2018年新课标1卷数学(文)科含标准答案

合集下载

2018年高考文科数学全国卷1(含详细答案)

2018年高考文科数学全国卷1(含详细答案)

数学试题 第1页(共22页)数学试题 第2页(共22页)绝密★启用前2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上. 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合{}02A =,,{}21012B =--,,,,,则A B =( )A .{}02,B .{}12,C .{}0D .{}21012--,,,, 2.设121iz i i-=++,则z =( ) A .0 B .12C .1 D3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是( ) A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.已知椭圆C :22214x y a +=的一个焦点为()2,0,则C 的离心率( ) A .13B .12CD5.已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( ) A.B .12πC.D .10π6.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为( ) A .2y x =-B .y x =-C .2y x =D .y x =7.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =( )A .3144AB AC - B .1344AB AC -C .3144AB AC +D .1344AB AC +8.已知函数()222cos sin 2f x x x =-+,则( ) A .()f x 的最小正周期为π,最大值为3B .()f x 的最小正周期为π,最大值为4C .()f x 的最小正周期为2π,最大值为3D .()f x 的最小正周期为2π,最大值为49.某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( ) A.B.C .3D .210.在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30︒,则该长方体的体积为( )A .8B.C.D.11.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1,A a ,()2,B b ,且2cos 23α=,则a b -=( )A .15BCD .1-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试题 第3页(共22页)数学试题 第4页(共22页)12.设函数()201 0x x f x x -⎧=⎨>⎩,≤,,则满足()()12f x f x +<的x 的取值范围是( )A .(]1-∞,B .()0+∞,C .()10-,D .()0-∞,二、填空题(本题共4小题,每小题5分,共20分)13.已知函数()()22log f x x a =+,若()31f =,则a =________.14.若x y ,满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩≤≥≤,则32z x y =+的最大值为________.15.直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB = ________. 16.ABC △的内角A B C ,,的对边分别为a b c ,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则ABC △的面积为________.三、解答题(共70分。

2018年高考浙江数学(含答案)

2018年高考浙江数学(含答案)
k n k 率 Pn (k ) Ck (k 0,1, 2, n p (1 p)
柱体的体积公式 V Sh 其中 S 表示柱体的底面积, h 表示柱体 的高
1 锥体的体积公式 V Sh 3
其中 S 表示锥体的底面积, h 表示锥体 的高 球的表面积公式
, n)
1 台体的体积公式 V (S1 S1S2 S2 )h 3
3 5
4 5
4 , 5
4 . 5 3 5 4 5 3 , 5
(Ⅱ)由角 的终边过点 P( , ) 得 cos 由 sin( )
5 12 . 得 cos( ) 13 13
由 ( ) 得 cos cos( ) cos sin( )sin , 所以 cos
非选择题部分(共 110 分) 二、填空题:本大题共 7 小题,多空题每题 6 分,单空题每题 4 分,共 36 分。 11.我国古代数学著作《张邱建算经》中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一, 值钱三;鸡雏三,值钱一。凡百钱,买鸡百只,问鸡翁、母、雏各几何?”设鸡翁,鸡母,
x y z 100, 鸡雏个数分别为 x , y , z ,则 当 z 81 时, x ___________ , 1 5 x 3 y z 100, 3
1 8 ) 的展开式的常数项是___________. 2x
x 4, x 15. 已知 λ∈R, 函数 f(x)= 2 , 当 λ=2 时, 不等式 f(x)<0 的解集是___________. 若 x 4 x 3, x
函数 f(x)恰有 2 个零点,则 λ 的取值范围是___________. 16. 从 1, 3, 5, 7, 9 中任取 2 个数字, 从 0, 2, 4, 6 中任取 2 个数字, 一共可以组成___________ 个没有重复数字的四位数.(用数字作答) 17. 已知点 P(0, 1), 椭圆

【名校推荐】专题25 概率与统计-三年高考(2016-2018)数学(文)试题分项版解析 Word版含解析

【名校推荐】专题25 概率与统计-三年高考(2016-2018)数学(文)试题分项版解析 Word版含解析

考纲解读明方向分析解读 本节内容是高考的重点考查内容之一,最近几年的高考有以下特点:1.古典概型主要考查等可能性事件发生的概率,也常与对立事件、互斥事件的概率及统计知识综合起来考查;2.几何概型试题也有所体现,可能考查会有所增加,以选择题、填空题为主.本节内容在高考中分值为5分左右,属容易题.分析解读从近几年的高考试题来看,本部分在高考中的考查点如下:1.主要考查分层抽样的定义,频率分布直方图,平均数、方差的计算,识图能力及借助概率知识分析、解决问题的能力;2.在频率分布直方图中,注意小矩形的高=频率/组距,小矩形的面积为频率,所有小矩形的面积之和为1;3.分析两个变量间的相关关系,通过独立性检验判断两个变量是否相关.本节内容在高考中分值为17分左右,属中档题.1.【2018年浙江卷】设0<p<1,随机变量ξ的分布列是则当p在(0,1)内增大时,A. D(ξ)减小B. D(ξ)增大C. D(ξ)先减小后增大D. D(ξ)先增大后减小【答案】D【解析】分析:先求数学期望,再求方差,最后根据方差函数确定单调性.点睛:2.【2018年全国卷Ⅲ文】若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为A. 0.3B. 0.4C. 0.6D. 0.7【答案】B【解析】分析:由公式计算可得详解:设设事件A为只用现金支付,事件B为只用非现金支付,则,因为,所以,故选B.点睛:本题主要考查事件的基本关系和概率的计算,属于基础题。

