2017-2018学年山东省临沂市兰陵县七年级(上)期末数学试卷(解析版)
2018-2019学年山东省临沂市兰陵县七年级(上)期末数学试卷(解析版)

2018-2019学年山东省临沂市兰陵县七年级(上)期末数学试卷一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给的4个选项中,只有一项是符合题目要求的.1.下列算式中,运算结果为负数的是()A.﹣(﹣2)B.|﹣2|C.(﹣2)3D.(﹣2)22.有理数a,b在数轴上的位置如图,则下列各式不成立的是()A.a+b<0B.a﹣b>0C.ab>0D.|b|>a3.下列各式中运算正确的是()A.a3+a2=a5B.5a﹣3a=2C.3a2b﹣2a2b=a2b D.3a2+2a2=5a44.根据等式的性质,下列变形正确的是()A.如果2x=3,那么x=B.如果x=y,那么x﹣5=5﹣yC.如果x=y,那么﹣2x=﹣2y D.如果x=6,那么x=35.关于x的方程2x+5a=3的解与方程2x+2=0的解相同,则a的值是()A.1B.4C.D.﹣16.给出下列判断:①锐角的补角一定是钝角;②一个角的补角一定大于这个角;③如果两个角是同一个角的余角,那么这两个角相等;④锐角和钝角一定互补,其中正确的有()A.1 个B.2 个C.3 个D.4 个7.如图,一副三角尺按不同的位置摆放,摆放位置中∠α=∠β的图形有()A.1个B.2个C.3个D.4个8.如图,甲从A点出发向北偏东70°方向走到点B,乙从点A出发向南偏西15°方向走到点C,则∠BAC的度数是()A.85°B.105°C.125°D.160°9.给定一列按规律排列的数:,则这列数的第6个数是()A.B.C.D.10.如图,已知线段AB=10cm,M是AB中点,点N在AB上,NB=2cm,那么线段MN 的长为()A.5cm B.4cm C.3cm D.2cm11.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?设这个物品的价格是x元,则可列方程为()A.8x+3=7x+4B.8x﹣3=7x+4C.=D.=12.如图,码头A在码头B的正西方向,甲、乙两船分别从A,B同时出发,并以等速驶向某海域,甲的航向是北偏东35°,为避免行进中甲、乙相撞,则乙的航向不能是()A.北偏东55°B.北偏西55°C.北偏东35°D.北偏西35°13.如图,数轴上A、B、C三点所表示的数分别是a,6,c,已知AB=8,a+c=0,且c 是关于x的方程(m﹣4)x+16=0的一个解,则m的值为()A.﹣4B.2C.4D.614.有一列数a1,a2,a3,a4,a5,…,a n,其中a1=5×2+1,a2=5×3+2,a3=5×4+3,a4=5×5+4,a5=5×6+5,…,当a n=2015时,n的值等于()A.332B.333C.334D.335二、填空题(每小题4分,共20分).15.将数据393000用科学记数法表示为.16.已知a﹣2b=3,则3(a﹣b)﹣(a+b)的值为.17.如图,已知OC是∠AOB内部的一条射线,∠AOC=30°,OE是∠COB的平分线.当∠BOE=40°时,则∠AOB的度数是.18.“十一”长假期间,小张和小李决定骑自行车外出旅游,两人相约一早从各自家中出发,已知两家相距10千米,小张出发必过小李家.若两人同时出发,小张车速为20千米/小时,小李车速为15千米/小时,经过小时能相遇.19.探索规律,观察下面算式,解答问题:第1个等式:1=12;第2个等式:1+3=22;第3个等式:1+3+5=32;第4个等式:1+3+5+7=42;……,(1)按以上规律列出第5个等式:;(2)请猜想1+3+5+7+9+…+(2n﹣1)=;(n为正整数);三、解答题(共58分)20.计算:﹣6÷2+(﹣)×12+(﹣3)221.已知代数式A=2x2+5xy﹣7y﹣3,B=x2﹣xy+2.(1)求3A﹣(2A+3B)的值;(2)若A﹣2B的值与x的取值无关,求y的值.22.列方程解应用题某中学七年级(1)(2)两个班共105人,要去市科技博物馆进行社会大课堂活动,老师指派小明到网上查阅票价信息,小明查得票价如下表:其中七(1)班不足50人,经估算,如果两个班都以班为单位购票,一共应付1140元.购票张数(张)每张票的价格(元)1~501251~10010100以上a①两个班各有多少学生?②如果两个班联合起来,作为一个团体购票,可以省300元,请求a的值.23.已知,O为直线AB上一点,∠DOE=90°.(1)如图1,若∠AOC=130°,OD平分∠AOC.