2二次曲面分类简介

合集下载

二次曲面分类

二次曲面分类

二次曲面分类二次曲面分类____________________曲面分类是几何学中的一种重要的分类方式,它可以用来对曲面进行归类、分类。

曲面分类可以根据曲面的不同特征来划分,比如曲面的几何特性、曲面的拓扑特性等。

一般来说,曲面分类可以分为一次曲面和二次曲面两大类。

一次曲面是一个平面或者圆形的曲面,而二次曲面是由一个二次多项式表达式组成的曲面。

具体来说,二次曲面是由两个参数决定的,它们分别是二次多项式的系数和它的幂数。

二次曲面可以分为平面、平行平面、圆台、双曲面和球面五大类。

其中,平面是由一个二次多项式表达式组成的平面;平行平面是由两个二次多项式表达式组成的平面;圆台是由一个二次多项式表达式和一个圆周方程组成的椭圆形的曲面;双曲面是由两个二次多项式表达式和一个圆周方程组成的双峰形的曲面;球面是由三个二次多项式表达式和一个圆周方程组成的球形的曲面。

二次曲面有很多应用,其中一个重要的应用是几何建模。

几何建模是用来对物体进行数字化建模的一种方法,通常使用二次曲面作为建模物体的基本元素。

几何建模过程中,通常会使用多种不同的二次曲面来进行建模,这样就可以得到一个真实而复杂的三维物体。

此外,二次曲面还可以用于近似计算。

近似计算是一种数值计算方法,它通常会使用二次多项式来对函数进行近似。

使用二次多项式来近似计算可以减少计算量,同时也可以得到相对准确的计算结果。

最后,二次曲面也可以用于机器视觉中。

机器视觉是一种机器学习方法,它可以利用图像处理和图形学中的二次多项式来识别图像中的对象。

使用二次多项式进行机器视觉任务可以得到准确而快速的识别结果。

总之,二次曲面是几何学中重要的一种分类方式,它可以根据不同的特征将曲面进行归类和分类。

此外,二次曲面也有很多应用,包括几何建模、近似计算、机器视觉等,可以说是几何学中十分重要的一部分。

高等数学二次曲面

高等数学二次曲面

高等数学二次曲面引言在高等数学中,二次曲面是一类重要的曲面,它们在空间中具有特定的几何性质和数学定义。

本文将介绍二次曲面的定义、分类以及一些重要的性质和应用。

定义二次曲面是定义在三维空间中的曲面,它可以用一个二次方程的方程来表示。

二次曲面的方程一般具有以下形式:Ax^2 + By^2 + Cz^2 + Dxy + Exz + Fyz + Gx + Hy + Iz + J = 0其中,A、B、C、D、E、F、G、H、I和J是实数。

