V型电压互感器接线分析与计算

合集下载

V型电压互感器接线分析及计算

V型电压互感器接线分析及计算

V型电压互感器接线分析与计算摘要:本文主要阐述了在高压电能计量中V型电压互感器与三相三线电能表所组成的计量系统的接线方式,通过对正确与错误接线的分析和计算,为公司电能的正确计量提供理论上的技术支持,同时也可为计量人员的分析提供相应的帮助,从而加快公司计量工作的进一步开展。

关键词:V型电压互感器三相有功电能表接线分析计算随着节能工作的进一步推进,计量工作成为企业管理工作中的重要组成局部,由于矿区尤其是井下能源消耗主要来自于电能,因此做好电能计量〔尤其是井下电能计量〕则是做好计量工作的关键。

我公司高压计量系统中广泛采用了V型电压互感器配感应式三相三线电能表进展计量,但在计量过程中常出现计量明显不准或电能表反转的现象。

电能表计量的工作原理:当电压线圈两端加以线路电压,电流线圈串接在电源与负载之间电流过电流时,电压元件和电流元件就产生了在空间上不同位置、相角上不同相位的电压工作磁通和电流工作磁通。

电压工作磁通与电流工作磁通在圆盘中产生的感应涡流相互作用及电流工作磁通与电压工作磁通在圆盘中产生的感应涡流相互作用,使圆盘转动并通过传动机构实现对电能消耗的记录,即电能计量。

一般来说,电能的消耗正比于表计圆盘转动。

为确保计量的准确性,在表计完好的前提下,最关键就是接线正确,尤其是电压互感器的正确接线。

则,我们应如何接线呢.由于电流互感器星形〔Y型〕互感器接线较为简单,这里,就开口角形〔V型〕电压互感器与三相三线电能表配合接线进展分析,以供参考。

一、V型电压互感器接线的高压电能计量装置与Y型电压互感器相比,V型电压互感器接线很容易接错,接线一旦错误,就会造成计量错误,因此必须接对电压互感器的极性。

V型接线实际上是开口三角形接线,即三角形的接线取去一组线圈。

三角形接线是三相绕组正极与负极连接,所以V 型接线也是一相绕组的负极与另一相绕组的正极连接,而不能同极连接,其正确接线图如图1所示。

这种接线是用两个单相互感器接成V 型接线,一次和二次绕组极性接法是对称的,且都是正极和负极连接,接线是严禁改变任何一相接线,它是V 型电压互感器正确接线的标准接线图。

电压互感器常见接线图 (图文) 民熔

电压互感器常见接线图   (图文) 民熔

电压互感器接线图电压互感器(Potential Transformer 简称PT,Voltage Transformer简称VT)和变压器类似,是用来变换电压的仪器。

但变压器变换电压的目的是方便输送电能,因此容量很大,一般都是以千伏安或兆伏安为计算单位;而电压互感器变换电压的目的,主要是用来给测量仪表和继电保护装置供电,用来测量线路的电压、功率和电能,或者用来在线路发生故障时保护线路中的贵重设备、电机和变压器,因此电压互感器的容量很小,一般都只有几伏安、几十伏安,最大也不超过一千伏安。

词条介绍了其基本结构、工作原理、主要类型、接线方式、注意事项、异常与处理、以及铁磁谐振等。

民熔电压互感器简介:JDZ-10高压电压互感器10kv半封闭式0.5级羊角型特点:体积小精度高纯铜线圈一体成型安全可靠环氧材质优质钢片电压互感器的电力系统通常有四种接线方式。

电压互感器的接地和相位必须严格连接,严禁电压互感器二次侧短路。

1、单相电压互感器接线方式一个单相电压互感器接线方式一个单相电压互感器的接线,用于对称的三相电路,二次侧可接仪表和继电器。

二、两个单相电压互感器互V/V型的接线方式两台单相电压互感器的V/V接线方式可以测量线电压,但不能测量相电压。

广泛应用于20kV以下中性点不接地或经消弧图接地的电网。

3、三台单相电压互感器Y0/Y0接线方式三个单相电压互感器Y0/Y0型的接线方式可供给要求测量线电压的仪表和继电器,以及要求供给相电压的绝缘监察电压表。

四、三个单相三绕组电压互感器或一个三相五柱式三绕组电压互感器接成Y0/Y0/Δ型三台单相三绕组电压互感器或一台三相五柱三绕组电压互感器接Y0/Y0/Δ型,接Y0型二次线圈,向仪表、继电器和绝缘监测电压表供电。