①求∠BOD的度数;②请通过计算说明OE是否平分∠BOC.(2)如图2,若∠BOE:∠AOE=2:7,求∠AOD的度数.24.如图,数轴上点A对应的有理数为20,点P以每秒2个单位长度的速度从点A出发,点Q以每秒4个单位长度的速度从原点O出发,且P,Q两点同时向数轴正方向运动,设运动时间为t秒.(1)当t=2时,P,Q两点对应的有理数分别是,,PQ=;(2)当PQ=10时,求t的值.25.某市为鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费:月用水量不超过10立方米时,按2元/立方米计费;月用水量超过10立方米时,其中的10立方米仍按2元/立方米收费,超过的部分按3元/立方米计费.已知小明和小强两家某月共用水22立方米(其中小强家用水量超过10立方米),一共交费47元,问该月小明和小强两家各用水多少立方米?2018-2019学年山东省临沂市兰陵县七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给的4个选项中,只有一项是符合题目要求的.1.下列算式中,运算结果为负数的是()A.﹣(﹣2)B.|﹣2|C.(﹣2)3D.(﹣2)2【解答】解:A、﹣(﹣2)=2,故A错误;B、|﹣2|=2,故B错误;C、(﹣2)3=﹣8,故C正确;D、(﹣2)2=4,故D错误;故选:C.2.有理数a,b在数轴上的位置如图,则下列各式不成立的是()A.a+b<0B.a﹣b>0C.ab>0D.|b|>a【解答】解:由图,|a|<|b|,a>0>b,A、根据绝对值不相等的异号两数相加的加法法则,由a>0>b,|a|<|b|,a+b<0;B、根据有理数减法法则,a﹣b>0;C、根据有理数乘法法则,ab<0;D、根据绝对值的定义,|b|>|a|;由于a>0,所以|a|=a,即|b|>a.故选:C.3.下列各式中运算正确的是()A.a3+a2=a5B.5a﹣3a=2C.3a2b﹣2a2b=a2b D.3a2+2a2=5a4【解答】解:A、a3+a2,无法计算,故此选项错误;B、5a﹣3a=2a,故此选项错误;C、3a2b﹣2a2b=a2b,故此选项正确;D、3a2+2a2=5a2,故此选项错误;故选:C.4.根据等式的性质,下列变形正确的是()A.如果2x=3,那么x=B.如果x=y,那么x﹣5=5﹣yC.如果x=y,那么﹣2x=﹣2y D.如果x=6,那么x=3【解答】解:A、根据等式的性质得到x=,故本选项不符合题意.B、根据等式的性质得到x﹣5=y﹣5,故本选项不符合题意.C、根据等式的性质得到﹣2x=﹣2y,故本选项符合题意.D、根据等式的性质得到x=12,故本选项不符合题意.故选:C.5.关于x的方程2x+5a=3的解与方程2x+2=0的解相同,则a的值是()A.1B.4C.D.﹣1【解答】解:由2x+5a=3,得x=;由2x+2=0,得x=﹣1.由关于x的方程2x+5a=3的解与方程2x+2=0的解相同,得=﹣1.解得a=1.故选:A.6.给出下列判断:①锐角的补角一定是钝角;②一个角的补角一定大于这个角;③如果两个角是同一个角的余角,那么这两个角相等;④锐角和钝角一定互补,其中正确的有()A.1 个B.2 个C.3 个D.4 个【解答】解:①锐角的补角一定是钝角,说法正确;②一个角的补角一定大于这个角,说法错误;③如果两个角是同一个角的余角,那么这两个角相等,说法正确;④锐角和钝角一定互补,说法错误,正确的说法有2个,故选:B.7.如图,一副三角尺按不同的位置摆放,摆放位置中∠α=∠β的图形有()A.1个B.2个C.3个D.4个【解答】解:根据角的和差关系可得第一个图形∠α=∠β=45°,根据同角的余角相等可得第二个图形∠α=∠β,根据等角的补角相等可得第三个图形∠α=∠β,第四个图形∠α+∠β=180°,不相等,因此∠α=∠β的图形个数共有3个.故选:C.8.如图,甲从A点出发向北偏东70°方向走到点B,乙从点A出发向南偏西15°方向走到点C,则∠BAC的度数是()A.85°B.105°C.125°D.160°【解答】解:根据题意得:∠BAC=(90°﹣70°)+15°+90°=125°,故选:C.9.给定一列按规律排列的数:,则这列数的第6个数是()A.B.C.D.【解答】解:∵一列按规律排列的数:∴这列数的第5个数是:=,这列数的第6个数是:=,故选:A.10.如图,已知线段AB=10cm,M是AB中点,点N在AB上,NB=2cm,那么线段MN的长为()A.5cm B.4cm C.3cm D.2cm【解答】解:∵AB=10cm,M是AB中点,∴BM=AB=5cm,又∵NB=2cm,∴MN=BM﹣BN=5﹣2=3cm.