当方程中的系数满足一些条件时,可以得到不同种类的二次曲面。

分类根据方程中系数的特点,可以将二次曲面分为以下几类:1. 椭球面当A、B和C的系数都为正时,方程表示一个椭球面。

椭球面具有两个主轴,其中两个主轴的长度由A、B和C的值决定。

椭球面在物理学、天文学和工程学等领域有广泛的应用。

2. 单叶双曲面当A、B和C的系数分别为正、负和负时,方程表示一个单叶双曲面。

单叶双曲面有一个中心点,可以通过平移和旋转变换得到不同的形状。

3. 双叶双曲面当A、B和C的系数分别为负、负和正时,方程表示一个双叶双曲面。

双叶双曲面同样有一个中心点,可以通过平移和旋转变换得到不同的形状。

4. 椭圆抛物面当D、E和F的系数都为零时,方程表示一个椭圆抛物面。

椭圆抛物面具有一个焦点和一条对称轴,可以通过平移和旋转变换得到不同的形状。

5. 双曲抛物面当D、E和F的系数至少有一个不为零时,方程表示一个双曲抛物面。

双曲抛物面同样具有一个焦点和一条对称轴,可以通过平移和旋转变换得到不同的形状。

6. 椭圆锥面当A、B、C的系数满足一个特定的条件时,方程表示一个椭圆锥面。

椭圆锥面可以看作是椭球面在一个主轴的方向上无限延伸而成的曲面。

7. 双曲锥面当A、B、C的系数满足另一个特定的条件时,方程表示一个双曲锥面。

双曲锥面同样可以看作是椭球面在一个主轴的方向上无限延伸而成的曲面。

性质和应用二次曲面具有许多重要的性质和应用,以下是其中的一些:•二次曲面对称性:对于大多数二次曲面,它们都具有某种对称性,可以通过变换来描述这种对称性。

常见的二次曲面

常见的二次曲面

(1)
所确定的曲面称为椭球面.
用Oxy坐标平面(即z=0)截所给曲面,截痕为椭圆
x2 y2 2 2 1, a b z 0.
用平行于Oxy坐标平面的平面z=h截所给曲面,截
痕为椭圆
x2 y2 h2 2 2 1 2 , a b c z h.
x y 当h=±c时,截痕为 2 2 0,即截痕缩为一 a b 点.当|h|>c时,截痕为虚椭圆,说明椭球面与平面
用Oyz坐标面截所给曲面,截痕方程为
y2 z2 2 2 1, b c x 0.
无图形.
用平面x=h截所给曲面,其截痕方程为
y 2 z 2 h2 2 2 2 1, b c a x h.
b 2 当|h|>a时,其图形为椭圆,半轴分别为 h a2 a c 2 2 和 h a ; a
方程
x2 y2 z ( p, q同号) 2 p 2q
(5)
所确定的曲面为椭圆抛物面. 若p>0,q>0.利用截痕法可作出其图形.
六、双曲抛物面
x2 y2 z ( p, q同号) 方程 2 p 2q
确定的曲面为双曲抛物面.
(6)
设p>0,q>0.
用Oxy坐标面截所给曲面,截痕为两条直线
由方程
x2 y2 z 2 2 2 1 2 a b c
(3)
所确定的曲面称为双叶双曲面.
用Oxy坐标面截所给曲面,得截痕为双曲线
x2 y2 2 2 1, a b z 0.
用平面z=h截所给曲面,得截痕为双曲线
x2 y2 Βιβλιοθήκη 2 2 2 1 2 , a b c z h.

常见的二次曲面

常见的二次曲面

用平行于Oxy面的平面z=h截所给曲面,截痕为
x2 y2 1, 2 ph 2qh z h.
当h<0时,是实轴与y轴平行的双曲线.
用Oxz坐标面截所给曲面,截痕为抛物线
2 x 2 pz, y 0. 它是以z轴为对称轴,开口朝上的抛物线.
用Oyz坐标面截所给曲面,截痕为抛物线
因此,椭球面介于 a x a .
二、单叶双曲面
x2 y2 z 2 由方程 2 2 2 1 a b c
所确定的曲面称为单叶双曲面.
(2)
用平行于Oxy坐标面的平面截所给曲面,得截 痕为椭圆
x2 y2 h2 1 2 , 2 2 a b c z h.
当|h|=a时,截痕为一个点;
当|h|<a时为虚椭圆,即无图形. 可见所给图形介于| x | a 的范围内,因此图形为
两支. 常称(a,0,0)和(–a,0,0)为双叶双曲面的顶点.
用Oxz坐标面截所给曲面,得截痕为双曲线
x2 z 2 2 2 1, a c y 0.
用平面y=h截所给曲面,得截痕为双曲线
2 x2 z 2 h 2 2 1 2 , a c b y h.
由上述截痕的分析,可画出双叶双曲面的图形.
四、二次锥面
x2 y2 z 2 方程 2 2 0 2 a b c 所确定的曲面称为二次锥面. (4)
五、椭圆抛物面
当|h|<a时,截痕为双曲线.它的实轴平行于y轴, 虚轴平行于z轴.
当|h|>a时,截痕为双曲线,它的实轴平行于z轴,
虚轴平行于y轴.
当|h|=a时,截痕为两条直线
y z y z 0, 0. b c b c