辅助次级线圈连接成一个开放的三角形,为绝缘监测电压继电器供电。

三相系统正常工作时,三相电压平衡,开三角形两端电压为零。

当一相接地时,开三角形两端出现零序电压,使绝缘监测电压继电器动作并发出信号。

电压互感器接法

电压互感器接法

电压互感器的接线形式(1)单相接线该接法仅适用于测量相间电压。

如果互感器一次绕组的一端接在线路上,另一端接地,互感器可测量某一相对地电压。

(2)V-V接线由两个单相互感器接线成不完全星形(V-V形),用来测量各相间电压,但不能测量相对地电压,它广泛应用在20kV以下中性点不接地或经消弧线圈接地的电网中。

(3)Y-Y接线由三个单相互感器一、二次侧均接成Y形,可供给要求线电压的仪表和继电器以及要求相电压的绝缘监视电压表。

(4)Y0/Y0/D接线用三台单相三绕组电压互感器构成Y0/Y0/D接线,该接线方式其二次绕组用来测量相间电压和相对地电压,辅助二次绕组接成开口三角形检测零序电压。

以上是PT的几种接线形式,你说的这种情况应该是V-V接线方式。

电压互感器的接线形式(1)单相接线该接法仅适用于测量相间电压。

如果互感器一次绕组的一端接在线路上,另一端接地,互感器可测量某一相对地电压。

(2)V-V接线由两个单相互感器接线成不完全星形(V-V形),用来测量各相间电压,但不能测量相对地电压,它广泛应用在20kV以下中性点不接地或经消弧线圈接地的电网中。

(3)Y-Y接线由三个单相互感器一、二次侧均接成Y形,可供给要求线电压的仪表和继电器以及要求相电压的绝缘监视电压表。

(4)Y0/Y0/D接线用三台单相三绕组电压互感器构成Y0/Y0/D接线,该接线方式其二次绕组用来测量相间电压和相对地电压,辅助二次绕组接成开口三角形检测零序电压。

以上是PT的几种接线形式,你说的这种情况应该是V-V接线方式。

10kv高压计量柜电压互感器为何有的用两个,有的用三个,有何区别。

其作用分别是?2010-01-30 11:17南京哈哈|分类:工程技术科学|浏览7274次请讲述不同选用的道理。

谢谢!分享到:2010-02-04 10:23提问者采纳计量柜主要功能就是计算电流的功。

2个电压互感器,使用的是两相法测量线路的功。

3个电压互感器,使用的是三相法测量线路的功。

电压互感器接线形式接法

电压互感器接线形式接法

电压互感器V-V接线正确与错误接法(图)发布日期:2008-5-21 浏览次数:622图1、图2是正确的Vv接法,但图3是VΛ接法,AB、C B两相电压反向了180°,所以V变成v后,反相成对顶状态。