3.【2018年全国卷II文】从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为A. B. C. D.【答案】D【解析】分析:分别求出事件“2名男同学和3名女同学中任选2人参加社区服务”的总可能及事件“选中的2人都是女同学”的总可能,代入概率公式可求得概率.点睛:应用古典概型求某事件的步骤:第一步,判断本试验的结果是否为等可能事件,设出事件;第二步,分别求出基本事件的总数与所求事件中所包含的基本事件个数;第三步,利用公式求出事件的概率.4.【2018年江苏卷】某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为________.【答案】【解析】分析:先确定总基本事件数,再从中确定满足条件的基本事件数,最后根据古典概型概率公式求概率.详解:从5名学生中抽取2名学生,共有10种方法,其中恰好选中2名女生的方法有3种,因此所求概率为点睛:古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法(理科):适用于限制条件较多且元素数目较多的题目.5.【2018年江苏卷】已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为________.【答案】90【解析】分析:先由茎叶图得数据,再根据平均数公式求平均数.点睛:的平均数为.6.【2018年全国卷Ⅲ文】某公司有大量客户,且不同龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________.【答案】分层抽样【解析】分析:由题可知满足分层抽样特点详解:由于从不同龄段客户中抽取,故采用分层抽样,故答案为:分层抽样。

2018年语文全国统一考试 (Ⅰ卷)含答案

2018年语文全国统一考试 (Ⅰ卷)含答案

2018年普通高等学校招生全国统一考试 (新课标Ⅰ卷) 语 文 注意事项: 1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、现代文阅读(35分) (一)论述类文本阅读(本题共3小题,9分) 一、 现代文阅读 (一)论述类文本阅读 阅读下面的文字,完成1-3题 诸于之学,兴起于先秦,当时一大批富有创见的思想家喷涌而出,蔚为思想史之奇观。

在狭义上,诸子之学与先秦时代相联系;在广义上,诸子之学则不限于先秦而绵延于此后中国思想发展的整个过程,这一过程至今仍没有终结。

诸子之学的内在品格是历史的承继性以及思想的创造性和突破性。

“新子学“,即新时代的诸子之学,也应有同样的品格。

这可以“照着讲”和“接着讲”两个方面来理解。

一般而言,“照着讲”,主要是从历史角度对以往经典作具体的实证性研究,诸如训诂、校勘、文献编纂,等等。

这方面的研究涉及对以往思想的回顾,反思,既应把握历史上的思想家实际说了些什么,也应总结其中具有创造性和生命力的内容,从而为今天的思考提供重要的思想资源。

与“照着讲”相关的是“接着讲”。

从思想的发展与诸子之学的关联看,“接着讲”接近于诸子之学所具有的思想突破性的内在品格,它意味着延续诸子注重思想创造的传统,以近代以来中西思想的互动为背景,“接着讲”无法回避中西思想之间的关系。

在中西之学已相遇的“接着讲”同时展开为中西之学的交融,从更深的层次看,这种交融具体展开为世界文化的建构与发展过程。

中国思想文化传统与西方的思想文化传统都构成了世界文化的重要资源,而世界文化的发展,则以二者的互动为其重要前提。

2018年全国卷1文科数学高考卷版含答案

2018年全国卷1文科数学高考卷版含答案

2018年全国卷1文科数学高考卷(含答案)一、选择题(本大题共12小题,每小题5分,共60分)1. 设集合A={x|0≤x≤2},集合B={x|x²3x+2=0},则A∩B=()A. {1, 2}B. {1}C. {2}D. 空集2. 已知复数z满足|z|=1,则|z1|的最小值为()A. 0B. 1C. √2D. 23. 在等差数列{an}中,若a1=1,a3=3,则数列的公差为()A. 1B. 2C. 3D. 44. 函数f(x)=x²2x+3在区间(0,+∞)上的单调性为()A. 单调递增B. 单调递减C. 先单调递增后单调递减D. 先单调递减后单调递增5. 已知函数f(x)=|x1|,则f(f(2))的值为()B. 1C. 2D. 36. 平面向量a和b满足|a|=3,|b|=4,a•b=6,则cos<a,b>的值为()A. 1/2B. 3/4C. 2/3D. 4/57. 若直线y=kx+b与圆x²+y²=1相切,则k的取值范围是()A. [1,1]B. (1,1)C. [√2,√2]D. (√2,√2)8. 在三角形ABC中,a=3,b=4,cosA=1/4,则三角形ABC的面积为()A. 3B. 4C. 6D. 89. 已知数列{an}满足an+1=2an+1,a1=1,则数列的前n项和为()A. 2n1C. 2n+1D. 2n+210. 若函数f(x)在区间(a,b)上可导,且f'(x)≠0,则函数f(x)在区间(a,b)上()A. 单调递增B. 单调递减C. 有极值D. 不单调11. 设平面直角坐标系xOy中,点A(2,3),点B在直线y=2x+1上,若|AB|=√10,则点B的坐标为()A. (1,3)B. (2,5)C. (3,7)D. (4,9)12. 已知函数f(x)=x²2x+3,g(x)=2x1,则f[g(x)]的值域为()A. [2,+∞)B. [3,+∞)C. [4,+∞)D. [5,+∞)二、填空题(本大题共4小题,每小题5分,共20分)13. 已知数列{an}是等比数列,a1=2,a3=8,则数列的公比为______。

2011年—2018年新课标全国卷(1卷、2卷、3卷)文科数学试题分类汇编—8

2011年—2018年新课标全国卷(1卷、2卷、3卷)文科数学试题分类汇编—8

2011年—2018年新课标全国卷(1卷、2卷、3卷)文科数学试题分类汇编—8.三角函数、解三角形2011年—2018年新课标全国卷Ⅰ文科数学分类汇编7.三角函数、解三角形一、选择题2018年新课标Ⅰ文8题:已知函数$f(x)=2\cos x-\sin x+2$,则$f(x)$的最小正周期为$\pi$,最大值为3.2018年新课标Ⅰ文11题:已知角$\alpha$的顶点为坐标原点,始边与$x$轴的非负半轴重合,终边上有两点$A(1,0)$,$B(2,b)$,且$\cos2\alpha=\frac{1}{5}$,则$a-b=\frac{1}{5}$。

