中考数学相似难题压轴题
中考数学——相似的综合压轴题专题复习及答案

一、相似真题与模拟题分类汇编(难题易错题)1.已知线段a,b,c满足,且a+2b+c=26.(1)判断a,2b,c,b2是否成比例;(2)若实数x为a,b的比例中项,求x的值.【答案】(1)解:设,则a=3k,b=2k,c=6k,又∵a+2b+c=26,∴3k+2×2k+6k=26,解得k=2,∴a=6,b=4,c=12;∴2b=8,b2=16∵a=6,2b=8,c=12,b2=16∴2bc=96,ab2=6×16=96∴2bc=ab2a,2b,c,b2是成比例的线段。
(2)解:∵x是a、b的比例中项,∴x2=6ab,∴x2=6×4×6,∴x=12.【解析】【分析】(1)设已知比例式的值为k,可得出a=3k,b=2k,c=6k,再代入a+2b+c=26,建立关于k的方程,求出kl的值,再求出2b、b2,然后利用成比例线段的定义,可判断a,2b,c,b2是否成比例。
(2)根据实数x为a,b的比例中项,可得出x2=ab,建立关于x的方程,求出x的值。
2.如图,AB是半圆O的直径,AB=2,射线AM、BN为半圆O的切线.在AM上取一点D,连接BD交半圆于点C,连接AC.过O点作BC的垂线OE,垂足为点E,与BN相交于点F.过D点作半圆O的切线DP,切点为P,与BN相交于点Q.(1)若△ABD≌△BFO,求BQ的长;(2)求证:FQ=BQ【答案】(1)解:∵≌,∴,∵均为半圆切线,∴ .连接 ,则,∴四边形为菱形,∴DQ∥,∵均为半圆切线,∴∥,∴四边形为平行四边形∴,(2)证明:易得∽,∴ = ,∴ .∵是半圆的切线,∴ .过点作于点,则 .在中,,∴,解得:,∴∴【解析】【分析】(1)连接OP,由ΔABD≌ΔBFO可得AD=OB,由切线长定理可得AD=DP,于是易得OP=OA=DA=DP,根据菱形的判定可得四边形DAOP为菱形,则可得DQ∥AB,易得四边形DABQ为平行四边形,根据平行四边形的性质可求解;(2)过Q点作QK⊥AM于点K,由已知易证得ΔABD∽ΔBFO,可得比例式,可得BF与AD的关系,由切线长定理可得AD=DP,QB=QP ,解直角三角形DQK可求得BQ与AD 的关系,则根据FQ=BF−BQ可得FQ与AD的关系,从而结论得证。
中考数学相似-经典压轴题及答案

一、相似真题与模拟题分类汇编(难题易错题)1.如图,已知抛物线经过点A(﹣1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P做x轴的垂线l交抛物线于点Q,交直线于点M.(1)求该抛物线所表示的二次函数的表达式;(2)已知点F(0,),当点P在x轴上运动时,试求m为何值时,四边形DMQF是平行四边形?(3)点P在线段AB运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与△BOD相似?若存在,求出点Q的坐标;若不存在,请说明理由.【答案】(1)解:由抛物线过点A(-1,0)、B(4,0)可设解析式为y=a(x+1)(x-4),将点C(0,2)代入,得:-4a=2,解得:a=- ,则抛物线解析式为y=- (x+1)(x-4)=- x2+ x+2(2)解:由题意知点D坐标为(0,-2),设直线BD解析式为y=kx+b,将B(4,0)、D(0,-2)代入,得:,解得:,∴直线BD解析式为y= x-2,∵QM⊥x轴,P(m,0),∴Q(m,- m2+ m+2)、M(m, m-2),则QM=- m2+ m+2-( m-2)=- m2+m+4,∵F(0,)、D(0,-2),∴DF= ,∵QM∥DF,∴当- m2+m+4= 时,四边形DMQF是平行四边形,解得:m=-1或m=3,即m=-1或3时,四边形DMQF是平行四边形。
(3)解:如图所示:∵QM∥DF,∴∠ODB=∠QMB,分以下两种情况:①当∠DOB=∠MBQ=90°时,△DOB∽△MBQ,则,∵∠MBQ=90°,∴∠MBP+∠PBQ=90°,∵∠MPB=∠BPQ=90°,∴∠MBP+∠BMP=90°,∴∠BMP=∠PBQ,∴△MBQ∽△BPQ,∴,即,解得:m1=3、m2=4,当m=4时,点P、Q、M均与点B重合,不能构成三角形,舍去,∴m=3,点Q的坐标为(3,2);②当∠BQM=90°时,此时点Q与点A重合,△BOD∽△BQM′,此时m=-1,点Q的坐标为(-1,0);综上,点Q的坐标为(3,2)或(-1,0)时,以点B、Q、M为顶点的三角形与△BOD相似.【解析】【分析】(1)A(-1,0)、B(4,0)是抛物线与x轴的交点,则可由抛物线的两点式,设解析为y=a(x+1)(x-4),代入C(0,2)即可求得a的值;(2)由QM∥DF且四边形DMQF是平行四边形知QM=DF,由D,F的坐标可求得DF的长度;由P(m,0)可得Q(m,-m2+m+2),而M在直线BD上,由B,D的坐标用待定系数法求出直线BD的解析式,并当=m时,表示出点M的坐标,可用m表示出QM的长度。
中考数学相似-经典压轴题附答案解析

AM= AF,AN= AE,从而分别表示出 S△ AMN 与 S△ AEF,求出它们的比值即可得出答案。
2.如图,抛物线 y=﹣x2+bx+c 与 x 轴分别交于点 A、B,与 y 轴交于点 C,且 OA=1, OB=3,顶点为 D,对称轴交 x 轴于点 Q.
