线垂直,则这两条直线平行4. 在等差数列{a n }中,若a n >0,公差d>0,则有a 4·a 6>a 3·a 7,类比上述性质,在等比数列{b n }中,若b n >0,q>1,则下列有关b 4,b 5,b 7,b 8的不等关系正确的是(A)A.b 4+b 8>b 5+b 7B.b 5+b 7>b 4+b 8C.b 4+b 7>b 5+b 8D.b 4+b 5>b 7+b 8.5. 已知扇形的弧长为l ,半径为r ,类比三角形的面积公式:S =底×高2,可推知扇形面积公式S 扇=12lr 6. 类比平面直角坐标系中△ABC 的重点G(x ,y )的坐标公式⎩⎨⎧x =x 1+x 2+x 33y =y 1+y 2+y 33(其中A(x 1,y 1)、B(x 2,y 2)、C(x 3,y 3),猜想以A(x 1,y 1,z 1)、B(x 2,y 2,z 2)、C(x 3,y 3,z 3)、D(x 4,y 4,z 4)为顶点的四面体A —BCD 的重点G(x ,y ,z )的公式为⎩⎪⎨⎪⎧ x =x 1+x 2+x 3+x 44y =y 1+y 2+y 3+y 44z =z 1+z 2+z 3+z 447. 公差为d(d ≠0)的等差数列{a n }中,S n 是{a n }的前n 项和,则数列S 20-S 10,S 30-S 20,S 40-S 30也成等差数列,且公差为100d ,类比上述结论,相应地在公比为q(q ≠1)的等比数列{b n }中,若T n 是数列{b n }的前n 项积,则有T 20T 10,T 30T 20,T 40T 30也成等比数列,且公比为q 1008. 类比平面内正三角形的“三边相等,三内角相等”的性质,可推知正四面体的下列性质中,①各棱长相等,同一顶点上的两条棱的夹角都相等;②各个面都是全等的正三角形,相邻两个面所成的二面角都相等;③各个面都是全等的正三角形,同一顶点上的任两条棱的夹角都相等.你认为比较恰当的是.①②③.(填序号)9. 已知抛物线y 2=2px(p>0),过定点(p,0)作两条互相垂直的直线l 1、l 2,若l 1与抛物线交于P 、Q 两点,l 2与抛物线交于M 、N 两点,l 1的斜率为k ,某同学已正确求得弦PQ 的中点坐标为(p k 2+p ,p k),请你写出弦MN 的中点坐标:(pk 2+p ,-pk) 10.现有一个关于平面图形的命题:如图,同一个平面内有两个边长都是a 的正方形,其中一个的某顶点在另一个的中心,则这两个正方形重叠部分的面积恒为a 24.类比到空间,有两个棱长均为a 的正方体,其中一个的某顶点在另一个的中心,则这两个正方体重叠部分的体积恒为a 3811.如图(1),在平面内有面积关系S △PA ′B ′S △PAB=PA ′·PB ′PA·PB写出图(2)中类似的体积关系,并证明你的结论.解:类比S △PA ′B ′S △PAB =PA ′〃PB ′PA 〃PB ,有V P —A ′B ′C ′V P —ABC =PA ′〃PB ′PA 〃PB 〃PC ′PC证明:如图:设C ′,C 到平面PAB 的距离分别为h ′,h.则h ′h=PC ′PC ,故V P —A ′B ′C ′V P —ABC=13〃S △PA ′B ′〃h ′13S PAB 〃h =PA ′〃PB ′〃h ′PA 〃PB 〃h =PA ′〃PB ′〃PC ′PA 〃PB 〃PC. 12. 如图所示,在△ABC 中,射影定理可表示为a =b·cos C +c·cos B ,其中a ,b ,c 分别为角A ,B ,C 的对边,类比上述定理,写出对空间四面体性质的猜想.解:如图所示,在四面体P -ABC 中,设S 1,S 2,S 3,S 分别表示△PAB ,△PBC ,△PCA ,△ABC 的面积,α,β,γ依次表示面PAB ,面PBC ,面PCA 与底面ABC 所成二面角的大小.我们猜想射影定理类比推理到三维空间,其表现形式应为:S =S 1〃cos α+S 2〃cos β+S 3〃cos γ.13.已知在Rt △ABC 中,AB ⊥AC ,AD ⊥BC 于D ,有1AD 2=1AB 2+1AC 2成立.那么在四面体A -BCD 中,类比上述结论,你能得到怎样的猜想,说明猜想是否正确及并给出理由.解:类比AB ⊥AC ,AD ⊥BC ,可以猜想四面体A -BCD 中,AB ,AC ,AD 两两垂直,AE ⊥平面BCD.则1AE 2=1AB 2+1AC 2+1AD 2.猜想正确.如图所示,连接BE ,并延长交CD 于F ,连接AF.∵AB ⊥AC ,AB ⊥AD ,∴AB ⊥平面ACD.而AF ⊂平面ACD ,∴AB ⊥AF.在Rt △ABF 中,AE ⊥BF ,∴1AE 2=1AB 2+1AF 2.在Rt △ACD 中,AF ⊥CD ,∴1AF 2=1AC 2+1AD 2.∴1AE 2=1AB 2+1AC 2+1AD 2,故猜想正确. 1.3综合法与分析法(一)【学习要求】1.了解直接证明的两种基本方法——综合法和分析法.2. 理解综合法和分析法的思考过程、特点,会用综合法和分析法证明数学问题.【学法指导】综合法和分析法是直接证明中最基本的两种证明方法,要结合实例了解两种证法的思考过程、特点.一,基础知识回顾:1.综合法和分析法是直接证明中最基本的两种证明方法,也是解决数学问题时常用的思维方式.2.一般地,利用已知条件和某些数学定义、公理、定理等,经过演绎推理论证,最后推导出所要证明的结论成立,这种证明方法叫作综合法3.分析法是从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止.二,问题探究探究点一:综合法例1:在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,且A ,B ,C 成等差数列,a ,b ,c 成等比数列,求证:△ABC 为等边三角形.证明:由A ,B ,C 成等差数列,有2B =A +C ①,由A ,B ,C 为△ABC 的三个内角,所以A +B +C =π②,由①②,得B =π3③,由a ,b ,c 成等比数列,有b 2=ac ④,由余弦定理及③,可得b 2=a 2+c 2-2accos B =a 2+c 2-ac ,再由④,得a 2+c 2-ac =ac ,即(a -c)2=0, 从而a =c ,所以A =C ⑤。