2018年新课标Ⅱ文7题:在$\triangle ABC$中,$\cos C=\frac{5}{\sqrt{26}}$,$BC=1$,$AC=5$,则$AB=5\sqrt{2}$。

2018年新课标Ⅱ文10题:若$f(x)=\cos x-\sin x$在$[0,a]$是减函数,则$a$的最大值是$\frac{3\pi}{4}$。

2018年新课标Ⅲ文4题:若$\sin \alpha=\frac{1}{\sqrt{8}}$,则$\cos 2\alpha=-\frac{7}{8}$。

2018年新课标Ⅲ文6题:函数$f(x)=\frac{\tan x}{1+\tan^2 x}$的最小正周期为$\pi$。

2018年新课标Ⅲ文11题:triangle ABC$的内角$A$,$B$,$C$的对边分别为$a$,$b$,$c$。

若$\triangle ABC$的面积为$4$,则$\cosC=\frac{3}{4}$。

2017年新课标Ⅰ文11题:triangle ABC$的内角$A$、$B$、$C$的对边分别为$a$、$b$、$c$。

已知$\sin B+\sin A(\sin C-\cos C)=\frac{3}{2}$,$a=2$,$c=2$,则$C=\frac{\pi}{3}$。

2018年浙江省高考数学试卷(含答案)

2018年浙江省高考数学试卷(含答案)