(1)求抛物线对应的二次函数的表达式; (2)点 P 是抛物线的对称轴上一点,以点 P 为圆心的圆经过 A、B 两点,且与直线 CD 相 切,求点 P 的坐标; (3)在抛物线的对称轴上是否存在一点 M,使得△ DCM∽ △ BQC?如果存在,求出点 M 的坐标;如果不存在,请说明理由. 【答案】(1)解: ∴
一、相似真题与模拟题分类汇编(难题易错题)
1.定义:如图 1,点 M,N 把线段 AB 分割成 AM,MN 和 BN,若以 AM,MN,BN 为边的
三角形是一个直角三角形,则称点 M,N 是线段 AB 的勾股分割点.
(1)已知点 M,N 是线段 AB 的勾股分割点,若 AM=3,MN=4 求 BN 的长; (2)已知点 C 是线段 AB 上的一定点,其位置如图 2 所示,请在 BC 上画一点 D,使 C,D 是线段 AB 的勾股分割点(要求尺规作图,保留作图痕迹,画出一种情形即可); (3)如图 3,正方形 ABCD 中,M,N 分别在 BC,DC 上,且 BM≠DN,∠ MAN=45°,AM, AN 分别交 BD 于 E,F. 求证:①E、F 是线段 BD 的勾股分割点; ②△ AMN 的面积是△ AEF 面积的两倍. 【答案】(1)解:(1)①当 MN 为最大线段时, ∵ 点 M,N 是线段 AB 的勾股分割点,
(1)求证:BC=CD; (2)分别延长 AB,DC 交于点 P,若 PB=OB,CD=
中考压轴图形的相似问题综合(解析版)

的结论有(
)
A.①②③④
【标准答案】C
【思路点拨】
B.②③④
C.②③④⑤
D.②③⑤
①由特殊值法可判断,当点P与BD中点重合时,CM=0,显然FM≠CM;
②由SAS可证△ABP△CBP,可得AP=CP,由矩形的性质可得EF=PC=AP;
③由SSS可证△APD△CPD,可得∠DAP=∠DCP,由平行线的性质可得∠DCP=∠H,由
∴四边形GBED为平行四边形,
∴GD=BE,
1
∵BE=BC,
2
1
∴GD=AD,
2
即G是AD的中点,
故②正确,
∵BG//DE,
∴∠GBP=∠BPE,
故③正确.
∵BG//DG,AF⊥DE,
∴AF⊥BG,
∴∠ANG=∠ADF=90°,
∵∠GAM=∠FAD,
∴△AGM∽△AFD,
设AG=a,则AD=2a,AF=5a,
B.2个
C.3个
D.4个
【标准答案】C
【思路点拨】
1
根据正方形性质得出ADBCDC;ECDFBC;ADFDCE,证
2
ADF≌DCESAS,推出AFDDEC,求出DGF90即可判断
①;证明四边形
GBED为平行四边形,则可知②正确;由平行线的性质可得③正确;证明AGM∽AFD,
可得出SAGM:SDEC1:5.则④不正确.
D.5
【标准答案】D
【思路点拨】
①根据正方形的性质得到∠BAD=∠ADC=∠B=90°,根据旋转的性质得到∠NAD=∠BAM,
∠AND=∠AMB,根据余角的性质得到∠DAM+∠NAD=∠AND+∠NAD=90°,等量代换得
中考数学压轴题专题相似的经典综合题附答案

一、相似真题与模拟题分类汇编(难题易错题)1.如图,夜晚,小亮从点A经过路灯C的正下方沿直线走到点B(A,B两点到路灯正下方的距离相等),他的影长y随他与点A之间的距离x的变化而变化.(1)求y与x之间的函数关系式;(2)作出函数的大致图象.【答案】(1)解:如图①:作CO⊥AB于O,①当小亮走到A'处(A'位于A与O之间)时,作出他的影子A'C'.小亮从点A到达点O的过程中,影长越来越小,直到影长为0;从点O到达点B的过程中,影长越来越大,到点B达到最大值.设小亮的身高MA'=l,CO=h,AO=m,影长C'A'=y,小亮走过的距离AA'=x,由图易得C'A=x-y,∵MA'⊥AB,CO⊥AB,∴△MC'A'∽△CC'O,∴,即 = ,∴y= x- (0≤x≤m),(此时m,l,h为常数),②当小亮走到A″处(A″位于O与B之间)时;同理可得y=- x+ (m<x≤2m).(2)解:如图②所示:【解析】【分析】(1)如图①:作CO⊥AB于O,①当小亮走到A'处(A'位于A与O之间)时,作出他的影子A'C';根据中心投影的特点可知影长随x的变化情况.设小亮的身高MA'=l,CO=h,AO=m,影长C'A'=y,小亮走过的距离AA'=x,由图易得C'A=x-y,根据相似三角形的判定和性质可得y与x的函数解析式.②当小亮走到A″处(A″位于O与B之间)时;同理可得y=- x+ (m<x≤2m).(2)根据(1)的函数解析式可画出图像.2.如图,在中,,于点,点在上,且,连接.(1)求证:(2)如图,将绕点逆时针旋转得到(点分别对应点),设射线与相交于点,连接,试探究线段与之间满足的数量关系,并说明理由.【答案】(1)证明:在Rt△AHB中,∠ABC=45°,∴AH=BH,在△BHD和△AHC中,,∴△BHD≌△AHC,∴(2)解:方法1:如图1,∵△EHF是由△BHD绕点H逆时针旋转30°得到,∴HD=HF,∠AHF=30°∴∠CHF=90°+30°=120°,由(1)有,△AEH和△FHC都为等腰三角形,∴∠GAH=∠HCG=30°,∴CG⊥AE,∴点C,H,G,A四点共圆,∴∠CGH=∠CAH,设CG与AH交于点Q,∵∠AQC=∠GQH,∴△AQC∽△GQH,∴,∵△EHF是由△BHD绕点H逆时针旋转30°得到,由(1)知,BD=AC,∴EF=AC∴即:EF=2HG.