二次曲面介绍

二次曲面介绍
第九节 二次曲面
三元二次方程所表示的曲面称为二次曲面.
(相应地平面被称为一次曲面)
研究的方法是采用截痕法. 即用坐标面和 平行于坐标面的平面与曲面相截, 考察其交线 (即截痕)的形状, 然后加以综合, 从而了解曲面 的全貌.
一、椭球面
z
x2 y2 z2 a2 b2 c2 1
O
x
它与三个坐标平面的交线:
z
z
o y
x
p 0, q 0
xo
y
p 0, q 0
特殊地:当 p q时,方程变为 x2 y2 z 旋转抛物面 2p 2p
例如 与
z 2 x2 y2 z 1 x2 y2
z
O
y
x
p 0, q 0
分别表示开口朝上与朝下的旋转抛物面.
2. x2 y2 z ( p 与 q 同号) 2 p 2q
双曲抛物面(马鞍面)
设 p 0, q 0
图形如下:
z
o y
x 方程z xy也表示马鞍面.
设 p 0, q 0 图形如下:
z
O
y
x
三、双曲面
x2 a2
y2 b2
z2 c2
1
单叶双曲面
z
o
y
xቤተ መጻሕፍቲ ባይዱ
x2 y2 z2 a2 b2 c2 1
双叶双曲面
o
y
x
y
x2
a
2
y2 b2
1,
x2 z2
a
2
c2
1,
z
z 0
y 0
o
y2
b
2
z2 c2
1,
x
y
x 0
椭球面与平面 z z1 的交线为椭圆

2二次曲面分类简介

2二次曲面分类简介
记 F(x, y, z) = a11x2 + a22y2 + a33z2 + 2a12xy + 2a13xz + 2a23yz + 2b1x + 2b2y + 2b3z + c
上页 下页 结束
用不变量判断二次曲面类型

F ( x, y , z ) x
y
a11 a12 z 1 a13 b 1
其中(d1, d2, d3) 为新原点O在原坐标系 I 中的 坐标.
上页
下页
结束
空间直角坐标变换
转轴: 设新坐标向量e1, e2, e3 与原坐标向量 e1, e2, e3 的交角如下表所示: 原系 交角 x轴(e1) 新系 x轴(e1) y轴(e2) z轴(e3) y轴(e2) z轴(e3)
上页 下页 结束
二次曲面的类型
吕林根《解析几何》P278. 定理6. 6. 2 适当选取坐标系, 二次曲面的方程 总可化为下列十七个标准方程之一: (一) 椭球面 2 2 2 x y z 2 2 1; [1] 椭球面: 2 a b c 2 2 2 x y z [2] 点: 2 2 0; 2 a b c 2 2 2 x y z 2 2 1; [3] 虚椭球面: 2 a b c
点的坐标变换公式: x c11 x c12 y c13 z d1 y c21 x c22 y c23 z d 2 , z c31 x c32 y c33 z d 3 x c11 c12 c13 x d1 y c21 c22 c23 y d 2 . z c c32 c33 z d 3 31 其中 (c11, c21, c31), (c12, c22, c32), (c13, c23, c33) 分别 为新坐标向量e1, e2, e3 在原坐标系 I 中的坐标, (d1, d2, d3) 为新原点O在原坐标系 I 中的坐标.