绝密★启用前2018年浙江省高考数学试卷考试时间:120分钟;试卷整理:微信公众号--浙江数学学校:___________姓名:___________班级:___________考号:___________题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)评卷人得分一.选择题(共10小题,满分40分,每小题4分)1.(4分)(2018•浙江)已知全集U={1,2,3,4,5},A={1,3},则∁U A=()A.∅B.{1,3}C.{2,4,5}D.{1,2,3,4,5}2.(4分)(2018•浙江)双曲线﹣y2=1的焦点坐标是()A.(﹣,0),(,0)B.(﹣2,0),(2,0)C.(0,﹣),(0,)D.(0,﹣2),(0,2)3.(4分)(2018•浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.2B.4C.6D.84.(4分)(2018•浙江)复数(i为虚数单位)的共轭复数是()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i5.(4分)(2018•浙江)函数y=2|x|sin2x的图象可能是()A.B.C.D.6.(4分)(2018•浙江)已知平面α,直线m,n满足m⊄α,n⊂α,则“m∥n”是“m∥α”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.(4分)(2018•浙江)设0<p<1,随机变量ξ的分布列是ξ012P则当p在(0,1)内增大时,()A.D(ξ)减小B.D(ξ)增大C.D(ξ)先减小后增大D.D(ξ)先增大后减小8.(4分)(2018•浙江)已知四棱锥S﹣ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点).设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S﹣AB﹣C的平面角为θ3,则()A.θ1≤θ2≤θ3B.θ3≤θ2≤θ1C.θ1≤θ3≤θ2D.θ2≤θ3≤θ19.(4分)(2018•浙江)已知,,是平面向量,是单位向量.若非零向量与的夹角为,向量满足﹣4•+3=0,则|﹣|的最小值是()A.﹣1B.+1C.2D.2﹣10.(4分)(2018•浙江)已知a1,a2,a3,a4成等比数列,且a1+a2+a3+a4=ln(a1+a2+a3),若a1>1,则()A.a1<a3,a2<a4B.a1>a3,a2<a4C.a1<a3,a2>a4D.a1>a3,a2>a4第Ⅱ卷(非选择题)评卷人得分二.填空题(共7小题,满分36分)11.(6分)(2018•浙江)我国古代数学著作《张邱建算经》中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一.凡百钱,买鸡百只,问鸡翁、母、雏各几何?”设鸡翁,鸡母,鸡雏个数分别为x,y,z,则,当z=81时,x=,y=.12.(6分)(2018•浙江)若x,y满足约束条件,则z=x+3y的最小值是,最大值是.13.(6分)(2018•浙江)在△ABC中,角A,B,C所对的边分别为a,b,c.若a=,b=2,A=60°,则sinB=,c=.14.(4分)(2018•浙江)二项式(+)8的展开式的常数项是.15.(6分)(2018•浙江)已知λ∈R,函数f(x)=,当λ=2时,不等式f(x)<0的解集是.若函数f(x)恰有2个零点,则λ的取值范围是.16.(4分)(2018•浙江)从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成个没有重复数字的四位数.(用数字作答)17.(4分)(2018•浙江)已知点P(0,1),椭圆+y2=m(m>1)上两点A,B满足=2,则当m=时,点B横坐标的绝对值最大.评卷人得分三.解答题(共5小题,满分74分)18.(14分)(2018•浙江)已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P(﹣,﹣).(Ⅰ)求sin(α+π)的值;(Ⅱ)若角β满足sin(α+β)=,求cosβ的值.19.(15分)(2018•浙江)如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=l,AB=BC=B1B=2.(Ⅰ)证明:AB1⊥平面A1B1C1;(Ⅱ)求直线AC1与平面ABB1所成的角的正弦值.20.(15分)(2018•浙江)已知等比数列{a n}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{b n}满足b1=1,数列{(b n+1﹣b n)a n}的前n项和为2n2+n.(Ⅰ)求q的值;(Ⅱ)求数列{b n}的通项公式.21.(15分)(2018•浙江)如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y2=4x上存在不同的两点A,B满足PA,PB的中点均在C上.(Ⅰ)设AB中点为M,证明:PM垂直于y轴;(Ⅱ)若P是半椭圆x2+=1(x<0)上的动点,求△PAB面积的取值范围.22.(15分)(2018•浙江)已知函数f(x)=﹣lnx.(Ⅰ)若f(x)在x=x1,x2(x1≠x2)处导数相等,证明:f(x1)+f(x2)>8﹣8ln2;(Ⅱ)若a≤3﹣4ln2,证明:对于任意k>0,直线y=kx+a与曲线y=f(x)有唯一公共点.2018年浙江省高考数学试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.(4分)(2018•浙江)已知全集U={1,2,3,4,5},A={1,3},则∁U A=()A.∅B.{1,3}C.{2,4,5}D.{1,2,3,4,5}【分析】根据补集的定义直接求解:∁U A是由所有属于集合U但不属于A的元素构成的集合.【解答】解:根据补集的定义,∁U A是由所有属于集合U但不属于A的元素构成的集合,由已知,有且仅有2,4,5符合元素的条件.∁U A={2,4,5}故选:C.【点评】本题考查了补集的定义以及简单求解,属于简单题.2.(4分)(2018•浙江)双曲线﹣y2=1的焦点坐标是()A.(﹣,0),(,0)B.(﹣2,0),(2,0)C.(0,﹣),(0,)D.(0,﹣2),(0,2)【分析】根据双曲线方程,可得该双曲线的焦点在x轴上,由平方关系算出c==2,即可得到双曲线的焦点坐标.【解答】解:∵双曲线方程可得双曲线的焦点在x轴上,且a2=3,b2=1,由此可得c==2,∴该双曲线的焦点坐标为(±2,0)故选:B.