故,图3不是Vv接法。

常用电压互感器的接线电压互感器在三相电路中常用的接线方式有四种,如下图1.一个单相电压互感器的接线,用于对称的三相电路,二次侧可接仪表和继电器,如图1(a)。

2.两个单相电压互感器的V/V形接线,可测量线电压,但不能测相电压,它广泛应用在20kV以下中性点不接地或经消弧线图接地的电网中。

如图1(b)。

3.三个单相电压互感器接成Y0/Y0形,如图1(c)。

可供给要求测量线电压的仪表和继电器,以及要求供给相电压的绝缘监察电压表。

4.一台三相五芯柱电压互感器接成Y0/Y0/Δ(开口三角形),如图1(d)所示。

接成Y0形的二次线圈供电给仪表、继电器及绝缘监察电压表等。

辅助二次线圈接成开口三角形,供电给绝缘监察电压继电器。

当三相系统正常工作时,三相电压平衡,开口三角形两端电压为零。

当某一相接地时,开口三角形两端出现零序电压,使绝缘监察电压继电器动作,发出信号。

V/V型的接线图分析V/V连接的两个电压互感器二次侧两个开口端之间的电压与其一次侧的两个开口端电压存在对应的相量关系。

也就是说,二次侧两个开口端及公共端之间的电压也同样满足电源三相电压的关系。

因此,虽然“B相无电压”(未施加任何电压),输出端的电量仍然是三相电量。

左图是正确接线,从相量图看三相平衡;右图是错误接线,从相量图看三相不平衡。

根据ab和ub的线电压可以计算出ca线电压,。

若二次侧ab相接反,从相量图看,则ca线电压变为。

电压互感器几种常见接地点的作用一次侧中性点接地由三只单相电压互感器组成星形接线时,其一次侧中性点必须接地。

如下图所示。

因为电压互感器在系统中不仅有电压测量,而且还起继电保护的作用。

当系统中发生单相接地时,系统中会出现零序电流。

谈V-V型电压互感器极性反接错误接线故障类型及判断方法

谈V-V型电压互感器极性反接错误接线故障类型及判断方法
统 中采 用 V— V 型 电 压 互 感 器接 线 时 . 可 能 出现 的接 线错 误 故
篡墟 髓 撇 蠛接 帕 电 瑚 鞠

障 类 型极 多 , 比 如 极 性反 接 错 误 引 起 的 接 线 错误 故 障 、 极 性 断 线 引起 的接 线错 误 故 障 、 电压 回 路 错 误 接 线 故 障 、 电 流 回路 错
低碳技 术
L o W C A R B o N Wo R L D 2 0 1 6 / 1 2
谈V — V 型 电压互感 器 极 性反 接 错 误接 线 故 障类型及 判断方法
王 琳 ( 国网山东省电力公司商河县供电公司, 山东 济南 2 5 1 6 0 0 )
【 摘 要】 V — V型 电压互感器接线方式是 电力 系统 中最 为常见的一种接线方式。在 电力系统实际工作过程 中, V — V型 电 压 互感器接线并不一定 总能顺利进行 , 经常会出现许多接线错误 , 而一旦出现极性反接错误, 就 很难 判断出接线故障。 本文就 v — v型 电压互感器极性反接错误故障类
般 情 况 下 .只 要 对 电压 互 感 器 电压 回路 的 接 线 情 况进 行 查 看 即 可 判 断 出电 压 互 感 器 的 极 性 接 线 情 况 ,具 体 操 作 步

骤是 : 对 三相 之 间 的 电压 和 二 次 回路 之 间 的 电压 进 行 测 量 。 其 结 果 应 该 均 等 于额 定 电压 。 如果在测量过程 中。 发 现 三 相 电压 在 数 值 上 不 一 致且 差 别较 大 ,就 用相 位表 测 量 三相 电压 之 间
至 角的 度 数 。
是相反的 , 数 值 是 相 等 。 电压 向 量 U B c 和 电压 向量 U b c 在 方向

电压互感器断相更正系数分析与计算

电压互感器断相更正系数分析与计算



图 4
对 应 图 1的 U 相 电 压 一 次 侧 断 相 时 相 量 图
对应 图 1 当 U相 电压 一次 侧断 相 时 , 量 图如 , 相


. 、
图4 。通过 分析 , 一元 件所加 电压 为 0V, 二 、 第 第 三 元 件所加 电压 分别 为 ¨ 。 据相 量 图 、 正 系数 计 更
[ 者简介】 王 作 友 (9 6一) 男 , 北 枝 江 人 , 程 师 。 16 , 湖 工
当 w 相电压 断 相时 , 三元件 所加 电压 为 0V, 第

43 ・
箜 鲞塑型
20 0 8年 l 2月
湖 北 电 力
V12 d DC.2008d 03 A . e
( 假设 电路对 称 。 下同 ) 以

电压 互感 器 为 Y / 。型 接 线 , 三 相 三 线 电子 0y 接
式 电能表 , 图 2所 示 。 如


兰 I 二 丑囝
图 2 Y / 。 接 线 接 三 相 三 线 电子 式 电 能表 。y 型
电压 互 感器 为 V v型接 线 , / 接三 相 三线 电子 式 电能表 , 图 3所示 。 如
第 一 、 元件 所加 电压 分别 为 、 更正 系数 为 : 二 口,
K =
[ ’

( ▲
、 .
同理 分析 , V 相 电压断 相 时 , 一 、 元件 所 当 第 二 加 电压分 别为 12 12 更正 系数 为 : /U /U
图 5 对 应 图 2的 u 相 电 压一 次侧 断相 时相 量 图
当断 w 相 电压 时第一 、 二元 件所 加 电压 为 ¨