二次曲面一般式

二次曲面一般式

二次曲面一般式摘要:一、二次曲面的定义二、二次曲面的分类1.椭圆曲面2.双曲线曲面3.抛物线曲面三、二次曲面的性质1.标准方程2.参数方程3.二次曲面的对称性四、二次曲面的应用1.数学领域2.物理领域3.工程领域正文:二次曲面是数学中的一种曲面,它的定义可以表示为二次方程的曲面。

在三维空间中,二次曲面是一个与二次方程相关的曲面。

根据二次方程的不同,二次曲面可以分为椭圆曲面、双曲线曲面和抛物线曲面三类。

1.椭圆曲面椭圆曲面是一种二次曲面,它的标准方程为:(x^2 / a^2) + (y^2 / b^2) = 1其中a和b分别表示椭圆的长短轴。

椭圆曲面在数学和物理领域中都有着广泛的应用,比如在光学和天文学中,椭圆曲面常用于描述光的传播和成像。

2.双曲线曲面双曲线曲面是另一种二次曲面,它的标准方程为:(x^2 / a^2) - (y^2 / b^2) = 1或(x^2 / b^2) - (y^2 / a^2) = 1其中a和b分别表示双曲线的长短轴。

双曲线曲面在数学和物理领域中也有广泛的应用,例如在电场和磁场的研究中,双曲线曲面可以用于描述电荷和电流分布。

3.抛物线曲面抛物线曲面是一种特殊的二次曲面,它的标准方程为:y = ax^2 + bx + c或x = ay^2 + by + c其中a、b和c是常数。

抛物线曲面在数学和工程领域中都有广泛的应用,例如在计算机图形学和机器人运动控制中,抛物线曲面可以用于描述物体的运动轨迹。

二次曲面不仅具有标准方程和参数方程,而且还具有丰富的性质和应用。

例如,二次曲面的对称性可以通过其标准方程或参数方程进行判断。

在数学领域,二次曲面是代数几何、微分几何和拓扑学等学科的重要研究对象。

第八节二次曲面

第八节二次曲面
(椭圆锥面也可由圆锥面经 x 或 y 方向的伸缩变换 得到)
5 柱面
x2 y 2 椭圆柱面 2 2 1 母线平行于 z 轴 a b
双曲柱面
抛物柱面
x y 2 1 2 a b
2
2
母线平行于 z 轴
母线平行于 z 轴
x ay
2
内容小结
1. 空间曲面 • 旋转曲面 三元方程 F ( x , y , z ) 0
第八节 二次曲面
一、椭球面
二、抛物面
三、双曲面
第八章
二次曲面

空间直角坐标系中的空间曲面用方程F(x,y,z)=0表示. 若方程F(x,y,z)=0中的x、y、z是一次(或某些项为零)
的,则表示的曲面为平面,也称平面为一次曲面.
即:三元一次方程 A x +B y + C z +D = 0 所表示的平面
z
x 2 y2 2 z 2 a b
x
y
(2) 双曲抛物面(鞍形曲面)
x2 y2 z ( p , q 同号) 2p 2q
当z=h>0时,截线是双曲线
当z=h=0时,截线是xoy平面上的两条相交于原点的直线;
当z=h<0时,截线是双曲线,但实轴平行于x轴,虚轴 平行于y轴. 当x=h=0时,截线是yOz平面上的顶点为原点的抛物线 当y=h=0时,截线是xOz平面上的顶点为原点的抛物线, 且开口向下.
2 2 2
x y z 1, 2 2 a b
2
2
2
椭球面也可由下面方法伸缩变形而来 (1)将球面
x y z a
2 2 2
2
c a 沿 z 轴方向伸缩 倍: z z, 得旋转椭球面: a c 2 2 2 2 a x y z x2 y 2 2 z 2 a2 , 或 2 1 2 c a c a b y y, (2)再将旋转椭球面沿 y 轴方向伸缩 倍: b a
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


x cos1 cos 1 cos1 x y cos2 cos 2 cos 2 y
z cos3 cos 3 cos 3 z
空间直角坐标变换
一般的空间直角坐标 (点) 变换公式:
x y
x cos1 x cos2
y cos 1 z cos y cos 2 z cos
1
d1 2 d2
z x cos3 y cos 3 z cos 3 d3