【点评】本题考查双曲线焦点坐标,着重考查了双曲线的标准方程和焦点坐标求法等知识,属于基础题.3.(4分)(2018•浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.2B.4C.6D.8【分析】直接利用三视图的复原图求出几何体的体积.【解答】解:根据三视图:该几何体为底面为直角梯形的四棱柱.如图所示:故该几何体的体积为:V=.故选:C.【点评】本题考查的知识要点:三视图的应用.4.(4分)(2018•浙江)复数(i为虚数单位)的共轭复数是()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i【分析】化简已知复数z,由共轭复数的定义可得.【解答】解:化简可得z===1+i,∴z的共轭复数=1﹣i故选:B.【点评】本题考查复数的代数形式的运算,涉及共轭复数,属基础题.5.(4分)(2018•浙江)函数y=2|x|sin2x的图象可能是()A.B.C.D.【分析】直接利用函数的图象和性质求出结果.【解答】解:根据函数的解析式y=2|x|sin2x,得到:函数的图象为奇函数,故排除A和B.当x=时,函数的值也为0,故排除C.故选:D.【点评】本题考查的知识要点:函数的性质和赋值法的应用.6.(4分)(2018•浙江)已知平面α,直线m,n满足m⊄α,n⊂α,则“m∥n”是“m∥α”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】根据线面平行的定义和性质以及充分条件和必要条件的定义进行判断即可.【解答】解:∵m⊄α,n⊂α,∴当m∥n时,m∥α成立,即充分性成立,当m∥α时,m∥n不一定成立,即必要性不成立,则“m∥n”是“m∥α”的充分不必要条件.故选:A.【点评】本题主要考查充分条件和必要条件的判断,根据线面平行的定义和性质是解决本题的关键,是基础题.7.(4分)(2018•浙江)设0<p<1,随机变量ξ的分布列是ξ012P则当p在(0,1)内增大时,()A.D(ξ)减小B.D(ξ)增大C.D(ξ)先减小后增大D.D(ξ)先增大后减小【分析】求出随机变量ξ的分布列与方差,再讨论D(ξ)的单调情况.【解答】解:设0<p<1,随机变量ξ的分布列是E(ξ)=0×+1×+2×=p+;方差是D(ξ)=×+×+×=﹣p2+p+=﹣+,∴p∈(0,)时,D(ξ)单调递增;p∈(,1)时,D(ξ)单调递减;∴D(ξ)先增大后减小.故选:D.【点评】本题考查了离散型随机变量的数学期望与方差的计算问题,也考查了运算求解能力,是基础题.8.(4分)(2018•浙江)已知四棱锥S﹣ABCD的底面是正方形,侧棱长均相等,E是线段AB上的点(不含端点).设SE与BC所成的角为θ1,SE与平面ABCD所成的角为θ2,二面角S﹣AB﹣C的平面角为θ3,则()A.θ1≤θ2≤θ3B.θ3≤θ2≤θ1C.θ1≤θ3≤θ2D.θ2≤θ3≤θ1【分析】作出三个角,表示出三个角的正弦或正切值,根据三角函数的单调性即可得出三个角的大小.【解答】解:∵由题意可知S在底面ABCD的射影为正方形ABCD的中心.过E作EF∥BC,交CD于F,过底面ABCD的中心O作ON⊥EF交EF于N,连接SN,取CD中点M,连接SM,OM,OE,则EN=OM,则θ1=∠SEN,θ2=∠SEO,θ3=∠SMO.显然,θ1,θ2,θ3均为锐角.∵tanθ1==,tanθ3=,SN≥SO,∴θ1≥θ3,又sinθ3=,sinθ2=,SE≥SM,∴θ3≥θ2.故选:D.【点评】本题考查了空间角的计算,三角函数的应用,属于中档题.9.(4分)(2018•浙江)已知,,是平面向量,是单位向量.若非零向量与的夹角为,向量满足﹣4•+3=0,则|﹣|的最小值是()A.﹣1B.+1C.2D.2﹣【分析】把等式﹣4•+3=0变形,可得得,即()⊥(),设,则的终点在以(2,0)为圆心,以1为半径的圆周上,再由已知得到的终点在不含端点O的两条射线y=(x>0)上,画出图形,数形结合得答案.【解答】解:由﹣4•+3=0,得,∴()⊥(),如图,不妨设,则的终点在以(2,0)为圆心,以1为半径的圆周上,又非零向量与的夹角为,则的终点在不含端点O的两条射线y=(x>0)上.不妨以y=为例,则|﹣|的最小值是(2,0)到直线的距离减1.即.故选:A.【点评】本题考查平面向量的数量积运算,考查数学转化思想方法与数形结合的解题思想方法,属难题.10.(4分)(2018•浙江)已知a1,a2,a3,a4成等比数列,且a1+a2+a3+a4=ln(a1+a2+a3),若a1>1,则()A.a1<a3,a2<a4B.a1>a3,a2<a4C.a1<a3,a2>a4D.a1>a3,a2>a4【分析】利用等比数列的性质以及对数函数的单调性,通过数列的公比的讨论分析判断即可.【解答】解:a1,a2,a3,a4成等比数列,由等比数列的性质可知,奇数项符号相同,偶数项符号相同,a1>1,设公比为q,当q>0时,a1+a2+a3+a4>a1+a2+a3,a1+a2+a3+a4=ln(a1+a2+a3),不成立,即:a1>a3,a2>a4,a1<a3,a2<a4,不成立,排除A、D.当q=﹣1时,a1+a2+a3+a4=0,ln(a1+a2+a3)>0,等式不成立,所以q≠﹣1;当q<﹣1时,a1+a2+a3+a4<0,ln(a1+a2+a3)>0,a1+a2+a3+a4=ln(a1+a2+a3)不成立,当q∈(﹣1,0)时,a1>a3>0,a2<a4<0,并且a1+a2+a3+a4=ln(a1+a2+a3),能够成立,故选:B.【点评】本题考查等比数列的性质的应用,函数的值的判断,对数函数的性质,考查发现问题解决问题的能力,难度比较大.二.填空题(共7小题,满分36分)11.(6分)(2018•浙江)我国古代数学著作《张邱建算经》中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一.凡百钱,买鸡百只,问鸡翁、母、雏各几何?”设鸡翁,鸡母,鸡雏个数分别为x,y,z,则,当z=81时,x=8,y=11.【分析】直接利用方程组以及z的值,求解即可.【解答】解:,当z=81时,化为:,解得x=8,y=11.故答案为:8;11.【点评】本题考查方程组的解法,是基本知识的考查.12.(6分)(2018•浙江)若x,y满足约束条件,则z=x+3y的最小值是﹣2,最大值是8.【分析】作出题中不等式组表示的平面区域,得到如图的△ABC及其内部,再将目标函数z=x+3y对应的直线进行平移,观察直线在y轴上的截距变化,然后求解最优解得到结果.【解答】解:作出x,y满足约束条件表示的平面区域,如图:其中B(4,﹣2),A(2,2).