故选:C.11.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?设这个物品的价格是x元,则可列方程为()A.8x+3=7x+4B.8x﹣3=7x+4C.=D.=【解答】解:设这个物品的价格是x元,则可列方程为:=,故选:D.12.如图,码头A在码头B的正西方向,甲、乙两船分别从A,B同时出发,并以等速驶向某海域,甲的航向是北偏东35°,为避免行进中甲、乙相撞,则乙的航向不能是()A.北偏东55°B.北偏西55°C.北偏东35°D.北偏西35°【解答】解:∵甲的航向是北偏东35°,为避免行进中甲、乙相撞,∴乙的航向不能是北偏西35°,故选:D.13.如图,数轴上A、B、C三点所表示的数分别是a,6,c,已知AB=8,a+c=0,且c 是关于x的方程(m﹣4)x+16=0的一个解,则m的值为()A.﹣4B.2C.4D.6【解答】解:∵AB=8,∴6﹣a=8,解得a=﹣2,∵a+c=0,∴c=2,∵c是关于x的方程(m﹣4)x+16=0的一个解,∴2(m﹣4)+16=0,解得m=﹣4.故选:A.14.有一列数a1,a2,a3,a4,a5,…,a n,其中a1=5×2+1,a2=5×3+2,a3=5×4+3,a4=5×5+4,a5=5×6+5,…,当a n=2015时,n的值等于()A.332B.333C.334D.335【解答】解:根据题意,则当a n=2015,即5×(n+1)+n=2015时,解得n=335.故选:D.二、填空题(每小题4分,共20分).15.将数据393000用科学记数法表示为 3.93×105.【解答】解:将数据393000用科学记数法表示为:3.93×105.故答案为:3.93×105.16.已知a﹣2b=3,则3(a﹣b)﹣(a+b)的值为6.【解答】解:∵a﹣2b=3,∴原式=3a﹣3b﹣a﹣b=2a﹣4b=2(a﹣2b)=6,故答案为:6.17.如图,已知OC是∠AOB内部的一条射线,∠AOC=30°,OE是∠COB的平分线.当∠BOE=40°时,则∠AOB的度数是110°.【解答】解:∵OE是∠COB的平分线,∠BOE=40°,∴∠BOC=80°,∴∠AOB=∠BOC+∠AOC=80°+30°=110°,故答案为:110°.18.“十一”长假期间,小张和小李决定骑自行车外出旅游,两人相约一早从各自家中出发,已知两家相距10千米,小张出发必过小李家.若两人同时出发,小张车速为20千米/小时,小李车速为15千米/小时,经过2小时能相遇.【解答】解:设经过t小时相遇,则20t=15t+10,解方程得:t=2,所以两人经过两个小时后相遇.故答案是:2.19.探索规律,观察下面算式,解答问题:第1个等式:1=12;第2个等式:1+3=22;第3个等式:1+3+5=32;第4个等式:1+3+5+7=42;……,(1)按以上规律列出第5个等式:1+3+5+7+9=52;;(2)请猜想1+3+5+7+9+…+(2n﹣1)=n2;(n为正整数);【解答】解:(1)第5个等式:1+3+5+7+9=52;故答案为:1+3+5+7+9=52;(2)1+3+5+7+9+…+(2n﹣1)=n2;故答案为:n2;三、解答题(共58分)20.计算:﹣6÷2+(﹣)×12+(﹣3)2【解答】解:原式=﹣3+4﹣9+9=1.21.已知代数式A=2x2+5xy﹣7y﹣3,B=x2﹣xy+2.(1)求3A﹣(2A+3B)的值;(2)若A﹣2B的值与x的取值无关,求y的值.【解答】解:(1)3A﹣(2A+3B)=3A﹣2A﹣3B=A﹣3B∵A=2x2+5xy﹣7y﹣3,B=x2﹣xy+2∴A﹣3B=(2x2+5xy﹣7y﹣3)﹣3(x2﹣xy+2)=2x2+5xy﹣7y﹣3﹣3x2+3xy﹣6=﹣x2+8xy﹣7y﹣9(2)A﹣2B=(2x2+5xy﹣7y﹣3)﹣2(x2﹣xy+2)=7xy﹣7y﹣7∵A﹣2B的值与x的取值无关∴7y=0,∴y=022.列方程解应用题某中学七年级(1)(2)两个班共105人,要去市科技博物馆进行社会大课堂活动,老师指派小明到网上查阅票价信息,小明查得票价如下表:其中七(1)班不足50人,经估算,如果两个班都以班为单位购票,一共应付1140元.购票张数(张)每张票的价格(元)1~501251~10010100以上a①两个班各有多少学生?②如果两个班联合起来,作为一个团体购票,可以省300元,请求a的值.【解答】解:(1)设七年级(1)班x人,则七年级(2)班(105﹣x)人,由题意可得:12x+10(105﹣x)=1140,解得x=45,则105﹣x=60.