方法2:如图2,取EF的中点K,连接GK,HK,∵△EHF是由△BHD绕点H逆时针旋转30°得到,∴HD=HF,∠AHF=30°∴∠CHF=90°+30°=120°,由(1)有,△AEH和△FHC都为等腰三角形,∴∠GAH=∠HCG=30°,∴CG⊥AE,由旋转知,∠EHF=90°,∴EK=HK= EF∴EK=GK= EF,∴HK=GK,∵EK=HK,∴∠FKG=2∠AEF,∵EK=GK,∴∠HKF=2∠HEF,由旋转知,∠AHF=30°,∴∠AHE=120°,由(1)知,BH=AH,∵BH=EH,∴AH=EH,∴∠AEH=30°,∴∠HKG=∠FKG+∠HKF=2∠AEF+2∠HEF=2∠AEH=60°,∴△HKG是等边三角形,∴GH=GK,∴EF=2GK=2GH,即:EF=2GH.【解析】【分析】(1)根据等腰直角三角形的性质得出AH=BH,然后由SAS判断出△BHD≌△AHC,根据全等三角形对应角相等得出答案;(2)方法1:如图1,根据旋转的性质得出HD=HF,∠AHF=30°根据角的和差得出∠CHF=90°+30°=120°,由(1)有,△AEH和△FHC都为等腰三角形,根据等腰三角形若顶角相等则底角也相等得出∠GAH=∠HCG=30°,根据三角形的内角和得出CG⊥AE,从而得出点C,H,G,A四点共圆,根据圆周角定理同弧所对的圆周角相等得出∠CGH=∠CAH,根据对顶角相等得出∠AQC=∠GQH,从而得出△AQC∽△GQH,根据全等三角形对应边成比例得出 A C∶ H G = A Q∶ G Q = 1 ∶sin 30 ° = 2,根据旋转的性质得出EF=BD,由(1)知,BD=AC,从而得出EF=ACEF=BD,由E F∶ H G = A C∶ G H = A Q∶ G Q = 1∶ sin 30 ° = 2得出结论;方法2:如图2,取EF的中点K,连接GK,HK,根据旋转的性质得出HD=HF,∠AHF=30°根据角的和差得出∠CHF=90°+30°=120°,由(1)有,△AEH和△FHC都为等腰三角形,根据等腰三角形若顶角相等则底角也相等得出∠GAH=∠HCG=30°,根据三角形的内角和得出CG⊥AE,由旋转知,∠EHF=90°,根据直角三角形斜边上的中线等于斜边的一半得出EK=HK= EF,EK=GK= EF,从而得出HK=GK,根据等边对等角及三角形的外角定理得出∠FKG=2∠AEF,∠HKF=2∠HEF,由旋转知,∠AHF=30°,故∠AHE=120°,由(1)知,BH=AH,根据等量代换得出AH=EH,根据等边对等角得出∠AEH=30°,∠HKG=∠FKG+∠HKF=2∠AEF+2∠HEF=2∠AEH=60°,根据有一个角为60°的等腰三角形是等边三角形得出△HKG是等边三角形,根据等边三角形三边相等得出GH=GK,根据等量代换得出EF=2GK=2GH。
中考数学相似-经典压轴题含详细答案

一、相似真题与模拟题分类汇编(难题易错题)1.如图,在等腰Rt△ABC中,O为斜边AC的中点,连接BO,以AB为斜边向三角内部作Rt△ABE,且∠AEB=90°,连接EO.求证:(1)∠OAE=∠OBE;(2)AE=BE+ OE.【答案】(1)证明:在等腰Rt△ABC中,O为斜边AC的中点,∴OB⊥AC,∴∠AOB=90°,∵∠AEB=90°,∴A,B,E,O四点共圆,∴∠OAE=∠OBE(2)证明:在AE上截取EF=BE,则△EFB是等腰直角三角形,∴,∠FBE=45°,∵在等腰Rt△ABC中,O为斜边AC的中点,∴∠ABO=45°,∴∠ABF=∠OBE,∵,∴,∴△ABF∽△BOE,∴ = ,∴AF= OE,∵AE=AF+EF,∴AE=BE+ OE.【解析】【分析】(1)利用等腰直角三角形的性质,可证得∠AOB=∠AEB=90°,可得出A,B,E,O四点共圆,再利用同弧所对的圆周角相等,可证得结论。
(2)在AE上截取EF=BE,易证△EFB是等腰直角三角形,可得出BF与BE的比值为,再证明∠ABF=∠OBE,AB与BO的比值为,就可证得AB、BO、BF、BE四条线段成比例,然后利用两组对应边成比例且夹角相等的两三角形相似,可证得△ABF∽△BOE,可证得AF= OE,由AE=AF+EF,可证得结论。
2.已知线段a,b,c满足,且a+2b+c=26.(1)判断a,2b,c,b2是否成比例;(2)若实数x为a,b的比例中项,求x的值.【答案】(1)解:设,则a=3k,b=2k,c=6k,又∵a+2b+c=26,∴3k+2×2k+6k=26,解得k=2,∴a=6,b=4,c=12;∴2b=8,b2=16∵a=6,2b=8,c=12,b2=16∴2bc=96,ab2=6×16=96∴2bc=ab2a,2b,c,b2是成比例的线段。
中考数学总复习《相似三角形综合压轴题》专项提升练习(附答案)