设z=F(x,y)=x+3y,将直线l:z=x+3y进行平移,观察直线在y轴上的截距变化,可得当l经过点B时,目标函数z达到最小值.(4,﹣2)=﹣2.∴z最小值=F可得当l经过点A时,目标函数z达到最最大值:z最大值=F(2,2)=8.故答案为:﹣2;8.【点评】本题给出二元一次不等式组,求目标函数的最小值,着重考查了二元一次不等式组表示的平面区域和简单的线性规划等知识,属于中档题.13.(6分)(2018•浙江)在△ABC中,角A,B,C所对的边分别为a,b,c.若a=,b=2,A=60°,则sinB=,c=3.【分析】由正弦定理得=,由此能求出sinB,由余弦定理得cos60°=,由此能求出c.【解答】解:∵在△ABC中,角A,B,C所对的边分别为a,b,c.a=,b=2,A=60°,∴由正弦定理得:,即=,解得sinB==.由余弦定理得:cos60°=,解得c=3或c=﹣1(舍),∴sinB=,c=3.故答案为:,3.【点评】本题考查三角形中角的正弦值、边长的求法,考查正弦定理、余弦定理等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.14.(4分)(2018•浙江)二项式(+)8的展开式的常数项是7.【分析】写出二项展开式的通项并整理,由x的指数为0求得r值,则答案可求.【解答】解:由=.令=0,得r=2.∴二项式(+)8的展开式的常数项是.故答案为:7.【点评】本题考查了二项式系数的性质,关键是熟记二项展开式的通项,是基础题.15.(6分)(2018•浙江)已知λ∈R,函数f(x)=,当λ=2时,不等式f(x)<0的解集是{x|1<x<4}.若函数f(x)恰有2个零点,则λ的取值范围是(1,3]∪(4,+∞).【分析】利用分段函数转化求解不等式的解集即可;利用函数的图象,通过函数的零点得到不等式求解即可.【解答】解:当λ=2时函数f(x)=,显然x≥2时,不等式x﹣4<0的解集:{x|2≤x<4};x<2时,不等式f(x)<0化为:x2﹣4x+3<0,解得1<x<2,综上,不等式的解集为:{x|1<x<4}.函数f(x)恰有2个零点,函数f(x)=的草图如图:函数f(x)恰有2个零点,则1<λ≤3或λ>4.故答案为:{x|1<x<4};(1,3]∪(4,+∞).【点评】本题考查函数与方程的应用,考查数形结合以及函数的零点个数的判断,考查发现问题解决问题的能力.16.(4分)(2018•浙江)从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成1260个没有重复数字的四位数.(用数字作答)【分析】可先从1,3,5,7,9中任取2个数字,然后通过0是否存在,求解即可.【解答】解:从1,3,5,7,9中任取2个数字有种方法,从2,4,6,0中任取2个数字不含0时,有种方法,可以组成=720个没有重复数字的四位数;含有0时,0不能在千位位置,其它任意排列,共有=540,故一共可以组成1260个没有重复数字的四位数.故答案为:1260.【点评】本题考查排列组合及简单的计数问题,先选后排是解决问题的关键,注意“0“是否在4位数中去易错点,是中档题.17.(4分)(2018•浙江)已知点P(0,1),椭圆+y2=m(m>1)上两点A,B满足=2,则当m=5时,点B横坐标的绝对值最大.【分析】设A(x1,y1),B(x2,y2),运用向量共线的坐标表示,以及点满足椭圆方程,求得y1,y2,有x22=m﹣()2,运用二次函数的最值求法,可得所求最大值和m的值.【解答】解:设A(x1,y1),B(x2,y2),由P(0,1),=2,可得﹣x1=2x2,1﹣y1=2(y2﹣1),即有x1=﹣2x2,y1+2y2=3,又x12+4y12=4m,即为x22+y12=m,①x22+4y22=4m,②①﹣②得(y1﹣2y2)(y1+2y2)=﹣3m,可得y1﹣2y2=﹣m,解得y1=,y2=,则m=x22+()2,即有x22=m﹣()2==,即有m=5时,x22有最大值16,即点B横坐标的绝对值最大.故答案为:5.【点评】本题考查椭圆的方程和应用,考查向量共线的坐标表示和方程思想、转化思想,以及二次函数的最值的求法,属于中档题.三.解答题(共5小题,满分74分)18.(14分)(2018•浙江)已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P(﹣,﹣).(Ⅰ)求sin(α+π)的值;(Ⅱ)若角β满足sin(α+β)=,求cosβ的值.【分析】(Ⅰ)由已知条件即可求r,则sin(α+π)的值可得;(Ⅱ)由已知条件即可求sinα,cosα,cos(α+β),再由cosβ=cos[(α+β)﹣α]=cos(α+β)cosα+sin(α+β)sinα代值计算得答案.【解答】解:(Ⅰ)∵角α的顶点与原点O重合,始边与x轴非负半轴重合,终边过点P (﹣,﹣).∴x=﹣,y=,r=|OP|=,∴sin(α+π)=﹣sinα=;(Ⅱ)由x=﹣,y=,r=|OP|=1,得,,又由sin(α+β)=,得=,则cosβ=cos[(α+β)﹣α]=cos(α+β)cosα+sin(α+β)sinα=,或cosβ=cos[(α+β)﹣α]=cos(α+β)cosα+sin(α+β)sinα=.∴cosβ的值为或.【点评】本题考查了任意角的三角函数的定义,考查了三角函数的诱导公式的应用,是中档题.19.(15分)(2018•浙江)如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=l,AB=BC=B1B=2.(Ⅰ)证明:AB1⊥平面A1B1C1;(Ⅱ)求直线AC1与平面ABB1所成的角的正弦值.【分析】(I)利用勾股定理的逆定理证明AB1⊥A1B1,AB1⊥B1C1,从而可得AB1⊥平面A1B1C1;(II)以AC的中点为坐标原点建立空间坐标系,求出平面ABB1的法向量,计算与的夹角即可得出线面角的大小.【解答】(I)证明:∵A1A⊥平面ABC,B1B⊥平面ABC,∴AA1∥BB1,∵AA1=4,BB1=2,AB=2,∴A 1B1==2,又AB1==2,∴AA12=AB12+A1B12,∴AB1⊥A1B1,同理可得:AB1⊥B1C1,又A1B1∩B1C1=B1,∴AB1⊥平面A1B1C1.(II)解:取AC中点O,过O作平面ABC的垂线OD,交A1C1于D,∵AB=BC,∴OB⊥OC,∵AB=BC=2,∠BAC=120°,∴OB=1,OA=OC=,以O为原点,以OB,OC,OD所在直线为坐标轴建立空间直角坐标系如图所示:则A(0,﹣,0),B(1,0,0),B 1(1,0,2),C1(0,,1),∴=(1,,0),=(0,0,2),=(0,2,1),设平面ABB1的法向量为=(x,y,z),则,∴,令y=1可得=(﹣,1,0),∴cos<>===.