答:七年级(1)班45人,七年级(2)班60人;(2)1140﹣105×a=300(元),解得:a=8;23.已知,O为直线AB上一点,∠DOE=90°.(1)如图1,若∠AOC=130°,OD平分∠AOC.①求∠BOD的度数;②请通过计算说明OE是否平分∠BOC.(2)如图2,若∠BOE:∠AOE=2:7,求∠AOD的度数.【解答】解:(1)①∵OD平分∠AOC,∠AOC=130°,∴∠AOD=∠DOC=∠AOC=×130°=65°,∴∠BOD=180°﹣∠AOD=180°﹣65°=115°;②∵∠DOE=90°,又∵∠DOC=65°,∴∠COE=∠DOE﹣∠DOC=90°﹣65°=25°,∵∠BOD=115°,∠DOE=90°,∴∠BOE=∠BOD﹣∠DOE=115°﹣90°=25°,∴∠COE=∠BOE,即OE平分∠BOC.(2)若∠BOE:∠AOE=2:7,设∠BOE=2x,则∠AOE=7x,又∵∠BOE+∠AOE=180°,∴2x+7x=180°,∴x=20°,∠BOE=2x=40°,∵∠DOE=90°,∴∠AOD=90°﹣40°=50°.24.如图,数轴上点A对应的有理数为20,点P以每秒2个单位长度的速度从点A出发,点Q以每秒4个单位长度的速度从原点O出发,且P,Q两点同时向数轴正方向运动,设运动时间为t秒.(1)当t=2时,P,Q两点对应的有理数分别是24,8,PQ=16;(2)当PQ=10时,求t的值.【解答】解:(1)∵20+2×2=24,4×2=8,∴当t=2时,P,Q两点对应的有理数分别是24,8,∴PQ=24﹣8=16.故答案为:24;8;16.(2)①当点P在点Q右侧时,PQ=(20+2t)﹣4t=10,解得:t=5;②当点P在点Q左侧时,PQ=4t﹣(20+2t)=10,解得:t=15.综上所述,t的值为5秒或15秒.25.某市为鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费:月用水量不超过10立方米时,按2元/立方米计费;月用水量超过10立方米时,其中的10立方米仍按2元/立方米收费,超过的部分按3元/立方米计费.已知小明和小强两家某月共用水22立方米(其中小强家用水量超过10立方米),一共交费47元,问该月小明和小强两家各用水多少立方米?【解答】解:①当小明家用水量不超过10立方米时,设小明家用水量为x立方米,则小强家用水量为(22﹣x)立方米,由题意,得x×2+10×2+(22﹣x﹣10)×3=47.解得,x=9.故小明家用水量为9立方米,小强家用水量为(22﹣9)=13(立方米).②当小明家用水量超过10立方米时,(22﹣2)×2+(22﹣20)×3=40+6=46≠47故这种情况不存在.综上,小明家用水量为9立方米,小强家用水量为13立方米.。
临沂市兰陵县2016-2017学年七年级上期末数学试卷含答案解析

12.下列说法正确的是( )
A.一个数的绝对值一定比 0 大
B.一个数的相反数一定比它本身小
C.绝对值等于它本身的数一定是正数
D.最小的正整数是 1
13.若代数式 4x﹣5 与
的值相等,则 x 的值是( )
A.1 B.
C. D.2
14.方程 2x﹣1=3x+2 的解为( )
A.x=1 B.x=﹣1 C.x=3 D.x=﹣3 15.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为
A.1 个 B.2 个 C.3 个 D.4 个 4.已知线段 MN=10cm,点 C 是直线 MN上一点,NC=4cm,若 P 是线段 MN的中点,Q 是线段 NC的中 点,则线段 PQ的长度是( ) A.7cm B.7cm或 3cm C.5cm D.3cm 5.如图,若 A 是实数 a 在数轴上对应的点,则关于 a,﹣a,1 的大小关系表示正确的是( )
2.下列判断正确的是( ) A.3a2b 与 ba2 不是同类项 B. 不是整式 C.单项式﹣x3y2 的系数是﹣1 D.3x2﹣y+5xy2 是二次三项式 【考点】同类项;整式;多项式. 【分析】分别根据单项式、多项式、整式及同类项的定义判断各选项即可. 【解答】解:A、3a2b 与 ba2 是同类项,故本选项错误; B、 是整式,故本选项错误; C、单项式﹣x3y2 的系数是﹣1,故本选项正确; D、3x2 ﹣y+5x2y是二次三项式,故本选项错误. 故选 C. 【点评】本题考查单项式、多项式、整式及同类项的定义,注意掌握单项式是数或字母的积组成的 式子;单项式和多项式统称为整式.