中考数学总复习《相似三角形综合压轴题》专项提升练习(附答案)学校:___________班级:___________姓名:___________考号:___________1.三个等角的顶点在同一条直线上,称一线三等角模型(角度有锐角、直角、钝角,若为直角,则又称一线三垂直模型).解决此模型问题的一般方法是利用三等角关系找全等或相似三角形所需角的相等条件,利用全等或相似三角形解决问题.【证明体验】如图1,在四边形ABCD 中点P 为AB 上一点90DPC A B ∠=∠=∠=︒,求证:AD BC AP BP ⋅=⋅. 【思考探究】(2)如图2,在四边形ABCD 中点P 为AB 上一点,当DPC A B β∠=∠=∠=时,上述结论是否依然成立?说明理由. 【拓展延伸】(3)请利用(1)(2)获得的经验解决问题:如图3,在ABC 中22AB =45B ∠=︒以点A 为直角顶点作等腰Rt ADE △,点D 在BC 上,点E 在AC 上,点F 在BC 上,且45EFD ∠=︒,若5CE =CD 的长.2.综合实践问题背景:借助三角形的中位线可构造一组相似三角形,若将它们绕公共顶点旋转,对应顶点连线的长度存在特殊的数量关系,数学小组对此进行了研究.如图1,在ABC 中90,4B AB BC ∠=︒==分别取AB ,AC 的中点D ,E ,作ADE .如图2所示,将ADE 绕点A 逆时针旋转,连接BD ,CE .(1)探究发现旋转过程中线段BD 和CE 的长度存在怎样的数量关系?写出你的猜想,并证明. (2)性质应用如图3,当DE 所在直线首次经过点B 时,求CE 的长. (3)延伸思考如图4,在Rt ABC △中90,8,6ABC AB BC ∠=︒==,分别取AB ,BC 的中点D ,E .作BDE ,将BDE 绕点B 逆时针旋转,连接AD ,CE .当边AB 平分线段DE 时,求tan ECB ∠的值.3.如图,M 为线段AB 的中点,AE 与BD 交于点C ,DME A B α∠=∠=∠=且DM 交AC 于F ,ME 交BC 于G .(1)写出图中两对相似三角形;(2)连接FG ,如果45α=︒,42AB =3AF =,求FG 的长.4.如图,在ABC 中6cm AB =,12cm BC =和90B .点P 从点A 开始沿AB 边向点B 以1cm /s 的速度移动,点Q 从点B 开始沿BC 边向点C 以2cm /s 的速度移动,如果P 、Q 分别从A 、B 同时出发,设移动时间为()s t .(1)当2t =时,求PBQ 的面积; (2)当t 为多少时,PBQ 的面积是28cm ? (3)当t 为多少时,PBQ 与ABC 是相似三角形?5.下面是小新同学在“矩形折叠中的相似三角形”主题下设计的问题,请你解答.如图,已知在矩形ABCD 中点E 为边AB 上一点(不与点A 、点B 重合),先将矩形ABCD 沿CE 折叠,使点B 落在点F 处,CF 交AD 于点H .(1)观察发现:写出图1中一个与AEG △相似的三角形:______.(写出一个即可)(2)迁移探究:如图2,若4AB =,6BC =当CF 与AD 的交点H 恰好是AD 的中点时,求阴影部分的面积. (3)如图③,当点F 落在边AD 上时,延长EF ,与FCD ∠的角平分线交于点M ,CM 交AD 于点N ,当FN AF ND =+时,请直接写出ABBC的值.6.【阅读】如图1,若ABD ACE ∽,且点B 、D 、C 在同一直线上,则我们把ABD △与ACE △称为旋转相似三角形.(1)【理解】如图2,ABC 和ADE 是等边三角形,点D 在边BC 上,连接CE .求证:ABD △与ACE △是旋转相似三角形.(2)【应用】如图3,ABD △与ACE △是旋转相似三角形AD CE ,求证:③ABC ADE △△∽;③AC DE =;(3)【拓展】如图4,AC 是四边形ABCD 的对角线90,D B ACD ∠=︒∠=∠,25,20BC AC ==和16AD =,试在边BC 上确定一点E ,使得四边形AECD 是矩形,并说明理由.7.综合与实践如图1,已知纸片Rt ABC △中90BAC ∠=︒,AD 为斜边BC 上的高(AD BC ⊥于点D ). 观察发现(1)请直接写出图中的一组相似三角形.(写出一组即可)实践操作第一步:如图2,将图1中的三角形纸片沿BE 折叠(点E 为AC 上一点),使点A 落在BC 边上的点F 处; 第二步:BE 与AD 交于点G 连接GF ,然后将纸片展平. 猜想探究(2)猜想四边形AEFG 是哪种特殊的四边形,并证明猜想. (3)探究线段GF ,BE ,GE 之间的数量关系,并说明理由.8.如图1,已知AD 是ABC 的角平分线,可证AB BDAC CD=.证明思路是如图2,过点C 作CE AB ∥,交AD 的延长线于点E ,构造相似三角形来证明AB BDAC CD=.(1)利用图2证明AB BDAC CD=; (2)如图3,在Rt ABC △中90BAC ∠=︒,D 是边BC 上一点.连接AD ,将ACD 沿AD 所在直线折叠,点C 恰好落在边AB 上的E 点处.若1AC =,AB=2,求DE 的长.9.【教材原题】如图③,在ABC 中DE BC ∥,且3AD =,2DB =图中的相似三角形是__________,它们的相似比为__________ ;【改编】将图③中的ADE 绕点A 按逆时针方向旋转到如图③所示的位置,连接BD 、CE .