设直线AC 1与平面ABB1所成的角为θ,则sinθ=|cos<>|=.∴直线AC1与平面ABB1所成的角的正弦值为.【点评】本题考查了线面垂直的判定定理,线面角的计算与空间向量的应用,属于中档题.20.(15分)(2018•浙江)已知等比数列{a n}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{b n}满足b1=1,数列{(b n+1﹣b n)a n}的前n项和为2n2+n.(Ⅰ)求q的值;(Ⅱ)求数列{b n}的通项公式.【分析】(Ⅰ)运用等比数列的通项公式和等差数列中项性质,解方程可得公比q;(Ⅱ)设c n=(b n+1﹣b n)a n=(b n+1﹣b n)2n﹣1,运用数列的递推式可得c n=4n﹣1,再由数列的恒等式求得b n=b1+(b2﹣b1)+(b3﹣b2)+…+(b n﹣b n﹣1),运用错位相减法,可得所求数列的通项公式.【解答】解:(Ⅰ)等比数列{a n}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项,可得2a4+4=a3+a5=28﹣a4,解得a4=8,由+8+8q=28,可得q=2(舍去),则q的值为2;(Ⅱ)设c n=(b n+1﹣b n)a n=(b n+1﹣b n)2n﹣1,可得n=1时,c1=2+1=3,n≥2时,可得c n=2n2+n﹣2(n﹣1)2﹣(n﹣1)=4n﹣1,上式对n=1也成立,则(b n+1﹣b n)a n=4n﹣1,即有b n+1﹣b n=(4n﹣1)•()n﹣1,可得b n=b1+(b2﹣b1)+(b3﹣b2)+…+(b n﹣b n﹣1)=1+3•()0+7•()1+…+(4n﹣5)•()n﹣2,b n=+3•()+7•()2+…+(4n﹣5)•()n﹣1,相减可得b n=+4[()+()2+…+()n﹣2]﹣(4n﹣5)•()n﹣1=+4•﹣(4n﹣5)•()n﹣1,化简可得b n=15﹣(4n+3)•()n﹣2.【点评】本题考查等比数列的通项公式和等差数列中项的性质,考查数列的恒等式和错位相减法的运用,考查运算能力,属于中档题.21.(15分)(2018•浙江)如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y2=4x上存在不同的两点A,B满足PA,PB的中点均在C上.(Ⅰ)设AB中点为M,证明:PM垂直于y轴;(Ⅱ)若P是半椭圆x2+=1(x<0)上的动点,求△PAB面积的取值范围.【分析】(Ⅰ)设P(m,n),A(,y1),B(,y2),运用中点坐标公式可得M 的坐标,再由中点坐标公式和点在抛物线上,代入化简整理可得y1,y2为关于y的方程y2﹣2ny+8m﹣n2=0的两根,由韦达定理即可得到结论;(Ⅱ)由题意可得m2+=1,﹣1≤m<0,﹣2<n<2,可得△PAB面积为S=|PM|•|y1﹣y2|,再由配方和换元法,可得面积S关于新元的三次函数,运用单调性可得所求范围.【解答】解:(Ⅰ)证明:可设P(m,n),A(,y1),B(,y2),AB中点为M的坐标为(,),抛物线C:y2=4x上存在不同的两点A,B满足PA,PB的中点均在C上,可得()2=4•,()2=4•,化简可得y1,y2为关于y的方程y2﹣2ny+8m﹣n2=0的两根,可得y1+y2=2n,y1y2=8m﹣n2,可得n=,则PM垂直于y轴;(Ⅱ)若P是半椭圆x2+=1(x<0)上的动点,可得m2+=1,﹣1≤m<0,﹣2<n<2,由(Ⅰ)可得y1+y2=2n,y1y2=8m﹣n2,由PM垂直于y轴,可得△PAB面积为S=|PM|•|y1﹣y2|=(﹣m)•=[•(4n2﹣16m+2n2)﹣m]•=(n2﹣4m),可令t===,可得m=﹣时,t取得最大值;m=﹣1时,t取得最小值2,即2≤t≤,则S=t3在2≤t≤递增,可得S∈[6,],△PAB面积的取值范围为[6,].【点评】本题考查抛物线的方程和运用,考查转化思想和运算能力,以及换元法和三次函数的单调性,属于难题.22.(15分)(2018•浙江)已知函数f(x)=﹣lnx.(Ⅰ)若f(x)在x=x1,x2(x1≠x2)处导数相等,证明:f(x1)+f(x2)>8﹣8ln2;(Ⅱ)若a≤3﹣4ln2,证明:对于任意k>0,直线y=kx+a与曲线y=f(x)有唯一公共点.【分析】(Ⅰ)推导出x>0,f′(x)=﹣,由f(x)在x=x1,x2(x1≠x2)处导数相等,得到+=,由基本不等式得:=≥,从而x 1x2>256,由题意得f(x1)+f(x2)==﹣ln(x1x2),设g(x)=,则,利用导数性质能证明f(x1)+f(x2)>8﹣8ln2.(Ⅱ)令m=e﹣(|a|+k),n=()2+1,则f(m)﹣km﹣a>|a|+k﹣k﹣a≥0,推导出存在x0∈(m,n),使f(x0)=kx0+a,对于任意的a∈R及k∈(0,+∞),直线y=kx+a 与曲线y=f(x)有公共点,由f(x)=kx+a,得k=,设h(x)=,则h′(x)==,利用导数性质能证明a≤3﹣4ln2时,对于任意k>0,直线y=kx+a与曲线y=f(x)有唯一公共点.【解答】证明:(Ⅰ)∵函数f(x)=﹣lnx,∴x>0,f′(x)=﹣,∵f(x)在x=x1,x2(x1≠x2)处导数相等,∴=﹣,∵x1≠x2,∴+=,由基本不等式得:=≥,∵x1≠x2,∴x1x2>256,由题意得f(x1)+f(x2)==﹣ln(x1x2),设g(x)=,则,∴列表讨论:x(0,16)16(16,+∞)g′(x)﹣0+g(x)↓2﹣4ln2↑∴g(x)在[256,+∞)上单调递增,∴g(x1x2)>g(256)=8﹣8ln2,∴f(x1)+f(x2)>8﹣8ln2.(Ⅱ)令m=e﹣(|a|+k),n=()2+1,则f(m)﹣km﹣a>|a|+k﹣k﹣a≥0,f(n)﹣kn﹣a<n(﹣﹣k)≤n(﹣k)<0,∴存在x0∈(m,n),使f(x0)=kx0+a,∴对于任意的a∈R及k∈(0,+∞),直线y=kx+a与曲线y=f(x)有公共点,由f(x)=kx+a,得k=,设h(x)=,则h′(x)==,其中g(x)=﹣lnx,由(1)知g(x)≥g(16),又a≤3﹣4ln2,∴﹣g(x)﹣1+a≤﹣g(16)﹣1+a=﹣3+4ln2+a≤0,∴h′(x)≤0,即函数h(x)在(0,+∞)上单调递减,∴方程f(x)﹣kx﹣a=0至多有一个实根,综上,a≤3﹣4ln2时,对于任意k>0,直线y=kx+a与曲线y=f(x)有唯一公共点.【点评】本题考查函数的单调性,导数的运算及其应用,同时考查逻辑思维能力和综合应用能力,是中档题.。