10.如果单项式
与
是同类项,那么 a,b 分别为( )
山东省临沂市兰陵县20172018学年七年级数学下学期期末试题新人教版

山东省临沂市兰陵县2017-2018 学年七年级数学下学期期末试题2017 ~2018 学年度下学期期末考试七年级数学参照答案改卷说明:本答案是参照答案,由于个别解答题有多种解法,要依据参照答案酌情给分。
一、选择题题号1234567891011121314答案CADBDD CBAD DDDA二、填空题(每题 4 分,共20 分).15.2516.﹣ 417. 96018.125°19.(2, 1)三、解答题(共58 分)20.(每题 5 分,共 10 分)(1)解:原式 =24(23)----------------3分=223-----------------4分=3-----------------5分(2)解:由①得,x3;-------------------2分由②得, x >0;--------------------4分不等式组的解集为0x3----------------------5分-------------------------------------------------------------------------------------------------------------------21. (满分 8分)证明:( 1)∵DE∥BF,∴∠ 2+∠DBF=180°,---------------------1分∵∠1与∠2互补,∴∠ 1+∠2=180°,----------------------2分∴∠ 1=∠DBF,-----------------------3分∴FG∥ AB.------------------------4分(2)垂直(或DE⊥AC)-----------------------5分原由:∵∠1 与∠2 互补,∠ 2=150°,∴∠1=30°,---------------------------6分∵∠ CFG=60°,∴∠ BFC=∠1+∠ CFG=90°,∵ DE∥ BF,∴∠ DEF=∠ BFC--------------------------7分∵∠ BFC=90°,∴∠ DEF=90°,∴DE⊥ AC.--------------------------8分-------------------------------------------------------------------------------------------------------------------22.( 满分 8分)解:( 1) 200、 90、 0.3 ;-----------------------3分(每空 1 分)( 2)补全频数分布直方图以下:-------------------------5分( 3) 54°;-------------------------6分( 4)600×=240,答:估计该校成绩80≤x< 100 范围内的学生有 240 人. --------------------8分------------------------------------------------------------------------------------------------------------------23.( 满分 8分)证明:( 1)∵均分∠,∴∠=∠.BE ABC ABE CBE∵∥,∴∠=∠,-------------------2分DE BC CBE DEB∴∠ ADE=∠ABC∴∠ ABC=2∠DEB∴∠ ADE=2∠ DEB;---------------------------4分( 2)∠+2∠ =180°.(其变式也对)-----------------5分ADEDEB由( 1)知,∠ DEB =∠ CBE ,∠ ABC =2∠ DEB∵ DE ∥ BC , ∴∠ ADE +∠ CBA =180°,--------------------7 分∴ ∠ ADE +2∠ DEB =180°.---------------------8分-------------------------------------------------------------------------------------- -------------------------24. ( 满分 12 分)解:( 1)设篮球每个 x 元,排球每个 y 元,依题意,得2x 3 y 190 ---------------------------- 23x5y,分x 50 解得,y ,30答:篮球每个 50 元,排球每个 30 元; ----------------------------- 4分( 2)设购买篮球 m 个,则购买排球( 20﹣m )个,依题意,得50m +30( 20﹣m )≤ 800. ------------------------------ 6分解得 m ≤10,--------------------------------8分又∵ m ≥8, ∴8≤ m ≤10.∵篮球的个数必定为整数, ∴m 只能取 8、 9、 10; ---------------------------9分满足题意的方案有三种:方案一 购买篮球 8 个,排球 12 个;方案二 购买篮球 9 个,排球11 个;方案三 购买篮球 10 个,排球 10 个;---------------------------10分方案一开销: 850 30 12 760 (元);方案二开销:方案三开销:9 50 30 11 780 (元);10 50 30 10 800 (元);以上三个方案中,方案一开销最少.