x cos1 cos 1 cos1 x d1 y cos2 cos 2 cos 2 y d2 ,
z cos3 cos 3 cos 3 z d3
空间直角坐标变换
空间一般坐标变换公式, 还可以由新坐标系的 三个坐标面来确定.
x2 y2 a2 b2 1;
x2 y2 a2 b2 1;
x2 a2
y2 b2
0;
二次曲面的类型
[12] 双曲柱面: [13] 一对相交平面:
x2 y2 a2 b2 1;
x2 a2
y2 b2
0;
[14] 抛物柱面:
x2 2 py;
[15] 一对平行平面:
x2 a2 , a 0.
[16] 一对平行平面:
a13 a23 a33 z
x
x
y
z
A0
y
z
用不变量判断二次曲面类型
记 F1(x, y, z) = a11x + a12y + a13z + b1
F2(x, y, z) = a12x + a22y + a23z + b2
F3(x, y, z) = a13x + a23y + a33z + b3
b1 b2 c b1 b3 c b2 b3 c
用不变量判断二次曲面类型
用不变量和半不变量判断二次曲面的类型
P287. 定理6. 7. 3 给出二次曲面方程() , 则用不 变量和半不变量判别()为何种类型的充要条件是:
第(I)类曲面:
I3 0;
第(II)类曲面: I3 = 0, I4 0;
第(III)类曲面: I3 = 0, I4 = 0, I2 0;
x2 a2 , a 0.
[17] 一张平面:
x2 0.
用不变量判断二次曲面类型
二次曲面的表示
空间中二次曲面的一般方程为
a11x2 + a22y2 + a33z2 + 2a12xy + 2a13xz + 2a23yz + 2b1x + 2b2y + 2b3z + c = 0 ()
其中a11, a22, a33, a12, a13, a23不全为零.
a23 a33 b3
b2 y
b3 c
z 1
x
x
y
z
1
A
y z
1
用不变量判断二次曲面类型
(x, y, z) = a11x2 + a22y2 + a33z2 + 2a12xy
+ 2a13xz + 2a23yz

(x, y, z) x
y
z
a11 a12
a`12 a22
a13 x a23 y
a13
a12 a22 a23
a13 a33 a33
,
I4
|
A |
a11 a12 a13 b1
a`12 a22 a23 b2
a13 a23 a33 b3
b1 b2 . b3 c
用不变量判断二次曲面类型
二次曲面的半不变量
K1
a11 b1
b1 a22 c b2
b2 a33 c b3
b3 . c
a11 a12 b1 a11 a13 b1 a22 a23 b2 K 2 a12 a22 b2 a13 a33 b3 a23 a33 b3 .
移轴:
x y
x y
d1 d2