2018年全国统一高考语文试卷(新课标ⅰ)及答案解析

2018年全国统一高考语文试卷(新课标ⅰ)及答案解析

2018年全国统一高考语文试卷〔新课标Ⅰ〕一、现代文阅读〔36分〕〔一〕论述类文本阅〔此题共1小题,9分〕1.〔9分〕阅读下面的文字,完成以下各题。

诸子之学,兴起于先秦,当时一大批富有创见的思想家喷涌而出,蔚为思想史之奇观。

在狭义上,诸子之学与先秦时代相联系;在广义上,诸子之学则不限于先秦而绵延于此后中国思想发展的整个过程,这一过程至今仍没有终结。

诸子之学的内在品格是历史的承继性以及思想的创造性和突破性。

“新子学”,即新时代的诸子之学,也应有同样的品格,这可以从“照着讲”和“接着讲”两个方面来理解,一般而言,“照着讲”,主要是从历史角度对以往经典作具体的实证性研究,诸如训话、校勘、文献编纂,等等。

这方面的研究涉及对以往思想的回忆、反思,既应把握历史上的思想家实际说了些什么,也应总结其中具有创造性和生命力的内容,从而为今天的思考提供重要的思想资源。

与“照看讲”相关的是“接着讲”。

从思想的发展与诸子之学的关联看,“接着讲”接近诸子之学所具有的思想突破性的内在品格,它意味着延续诸子注重思想创造的传统。

以近代以来中西思想的互动为背景,“接着讲”无法回避中西思想之间的关系。

在中西之学已相遇的背景下,“接着讲”同时展开为中西之学的交融,从更深的层次看,这种交融具体展开为世界文化的建构与发展过程。

中国思想传统与西方的思想传统都构成了世界文化的重要资源,而世界文化的发展,则以二者的互动为其重要前提。

这一意义上的“新子学”,同时表现为世界文化发展过程中创造性的思想系统。

相对于传统的诸子之学,“新子学”无疑获得了新的内涵与新的形态。

“照着讲”与“接着讲”二者无法别离。

从逻辑上说,任何新思想的形成,都不能从“无”开始,它总是基于既有的思想演进过程,并需要对既有思想范围进行反思批判。

“照着讲”的意义,在于梳理以往的思想发展过程,打开前人思想的丰富内容,由此为后继的思想提供理论之源。

在此意义上,“照着讲”是“接着讲”的出发点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年普通高等学校招生全国统一考试
(新课标Ⅰ卷)
文科数学
一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.已知集合{}02A =,,{}21012B =--,,,
,,则A B =( ) A.{}02,ﻩ
B.{}12, ﻩC .{}0 ﻩﻩD .{}21012--,,,, 2.设121i z i i
-=++,则z =( ) A .0 ﻩﻩB.12
ﻩﻩ ﻩC .1ﻩ ﻩﻩD.2 3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:
则下面结论中不正确的是( )
A .新农村建设后,种植收入减少
B .新农村建设后,其他收入增加了一倍以上
C .新农村建设后,养殖收入增加了一倍
D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半
4.已知椭圆C :22
214
x y a +=的一个焦点为()2,0,则C 的离心率( ) A .13 ﻩ B .12
ﻩ ﻩ C .22ﻩﻩ D .223
5.已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )
A .122π ﻩﻩﻩB.12πﻩ ﻩ C.82π ﻩﻩﻩD.10π
6.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为( )
A .2y x =-
B.y x =- C.2y x = ﻩ D.y x =
7.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =( )
A.
3144AB AC - ﻩﻩ B .1344AB AC - C.3144
AB AC +ﻩﻩﻩ ﻩ D.1344
AB AC +
8.已知函数()222cos sin 2f x x x =-+,则( ) A .()f x 的最小正周期为π,最大值为3
ﻩ B.()f x 的最小正周期为π,最大值为4ﻩﻩﻩﻩﻩ
C.()f x 的最小正周期为2π,最大值为3

D.()f x 的最小正周期为2π,最大值为4ﻩ
9.某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的
点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点
为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为
( )
A .217ﻩ
ﻩB.25 ﻩ ﻩC.3ﻩﻩ D .2
10.在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30︒,则该长方体的体积为( )
A.8ﻩﻩ B .62 ﻩ C.82 ﻩﻩﻩD .83 11.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1,A a ,()2,B b ,且2cos 23
α=,则a b -=( ) A .15 ﻩﻩB.
5ﻩ ﻩC.25 D .1 12.设函数()201 0x x f x x -⎧=⎨>⎩
,≤,,则满足()()12f x f x +<的x 的取值范围是( ) A.(]1-∞,ﻩ B .()0+∞, C .()10-,ﻩ D.()0-∞,
二、填空题(本题共4小题,每小题5分,共20分)
13.已知函数()()
22log f x x a =+,若()31f =,则a =________.
14.若x y ,满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩≤≥≤,则32z x y =+的最大值为________.
15.直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB = ________.
16.
ABC △的内角A B C ,,的对边分别为a b c ,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则ABC △的面积为________.
三、解答题(共70分。

解答应写出文字说明、证明过程或演算步骤。

第17~21题为必考题,每个试题考生都必须作答。

第22、23题为选考题,考生根据要求作答。

)。

相关文档
最新文档