--------------------------12分-------------------------------------------------------------------------------------------------------------------25. (满分12分)解:( 1)依题意,得200+(x﹣ 200)× 90%=100+(x﹣ 100)× 95%,----------------3分解得, x=300.当 x=300时,小李在甲、乙两商场的本质开销相同;-----------------5分( 2)由已知x>200①当 200+(x﹣ 200)× 90%> 100+(x﹣ 100)× 95%时,解得, x<300.---------------------7分②当 200+(x﹣ 200)× 90%< 100+(x﹣ 100)× 95%时,解得, x>300.---------------------9分③当 200+(x﹣ 200)× 90%=100+(x﹣ 100)× 95%时,解得, x=300.答:当小李购物开销多于200 元,少于300 元时,在乙商场购物合算;当小李购物开销多于300 元时,在甲商场购物合算;当小李购物等于300 元时,到两家商场开销相同多.------------------12分。
2017-2018第一学期期末七数答案

2017—2018学年度第一学期期末教学质量检测七年级数学答案20. (1)解:3)3(1++-=-x x …………………………………………………… 1分 331+--=-x x …………………………………………………………2分12=x ……………………………………………………………………3分21=x ……………………………………………………………………4分 (2)解:原式=112411261)8(8414-⨯+⨯--÷-⨯ ……………………………6分=13211-+-+…………………………………………………………………7分 =2 ……………………………………………………………………………… 8分21.解:(1)2,32;……………………………………………………………………… 2分 (2)2n +30; ………………………………………………………………………3分(3)设投入n 个小球后没有水溢出, 2n +30=49解得 n =219…………………………………………………………………6分 应为投入的小球为整数,且小于219,故n =9 .所以最多投入小球9个水没有从量筒中溢. ………………………………………8分 22.解:(1)因为ab a B A 7722-=-所以B ab a A 2772+-= ………………………………………………1分 =)764(27722++-+-ab a ab a …………………………………2分=141287722++--ab a ab a ………………………………………4分 =1452++-ab a …………………………………………………… 5分 (2)依题意得:01=+a ,02=-b ,∴1-=a ,2=b , ……………………………………………………… 7分∴ 1452++-=ab a A=142)1(5)1(2+⨯-⨯+--…………………………………………8分 =14101+-- ……………………………………………………… 9分 =3 …………………………………………………………………… 10分23.解:(1) ……………2分(2)符合要求. ……………………………………………………………………3分∵C 为AM 的中点,F 为BM 的中点,∴AC =CM=21AM ,MF =FB=21MB ………………………………………5分 ∴CF = CM + MF=21AM +21MB ………………………………………………………6分 =21(AM + MB ) =21AB …………………………………………………………………7分 ∵AB =40m ,∴CF =20m ………………………………………………………………… 8分 ∵20AC BD +<m ,∴CD >20m. ………………………………………………………………9分∴CF 符合要求. ………………………………………………………… 10分24.解:(1)设经过x 分钟摩托车追上自行车, …………………………………………1分 1200100200+=x x …………………………………………3分 解得12=x …………………………………………4分 答:经过12分钟摩托车追上自行车.(2)设经过y 分钟两人相距150米, …………………………………………5分 第一种情况:摩托车超过自行车150米时,1200100150200++=y y …………………………………………6分 解得5.13=x …………………………………………7分第二种情况:摩托车还差150米追上自行车时,1501001200200-=-y y …………………………………………8分 解得5.10=x …………………………………………9分· · A C D B 图9-2 MF答:经过13.5分钟或10.5分钟两人相距150米. …………………………10分(其它的解法请参照此标准给分)25.解:(1)90°;……………………………………………………………………………2分(2)∵点O 为直线AB 上一点,∠AOC :∠BOC =2:1,∴∠AOC =120°,∠BOC =60°. ……………………………………………4分 ∵∠BON =90°﹣∠BOM ,∠COM =60°﹣∠BOM , ………………………6分 ∴∠BON ﹣∠COM =90°﹣∠BOM ﹣60°+∠BOM =30° …………………8分(3)画图如图11-4. ……………………………………………………………9分∵OM 恰为∠BOC 的平分线, ∴∠COM =30°. ……………………………………………………………10分 ∴三角板旋转的角度为: 90°+∠AOC+∠COM=90°+120°+30°=240° … …………………………11分 ∵三角板绕点O 按每秒钟15°的速度旋转, ∴三角板绕点O 的运动时间为15240=16(秒) …………………………12分图11-4N。