求证:ABD ACE ∽△△;【应用】如图③,在ABC 和ADE 中90BAC DAE ∠=∠=︒,30ABC ADE ∠=∠=︒点D 在边BC 上,连接CE ,则ACE △与ABD △的面积比为__________.10.问题背景:一次数学综合实践活动课上,小慧发现并证明了关于三角形角平分线的一个结论.如图1,已知AD 是ABC 的角平分线,可证AB BDAC CD=小慧的证明思路是:如图2,过点C 作CE AB ∥,交AD 的延长线于点E ,构造相似三角形来证明.(1)尝试证明:请参照小慧提供的思路,利用图2证明AB BDAC CD=; (2)基础训练:如图3,在Rt ABC △中90BAC ∠=︒,D 是边BC 上一点.连接AD ,将ACD 沿AD 所在直线折叠,点C 恰好落在边AB 上的E 点处.若1AC =,2AB =求DE 的长;(3)拓展升华:如图4,ABC 中6AB = ,AC=4,AD 为BAC ∠的角平分线,AD 的中垂线EF 交BC 延长线于F ,当3BD =时,求AF 的长.11.定义:两个相似三角形,如果它们的一组对应角有一个公共的顶点,那么把这两个三角形称为“阳似三角形”、如图1,在ABC 与AED △中ABC AED ∽△△.所以称ABC 与AED △为“阳似三角形”,连接EB DC ,,则DCEB为“阳似比”.(1)如图1,已知R ABC 与Rt AED △为“阳似三角形”,其中90CBA DEA ∠=∠=︒,当30BAC ∠=︒时,“阳似比”DCEB=______; (2)如图2,二次函数234y x x =-++交x 轴于点A 和B 两点,交y 轴于点C .点M 为直线12y x =在第一象限上的一个动点,且OMB △与CNB 为“阳似三角形”,连接CM ③当点N 落在二次函数图象上时,求出线段OM 的长度; ③若32CN =34BM MC +的最小值.12.已知在Rt ABC △中90ACB ∠=︒,CD AB ⊥于点D .(1)在图1中写出其中的两对相似三角形.(2)已知1BD =,DC=2,将CBD △绕着点D 按顺时针方向进行旋转得到C BD ',连接AC ',BC . ③如图2,判断AC '与BC 之间的位置及数量关系,并证明; ③在旋转过程中当点A ,B ,C '在同一直线上时,求BC 的长.13.定义:若一个四边形能被其中一条对角线分割成两个相似三角形,则称这个四边形为“和谐四边形”,这条对角线叫“和谐线”.(1)如图1,在44⨯的正方形网格中有一个网格Rt ABC △和两个网格四边形ABCD 与四边形ABCE ,其中是被AC 分割成的“和谐四边形”的是______.(2)如图2,BD 平分ABC ∠,43BD =10BC =,四边形ABCD 是被BD 分割成的“和谐四边形”,求AB 长; (3)如图3,A 为抛物线24y x =-+的顶点,抛物线与x 轴交于点B ,C .在线段AB 上有一个点P ,在射线BC 上有一个点Q .P 、Q 5/秒,5个单位/秒的速度同时从B 出发分别沿BA ,BC 方向运动,设运动时间为t ,当其中一个点停止运动时,另一个点也随之停止运动.在第一象限的抛物线上是否存在点M ,使得四边形BQMP 是以PQ 为和谐线分割的“和谐四边形”,若存在,请直接写出t 的值;若不存在,请说明理由.14.【阅读理解】小白同学遇到这样一个问题:ABC 中D 是BC 的中点,E 是AB 上一点,延长DE 、CA 交于点F ,DE=EF ,AB=5,求AE 的长.小白的想法是:过点E 作EH BC ∥交AC 于H ,再通过相似三角形的性质得到AE 、BE 的比,从而得出AE 的长.请你按照小白的思路完成解答.【解决问题】请借助小白的解题经验,完成下面问题:ABC 中AD 平分BAC ∠交BC 于D ,E 为AB 边上一点,AE=AD ,H 、Q 为BC 上两点,CQ DH =和DQ mDH =,G 为AC 上一点,连接EQ 交HG 、AD 于F 、P ,180EFG EAD ∠+∠=︒猜想并验证EP 与GH的数量关系.15.【温故知新】(1)九(1)班数学兴趣小组认真探究了课本P 91第13题:如图1,在正方形ABCD 中E 是AD 的中点,F 是CD 上一点,且3CF DF =,图中有哪几对相似三角形?把它们表示出来,并说明理由.③小华很快找出ABE DEF △△∽,他的思路为:设正方形的边长4AB a =,则2,AE DE a DF a ===,利用“两边分别成比例且夹角相等的两个三角形相似”即可证明,请你结合小华的思路写出证明过程; ③小丽发现图中的相似三角形共有三对,而且可以借助于ABE 与DEF 中的比例线段来证明EBF △与它们都相似.请你根据小丽的发现证明其中的另一对三角形相似;【拓展创新】(2)如图2,在矩形ABCD 中E 为AD 的中点,EF EC ⊥交AB 于F ,连结FC .()AB AE > ③求证:AEF ECF ∽△△;③设2,BC AB a ==,是否存在a 值,使得AEF △与BFC △相似.若存在,请求出a 的值;若不存在,请说明理由.参考答案:1.(3)52.(1)2BD CE =(2)6CE =(3)1tan 2ECB ∠=3.