z z d3
x x d1 y y d2 , z z d3
其中(d1, d2, d3) 为新原点O在原坐标系 I 中的 坐标.
空间直角坐标变换
转轴: 设新坐标向量e1, e2, e3 与原坐标向量 e1, e2, e3 的交角如下表所示:
(一) 椭球面 [1] 椭球面: [2] 点:
[3] 虚椭球面:
x2 y2 z2 a2 b2 c2 1;
x2 a2
y2 b2
z2 c2
0;
x2 y2 z2 1; a2 b2 c2
二次曲面的类型
(二) 双曲面 [4] 单叶双曲面:
[5] 双叶双曲面: (三) 二次锥面
[6] 二次锥面: (四) 抛物面
I2 < 0, I2 < 0,
K2 0 K2 = 0
用不变量判断二次曲面类型
型别
类别
识别标志
二次柱面
(I3 = 0 I4 = 0 I2 = 0)
抛物柱面 一对平行平面 一对虚平行平面
K2 0 K2 = 0, K1 < 0 K2 = 0, K1 > 0
一对重合平面
K2 = 0, K1 = 0
用不变量判断二次曲面类型
其中 (c11, c21, c31), (c12, c22, c32), (c13, c23, c33) 分别 为新坐标向量e1, e2, e3 在原坐标系 I 中的坐标, (d1, d2, d3) 为新原点O在原坐标系 I 中的坐标.
d3
空间直角坐标变换
过渡矩阵的性质
1. 过渡矩阵是可逆矩阵.
c11 c21
c12 c22
c13 x c23 y .
z c31x c32 y c33z z c31 c32 c33 z
其中 (c11, c21, c31), (c12, c22, c32), (c13, c23, c33) 分别 为新坐标向量e1, e2, e3 在原坐标系 I 中的坐标.
F4(x, y, z) = b1x + b2y + b3z + c
则 F(x, y, z) = xF1(x, y, z) + yF2(x, y, z)
+ zF3(x, y, z) + F4(x, y, z)
用不变量判断二次曲面类型
记 1(x, y, z) = a11x + a12y + a13z 2(x, y, z) = a12x + a22y + a23z 3(x, y, z) = a13x + a23y + a33z 4(x, y, z) = b1x + b2y + b3z
(III) a11x2 + a22y2 + c = 0,
a11a22 0;
(IV) a11x2 + 2b2y = 0, (V) a11x2 + c = 0,
a11b2 0; a11 0.
二次曲面的类型
吕林根《解析几何》P278.
定理6. 6. 2 适当选取坐标系, 二次曲面的方程 总可化为下列十七个标准方程之一:
补充 二次曲面的一般理论
空间直角坐标变换 二次曲面方程的化简 应用不变量判断二次曲面的类型 二次曲面的仿射特征和度量特征
空间直角坐标变换
空间仿射坐标变换公式 向量的坐标变换公式:
I 到 I 的过渡矩阵
x y
c11x c21x
c12 y c13z c22 y c23z,
x y
2. 设有三个仿射坐标系 I, I, I, I 到 I 的过渡 矩阵为C, I 到 I 的过渡矩阵为D, 则 I 到 I 的 过渡矩阵为CD.
3. 若 I 到 I 的过渡矩阵为 C, 则 I 到 I 的过渡 矩阵为 C 1.
4. 两个直角坐标系之间的过渡矩阵是正交矩阵.
空间直角坐标变换
空间直角坐标 (点) 变换
[7] 椭圆抛物面:
x2 a2
y2 b2
z2 c2
1;
x2 y2 z2 a2 b2 c2 1;
x2 y2 z2 a2 b2 c2 0;
x2 a2
y2 b2
2z;
二次曲面的类型
[8] 双曲抛物面: (五) 二次柱面
x2 a2
y2 b2
2z;
[9] 椭圆柱面: [10] 虚椭圆柱面: [11] 一条直线:
I4 < 0 I4 > 0
一点
I4 = 0
用不变量判断二次曲面类型
型别
双曲面 (I3 0 I2 0或 I1I3 0)
类别 单叶双曲面 双叶双曲面
识别标志 I4 > 0 I4 < 0
二次锥面
(I3 0 I2 0 或 I1I3 0)
二次锥面
I4 = 0
用不变量判断二次曲面类型
型别
抛物面 (I3 = 0 I4 0)
则 (x, y, z) = x1(x, y, z) +y2(x, y, z) +z3(x, y, z)
用不变量判断二次曲面类型
二次曲面的不变量
I1 = a11 + a22 + a33,
I2
a11 a12
a12 a11 a22 a13
a13 a22 a33 a23
a23 , a33
a11 I3 A0 a12
其中正负号的选取要
使得坐标变换为右手 直角坐标变换.
二次曲面的类型
二次曲面的一般方程
空间中二次曲面的一般方程为 a11x2 + a22y2 + a33z2 + 2a12xy + 2a13xz + 2a23yz + 2b1x + 2b2y + 2b3z + c = 0 ()
相关文档
最新文档