临沂市七年级上册数学期末试题及答案解答

临沂市七年级上册数学期末试题及答案解答一、选择题1.一个角是这个角的余角的2倍,则这个角的度数是( ) A .30 B .45︒ C .60︒ D .75︒ 2.计算(3)(5)-++的结果是( )A .-8B .8C .2D .-23.将方程3532x x --=去分母得( ) A .3352x x --= B .3352x x -+= C .6352x x -+= D .6352x x --=4.某地冬季某天的天气预报显示气温为﹣1℃至8℃,则该日的最高与最低气温的温差为( ) A .﹣9℃B .7℃C .﹣7℃D .9℃5.下列方程是一元一次方程的是( ) A .213+x =5x B .x 2+1=3x C .32y=y+2 D .2x ﹣3y =16.已知2a ﹣b =3,则代数式3b ﹣6a+5的值为( ) A .﹣4B .﹣5C .﹣6D .﹣77.在直线AB 上任取一点O ,过点O 作射线OC 、OD ,使OC ⊥OD ,当∠AOC=40°时,∠BOD 的度数是( ) A .50°B .130°C .50°或 90°D .50°或 130°8.计算:31﹣1=2,32﹣1=8,33﹣1=26,34﹣1=80,35﹣1=242,…,归纳各计算结果中的个位数字的规律,猜测32018﹣1的个位数字是( ) A .2B .8C .6D .09.下列变形不正确的是( ) A .若x =y ,则x+3=y+3 B .若x =y ,则x ﹣3=y ﹣3 C .若x =y ,则﹣3x =﹣3y D .若x 2=y 2,则x =y10.3的倒数是( ) A .3B .3-C .13D .13-11.据统计,全球每年约有50万人因患重症登格热需住院治疗,其中很大一部分是儿童患者,数据“50万”用科学记数法表示为( ) A .45010⨯B .5510⨯C .6510⨯D .510⨯12.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是()A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+1二、填空题13.若|x |=3,|y |=2,则|x +y |=_____.14.已知方程22x a ax +=+的解为3x =,则a 的值为__________. 15.根据下列图示的对话,则代数式2a +2b ﹣3c +2m 的值是_____.16.如图,是七(2)班全体学生的体有测试情况扇形统计图.若达到优秀的有25人,则不合格的学生有____人.17.如图,在数轴上点A ,B 表示的数分别是1,–2,若点B ,C 到点A 的距离相等,则点C 所表示的数是___.18.小明妈妈想检测小明学习“列方程解应用题”的效果,给了小明37个苹果,要小明把它们分成4堆. 要求分后,如果再把第一堆增加一倍,第二堆增加2个,第三堆减少三个,第四堆减少一半后,这4堆苹果的个数相同,那么这四堆苹果中个数最多的一堆为_____个.19.把(a ﹣b )看作一个整体,合并同类项:3()4()2()-+---a b a b a b =_____. 20.如图,某海域有三个小岛A,B,O,在小岛O 处观测到小岛A 在它北偏东61°的方向上,观测到小岛B 在它南偏东38°的方向上,则∠AOB 的度数是__________°.21.如图,∠AOB=∠COD=90°,∠AOD=140°,则∠BOC=_______.22.如图,在平面直角坐标系中,动点P 按图中箭头所示方向从原点出发,第1次运动到P 1(1,1),第2次接着运动到点P 2(2,0),第3次接着运动到点P 3(3,-2),…,按这的运动规律,点P 2019的坐标是_____.23.如图,点O 在直线AB 上,射线OD 平分∠AOC ,若∠AOD=20°,则∠COB 的度数为_____度.24.通常山的高度每升高100米,气温下降0.6C ︒,如地面气温是4C -︒,那么高度是2400米高的山上的气温是____________________. 三、压轴题25.小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M ,N 所表示的数分别为0,12.将一枚棋子放置在点M 处,让这枚棋子沿数轴在线段MN 上往复运动(即棋子从点M 出发沿数轴向右运动,当运动到点N 处,随即沿数轴向左运动,当运动到点M 处,随即沿数轴向右运动,如此反复⋯).并且规定棋子按照如下的步骤运动:第1步,从点M 开始运动t 个单位长度至点1Q 处;第2步,从点1Q 继续运动2t 单位长度至点2Q 处;第3步,从点2Q 继续运动3t 个单位长度至点3Q 处…例如:当3t =时,点1Q 、2Q 、3Q 的位置如图2所示.解决如下问题:(1)如果4t =,那么线段13Q Q =______;(2)如果4t <,且点3Q 表示的数为3,那么t =______; (3)如果2t ≤,且线段242Q Q =,那么请你求出t 的值.26.东东在研究数学问题时遇到一个定义:将三个已经排好顺序数:x 1,x 2,x 3,称为数列x 1,x 2,x 3.计算|x 1|,122x x +,1233x x x ++,将这三个数的最小值称为数列x 1,x 2,x 3的最佳值.例如,对于数列2,-1,3,因为|2|=2,()212+-=12,()2133+-+=43,所以数列2,-1,3的最佳值为12. 东东进一步发现:当改变这三个数的顺序时,所得到的数列都可以按照上述方法计算其相应的最佳值.