(1)DMG ③DBM △,EMF ③EAM △ (2)53FG =4.(1)8(2)2秒或4秒(3)当t 为3或1.2秒钟,使PBQ 与ABC 相似.5.(1)FHG △或DHC (写出一个即可)(2)阴影部分的面积是23 (3)AB BC 的值为357.(1)ABC DBA ∽ ABC CAD ∽ DBA DAC ∽(其中一个即可,答案不唯一);(2)四边形AEFG是菱形,(3)212GF GE BE =⋅ 8. 5 9.【教材原题】ADE ABC △△∽,35【应用】13 10.5(3)611.23105337 12.(1)BCD ACD ∽ BCD BAC ∽△△ CAD BAC △∽△(任写两对即可)(2)③2AC BC '= AC BC '⊥ ③BC 2595+2595-+13.(1)四边形ABCE ;(2)10AB =或245; (3)1118t = 2881t = 1825t = 180169t =.14.阅读理解 54AE =;解决问题,猜想:12EP m GH m +=+. 15.③存在 3。
中考数学与相似有关的压轴题含详细答案

中考数学与相似有关的压轴题含详细答案一、相似1.如图,抛物线y= x2+bx+c与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为D且它的坐标为(3,﹣1).(1)求抛物线的函数关系式;(2)连接CD,过原点O作OE⊥CD,垂足为H,OE与抛物线的对称轴交于点E,连接AE,AD,并延长DA交y轴于点F,求证:△OAE∽△CFD;(3)以(2)中的点E为圆心,1为半径画圆,在对称轴右侧的抛物线上有一动点P,过点P作⊙E的切线,切点为Q,当PQ的长最小时,求点P的坐标,并直接写出Q的坐标.【答案】(1)解:∵顶点D的坐标为(3,﹣1).∴, =﹣1,解得b=﹣3,c= ,∴抛物线的函数关系式:y= x2﹣3x+ ;(2)解:如答图1,过顶点D作DG⊥y轴于点G,则G(0,﹣1),GD=3,令x=0,得y= ,∴C(0,),∴CG=OC+OG= +1= ,∴tan∠DCG= ,设对称轴交x轴于点M,则OM=3,DM=1,AM=3﹣(3﹣)= ,由OE⊥CD,易知∠EOM=∠DCG,∴tan∠EOM=tan∠DCG= ,解得EM=2,∴DE=EM+DM=3,在Rt△AEM中,AM= ,EM=2,由勾股定理得:AE= ;在Rt△ADM中,AM= ,DM=1,由勾股定理得:AD= .∵AE2+AD2=6+3=9=DE2,∴△ADE为直角三角形,∠EAD=90°,设AE交CD于点P,∵∠AEO+∠EPH=90°,∠ADC+APD=90°,∠EPH=∠APD(对顶角相等),∴∠AEO=∠ADC,∴△OAE∽△CFD(3)解:依题意画出图形,如答图2所示:由⊙E的半径为1,根据切线性质及勾股定理,得PQ2=EP2﹣1,要使切线长PQ最小,只需EP长最小,即EP2最小.设点P坐标为(x,y),由勾股定理得:EP2=(x﹣3)2+(y﹣2)2,∵y= (x﹣3)2﹣1,∴(x﹣3)2=2y+2,∴EP2=2y+2+(y﹣2)2=(y﹣1)2+5,当y=1时,EP2有最小值,最小值为5.将y=1代入y= (x﹣3)2﹣1,得(x﹣3)2﹣1=1,解得:x1=1,x2=5,又∵点P在对称轴右侧的抛物线上,∴x1=1舍去,∴P(5,1),∴Q1(3,1);∵△EQ2P为直角三角形,∴过点Q2作x轴的平行线,再分别过点E,P向其作垂线,垂足分别为M点和N点,设点Q2的坐标为(m,n),则在Rt△MQ2E和Rt△Q2NP中建立勾股方程,即(m﹣3)2+(n﹣2)2=1①,(5﹣m)2+(n﹣1)2=4②,①﹣②得n=2m﹣5③,将③代入到①得到,m1=3(舍),m2= ,再将m= 代入③得n= ,∴Q2(,),此时点Q坐标为(3,1)或(,)【解析】【分析】(1)根据抛物线的顶点坐标及顶点坐标公式建立出关于b,c的二元一次方程组,求解得出b,c的值,从而得出抛物线的解析式;(2)如答图1,过顶点D作DG⊥y轴于点G,则G(0,﹣1),GD=3,根据抛物线与坐标轴交点的坐标特点求出C点的坐标,A点坐标,进而得出CG的长,根据正切函数的定义求出tan∠DCG=,设对称轴交x轴于点M,则OM=3,DM=1,AM=3﹣(3﹣)= ,根据同角的余角相等易知∠EOM=∠DCG,根据等角的同名三角函数值相等得出tan∠EOM=tan∠DCG==故解得EM=2,DE=EM+DM=3,在Rt△AEM中,由勾股定理得AE 的长,在Rt△ADM中,由勾股定理得AD的长,根据勾股定理的逆定理判断出△ADE为直角三角形,∠EAD=90°,设AE交CD于点P,根据等角的余角相等得出∠AEO=∠ADC,从而判断出△OAE∽△CFD ;(3)依题意画出图形,如答图2所示:由⊙E的半径为1,根据切线性质及勾股定理,得PQ2=EP2﹣1,要使切线长PQ最小,只需EP长最小,即EP2最小.设点P坐标为(x,y),由勾股定理得:EP2=(x﹣3)2+(y﹣2)2,根据抛物线的解析式,整体替换得出EP2=2y+2+(y﹣2)2=(y﹣1)2+5,当y=1时,EP2有最小值,最小值为5.