针对电压互感器的两种接线方式失压时电量计算方法分析

针对电压互感器的两种接线方式失压时电量计算方法分析

针对电压互感器的两种接线方式失压时电量计算方法分析摘要电力工程在实际运行中,容易出现计量电压互感器发生断相故障,影响电能计费的准确性,同时在电能运营商与电能用户间形成巨大的矛盾,大大降低供电的质量。

针对计量用电压互感器在两种接线方式下失压时电量计算方法进行举例分析及对电量数据的追补更正,提高计量的精确性和可靠性。

以下作详细解析。

关键词计量用电压互感器;V型接线;Y/Y接线;追补电量更正率1 电压互感器为V型接线时失压计量分析一般10kV计量TV及二次电压回路采用图1方式接线,RD为高压熔断器,Z1、Z2、Z3为计量TV二次负载,(其中二次负载是由有功电能表、无功电能表、电压表、失压记时仪等的阻抗构成)。

1)当图l中一次B相断线时,两TV一次绕组串联接入UAC电压回路中,故每只TV一次绕组电压此时只有UAC电压幅值的一半,相位与UAC相同(忽略TV二次绕组负载差别对一次阻抗的影响),这样所对应的二次电压Uac、Ubc 与Uab相同,幅值关系为Uab=Ubc=Uac。

图1 TV为V/V接线方式显然B相断线时,二次实际有功功率只有正常的一半,这种故障情况下有功电量追补比较简单。

2)当图1中一次A相断线时,由于TV二次负载是△形接法,AB相TV二次绕组线圈与Zl并联后与Z3串联接入Ubc电压中,二次电压Uab不可能为0V,一般幅值在10V一30V之间,相位与接近,但不完全同相。

二次电压Uab与Uac 幅值、相位与Ⅳ二次线圈阻抗、有功和无功电能表电压元件阻抗及其他二次负载有关。

以下面一例为证。

某粮油加工厂10kV用户计量TV回路故障,计量人员现场检测数据如下:(用相位伏安表测试)二次电压:Uab=24.8V,Ubc=107.6V,Uac=89V二次电流:Ia=Ic=2.16A相位:∠UabIa=131°L;∠UabIc=10°L∠UbcIa=110°L;∠UbcIc=11°C停电后检查发现TV一次A相保险熔断,更换后恢复正常,根据故障时测量的数据画出故障情况下二次电流、电压及相位关系如图2所示。

V型电压互感器接线分析及计算

V型电压互感器接线分析及计算

V型电压互感器接线分析及计算1.Y型接线在Y型接线中,主互感器和副互感器的中性端连接在一起,形成一个Y形结构。

这种接线方法适用于三相平衡系统,其中每个相都有一个主互感器和一个副互感器。

Y型接线中主互感器和副互感器的一次侧(高压侧)分别连接到三相电源,即A、B、C相。

主互感器的二次侧(低压侧)连接到三相负载,即a、b、c相。

副互感器的二次侧连接到测量仪表。

对于Y型接线,可以通过下面的公式计算副互感器的二次侧电压:Vab = (VAN x (Zbc + Zca) + VBN x (Zca + Zab) + VCN x (Zab + Zbc)) / (Zca + Zab + Zbc)其中,Vab为副互感器二次侧的电压,VAN、VBN、VCN分别为主互感器一次侧(高压侧)的电压,Zab、Zbc、Zca为主互感器的内阻。

2.∆型接线在∆型接线中,主互感器和副互感器的相间端连接在一起,形成一个∆形结构。

这种接线方法适用于三相不平衡系统,其中每个相都有一个主互感器和一个副互感器。

∆型接线中主互感器和副互感器的一次侧(高压侧)分别连接到三相电源,即A、B、C相。

主互感器的二次侧(低压侧)连接到测量仪表。

副互感器的二次侧通过三相电阻接地。

对于∆型接线,可以通过下面的公式计算副互感器的二次侧电压:Vab = VAN x (Zbc / (Zab + Zbc)) + VBN x (Zca / (Zbc + Zca))+ VCN x (Zab / (Zca + Zab))其中,Vab为副互感器二次侧的电压,VAN、VBN、VCN分别为主互感器一次侧(高压侧)的电压,Zab、Zbc、Zca为主互感器的内阻。

需要注意的是,在实际应用中,除了上述计算,还需要考虑其他因素,如变压器的额定容量、负载功率因素等。

此外,应格外注意接线的正确性和安全性,避免电流或电压过大而导致设备损坏或人身安全事故。

总之,V型电压互感器的接线方法可以根据系统的需求选择Y型接线或∆型接线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档