然后根据抛物线上点的坐标特点将y=1代入抛物线的解析式,求出对应的自变量x的值,再检验得出P点的坐标,进而得出Q1的坐标,由切割线定理得到Q2P=Q1P=2,EQ2=1,设点Q2的坐标为(m,n),则在Rt△MQ2E和Rt△Q2NP中建立勾股方程,即(m﹣3)2+(n﹣2)2=1①,(5﹣m)2+(n﹣1)2=4②,由切割线定理得到Q2P=Q1P=2,EQ2=1,将③代入到①得到,求解并检验得出m,n的值,从而得出Q2的坐标,综上所述即可得出答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、如图,在正三角形ABC 中,D ,E ,F 分别是BC ,AC ,AB上的点,DE AC ⊥,EF AB ⊥,FD BC ⊥,则DEF △的面积与ABC △的面积之比等于( )A .1∶3B .2∶3C .3∶2D .3∶32、如图,在Rt ABC △中,90ACB ∠=°,3BC =,4AC =,AB 的垂直平分线DE 交BC 的延长线于点E ,则CE 的长为( )A .32B .76C .256D .23.提出问题:如图,有一块分布均匀的等腰三角形蛋糕(BC AB =,且AC BC ≠),在蛋糕的边缘均匀分布着巧克力,小明和小华决定只切一刀将这块蛋糕平分(要求分得的蛋糕和巧克力质量都一样).背景介绍:这条分割直线即平分了三角形的面积,又平分了三角形的周长,我们称这条线为三角形的“等分积周线”.尝试解决:(1)小明很快就想到了一条分割直线,而且用尺规作图作出.请你帮小明在图1中画出这条“等分积周线”,从而平分蛋糕.(2) 小华觉得小明的方法很好,所以自己模仿着在图1中过点C 画了一条直线CD 交AB 于点D .你觉得小华会成功吗如能成功,说出确定的方法;如不能成功,请说明理由. (3)通过上面的实践,你一定有了更深刻的认识.请你解决下面的问题:若AB =BC =5 cm ,A B CAB C B 图 1 C BAC =6 cm ,请你找出△ABC 的所有“等分积周线”,并简要的说明确定的方法.4.如图,点P 是菱形ABCD 的对角线BD 上一点,连结CP 并延长,交AD 于E ,交BA 的延长线点F .问:(1) 图中△APD 与哪个三角形全等并说明理由.(2) 求证:△APE ∽△FPA .(3) 猜想:线段PC 、PE 、PF 之间存在什么关系并说明理由.5、如图1,在Rt ABC △中,90BAC ∠=°,AD BC ⊥于点D ,点O 是AC 边上一点,连接BO 交AD 于F ,OE OB ⊥交BC 边于点E . (1)求证:ABF COE △∽△;(2)当O 为AC 边中点,2ACAB =时,如图2,求OF OE 的值;(3)当O 为AC 边中点,ACnAB =时,请直接写出OF OE 的值.6、已知∠ABC=90°,AB=2,BC=3,AD ∥BC ,P 为线段BD 上的动点,点Q 在射线AB 上,且满足AB ADPC PQ =(如图1所示).(1)当AD=2,且点Q 与点B 重合时(如图2所示),求线段PC 的长;BBAAC OED D EOF图1图2F(2)在图中,连结AP .当32AD =,且点Q 在线段AB 上时,设点B Q 、之间的距离为x ,APQ PBCS yS =△△,其中APQS △表示△APQ 的面积,PBCS △表示PBC △的面积,求y 关于x 的函数解析式,并写出函数定义域;(3)当AD AB <,且点Q 在线段AB 的延长线上时(如图3所示),求QPC ∠的大小.7、如图1,在平面直角坐标系中,O 为坐标原点,点A 的坐标为(80)-,,直线BC 经过点(86)B -,,(06)C ,,将四边形OABC 绕点O 按顺时针方向旋转α度得到四边形OA B C ''',此时直线OA '、直线B C ''分别与直线BC 相交于点P 、Q .(1)四边形OABC 的形状是 ,当90α=°时,BPBQ 的值是 ;(2)①如图2,当四边形OA B C '''的顶点B '落在y 轴正半轴时,求BPBQ 的值;②如图3,当四边形OA B C '''的顶点B '落在直线BC 上时,求OPB '△的面积.AD PCBQ 图1DAPCB (Q )图2图3CADPB Q(3)在四边形OABC 旋转过程中,当0180α<≤°时,是否存在这样的点P 和点Q ,使12BP BQ =若存在,请直接写出点P 的坐标;若不存在,请说明理由.8、如图,在矩形ABCD 中,AB=3,AD=1,点P 在线段AB 上运动,设AP=x ,现将纸片折叠,使点D 与点P 重合,得折痕EF (点E 、F 为折痕与矩形边的交点),再将纸片还原。
(1)当x=0时,折痕EF 的长为_______;当点E 与点A 重合时,折痕EF 的长为_______;(2)请写出使四边形EPFD 为菱形的x 的取值范围,并求出当x=2时菱形的边长;(3)令2y EF =,当点E 在AD 、点F 在BC 上时,写出y 与x 的函数关系式。
当y 取最大值时,判断EAP 与PBF 是否相似若相似,求出x 的值;若不相似,请说明理由。
9、如图,在ABC △中,9010A BC ABC ∠==°,,△的面积为25,点D 为AB 边上的任意一点(D 不与A 、B 重合),过点D 作DE BC ∥,交AC 于点E .设DE x =,以DE 为折线将ADE △翻折(使ADE △落在四边形DBCE 所在的平面内),所得的A DE '△与梯形DBCE 重叠部分的面积记为y .(1)用x 表示ADE △的面积;)(图3)(图2)(备用图)(第26题)EDBCAA(2)求出05x <≤时y 与x 的函数关系式; (3)求出510x <<时y 与x 的函数关系式; (4)当x 取何值时,y 的值最大最大值是多少10、如图,已知一个三角形纸片ABC ,BC 边的长为8,BC 边上的高为6,B ∠和C ∠都为锐角,M 为AB 一动点(点M 与点A B 、不重合),过点M 作MN BC ∥,交AC 于点N ,在AMN △中,设MN 的长为x ,MN 上的高为h .(1)请你用含x 的代数式表示h .(2)将AMN △沿MN 折叠,使AMN △落在四边形BCNM 所在平面,设点A 落在平面的点为1A ,1A MN△与四边形BCNM 重叠部分的面积为y ,当x 为何值时,y 最大,最大值为多少11、如图,△ABC 是直角三角形,∠ACB=90°,CD ⊥AB 于D ,E 是AC 的中点,ED 的延长线与CB 的延长线交于点F 。
(1)求证:FD 2=FB ·FC 。
(2)若G 是BC 的中点,连接GD ,GD 与EF 垂直吗并说明理由。
12、正方形ABCD 边长为4,M 、N 分别是BC 、CD 上的两个动点,当M 点在BC 上运动时,保持AM 和MN 垂直,(1)证明:Rt Rt ABM MCN △∽△;(2)设BM x =,梯形ABCN 的面积为y ,求y 与x 之间的函数关系式;当M 点运动到什么位置时,四边形ABCN 面积最大,并求出最大面积;(3)当M 点运动到什么位置时Rt Rt ABM AMN △∽△,求x 的值.13、如图,在梯形ABCD 中,AD BC ∥,6cm AD =,4cm CD =,10cm BC BD ==,点P 由B 出发沿BD 方向匀速运动,速度为1cm/s ;同时,线段EF 由DC 出发沿DA 方向匀速运动,速度为1cm/s ,交BD 于Q ,连接PE .若设运动时间为t (s )(05t <<).解答下列问题:(1)当t 为何值时,PE AB ∥(2)设PEQ △的面积为y (cm 2),求y 与t 之间的函数关系式;(3)是否存在某一时刻t ,使225PEQ BCD S S =△△若存在,求出此时t 的值;若不存在,说明理由.(4)连接PF ,在上述运动过程中,五边形PFCDE 的面积是否发生变化说明理由.14、如图,已知直线128:33l y x =+与直线2:216l y x =-+相交于点C l l 12,、分别交x 轴于A B 、两点.矩形DEFG 的顶点D E 、分别在直线12l l 、上,顶点F G 、都在x 轴上,且点G 与点B 重合.(1)求ABC △的面积;(2)求矩形DEFG 的边DE 与EF 的长;(3)若矩形DEFG 从原点出发,沿x 轴的反方向以每秒1个单位长度的速度平移,设移动时间为(012)t t ≤≤秒,矩形DEFG 与ABC △重叠部分的面积为S ,求S 关于t 的函数关系式,并写出相应的t 的取值范围.15、△ABC 是一块等边三角形的废铁片,利用其剪裁一个正方形DEFG ,使正方形的一条边DE 落在BC 上,顶点F 、G 分别落在AC 、AB 上.Ⅰ.证明:△BDG ≌△CEF ;Ⅱ. 探究:怎样在铁片上准确地画出正方形.小聪和小明各给出了一种想法,请你在Ⅱa 和Ⅱb 的两个问题中选择一个你喜欢的问题解答. 如果两题都解,只以Ⅱa 的解答记分.Ⅱa . 小聪想:要画出正方形DEFG ,只要能计算出正方形的边长就能求出BD 和CE 的长,从而确定D 点和E 点,再画正方形DEFG 就容易了.ABDEFG图 (1)ABDEFG图 (2)ABCD EFG 图 (3)G ′ F ′ E ′D ′设△ABC的边长为2 ,请你帮小聪求出正方形的边长(结果用含根号的式子表示,不要求分母有理化) .Ⅱb. 小明想:不求正方形的边长也能画出正方形. 具体作法是:①在AB边上任取一点G’,如图作正方形G’D’E’F’;②连结BF’并延长交AC于F;③作FE∥F’E’交BC于E,FG∥F′G′交AB于G,GD∥G’D’交BC于D,则四边形DEFG 即为所求.你认为小明的作法正确吗说明理由.16、如图11,在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°,它们的斜边长为2,若ABC固定不动,AFG绕点A旋转,AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合),设BE=m,CD=n.(1)请在图中找出两对相似而不全等的三角形,并选取其中一对进行证明.(2)求m与n的函数关系式,直接写出自变量n的取值范围.(3)以ABC的斜边BC所在的直线为x轴,BC边上的高所在的直线为y轴,建立平面直角坐标系(如图12).在边BC上找一点D,使BD=CE,求出D点的坐标,并通过计算验证BD2+CE2=DE2.(BD2+CE2=DE2是否始终成立,若成立,请证明,若。