如数列-1,2,3的最佳值为12;数列3,-1,2的最佳值为1;….经过研究,东东发现,对于“2,-1,3”这三个数,按照不同的排列顺序得到的不同数列中,最佳值的最小值为12.根据以上材料,回答下列问题: (1)数列-4,-3,1的最佳值为(2)将“-4,-3,2”这三个数按照不同的顺序排列,可得到若干个数列,这些数列的最佳值的最小值为 ,取得最佳值最小值的数列为 (写出一个即可);(3)将2,-9,a (a >1)这三个数按照不同的顺序排列,可得到若干个数列.若这些数列的最佳值为1,求a 的值.27.已知多项式3x 6﹣2x 2﹣4的常数项为a ,次数为b .(1)设a 与b 分别对应数轴上的点A 、点B ,请直接写出a = ,b = ,并在数轴上确定点A 、点B 的位置;(2)在(1)的条件下,点P 以每秒2个单位长度的速度从点A 向B 运动,运动时间为t 秒:①若PA ﹣PB =6,求t 的值,并写出此时点P 所表示的数;②若点P 从点A 出发,到达点B 后再以相同的速度返回点A ,在返回过程中,求当OP =3时,t 为何值?28.已知∠AOB 和∠AOC 是同一个平面内的两个角,OD 是∠BOC 的平分线.(1)若∠AOB=50°,∠AOC=70°,如图(1),图(2),求∠AOD 的度数;(2)若∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,求∠AOD 的度数(结果用含m n 、的代数式表示),请画出图形,直接写出答案.29.已知:A 、O 、B 三点在同一条直线上,过O 点作射线OC ,使∠AOC :∠BOC =1:2,将一直角三角板的直角顶点放在点O 处,一边OM 在射线OB 上,另一边ON 在直线AB 的下方.(1)将图1中的三角板绕点O 按逆时针方向旋转至图2的位置,使得ON 落在射线OB 上,此时三角板旋转的角度为 度;(2)继续将图2中的三角板绕点O 按逆时针方向旋转至图3的位置,使得ON 在∠AOC 的内部.试探究∠AOM 与∠NOC 之间满足什么等量关系,并说明理由;(3)将图1中的三角板绕点O 按5°每秒的速度沿逆时针方向旋转一周的过程中,当直角三角板的直角边OM 所在直线恰好平分∠BOC 时,时间t 的值为 (直接写结果). 30.点A 在数轴上对应的数为﹣3,点B 对应的数为2. (1)如图1点C 在数轴上对应的数为x ,且x 是方程2x +1=12x ﹣5的解,在数轴上是否存在点P 使PA +PB =12BC +AB ?若存在,求出点P 对应的数;若不存在,说明理由; (2)如图2,若P 点是B 点右侧一点,PA 的中点为M ,N 为PB 的三等分点且靠近于P 点,当P 在B 的右侧运动时,有两个结论:①PM ﹣34BN 的值不变;②13PM 24+ BN 的值不变,其中只有一个结论正确,请判断正确的结论,并求出其值31.如图,A 、B 、P 是数轴上的三个点,P 是AB 的中点,A 、B 所对应的数值分别为-20和40.(1)试求P 点对应的数值;若点A 、B 对应的数值分别是a 和b ,试用a 、b 的代数式表示P点在数轴上所对应的数值;(2)若A、B、P三点同时一起在数轴上做匀速直线运动,A、B两点相向而行,P点在动点A和B之间做触点折返运动(即P点在运动过程中触碰到A、B任意一点就改变运动方向,向相反方向运动,速度不变,触点时间忽略不计),直至A、B两点相遇,停止运动.如果A、B、P运动的速度分别是1个单位长度/s,2个单位长度/s,3个单位长度/s,设运动时间为t.①求整个运动过程中,P点所运动的路程.②若P点用最短的时间首次碰到A点,且与B点未碰到,试写出该过程中,P点经过t秒钟后,在数轴上对应的数值(用含t的式子表示);③在②的条件下,是否存在时间t,使P点刚好在A、B两点间距离的中点上,如果存在,请求出t值,如果不存在,请说明理由.32.问题一:如图1,已知A,C两点之间的距离为16 cm,甲,乙两点分别从相距3cm的A,B两点同时出发到C点,若甲的速度为8 cm/s,乙的速度为6 cm/s,设乙运动时间为x(s),甲乙两点之间距离为y(cm).(1)当甲追上乙时,x = .(2)请用含x的代数式表示y.当甲追上乙前,y= ;当甲追上乙后,甲到达C之前,y= ;当甲到达C之后,乙到达C之前,y= .问题二:如图2,若将上述线段AC弯曲后视作钟表外围的一部分,线段AB正好对应钟表上的弧AB(1小时的间隔),易知∠AOB=30°.(1)分针OD指向圆周上的点的速度为每分钟转动 cm;时针OE指向圆周上的点的速度为每分钟转动 cm.(2)若从4:00起计时,求几分钟后分针与时针第一次重合.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】设这个角为α,先表示出这个角的余角为(90°-α),再列方程求解. 【详解】解:根据题意列方程的:2(90°-α)=α, 解得:α=60°. 故选:C . 【点睛】本题考查余角的概念,关键是先表示出这个角的余角为(90°-α).2.C解析:C 【解析】 【分析】根据有理数加法法则计算即可得答案. 【详解】(3)(5)-++=5+-3- =2 故选:C. 【点睛】本题考查有理数加法,同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数与0相加,仍得这个数;熟练掌握有理数加法法则是解题关键.3.C解析:C 【解析】 【分析】方程两边都乘以2,再去括号即可得解. 【详解】3532x x --= 方程两边都乘以2得:6-(3x-5)=2x , 去括号得:6-3x+5=2x , 故选:C.本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项.4.D解析:D【解析】【分析】这天的温差就是最高气温与最低气温的差,列式计算.【详解】解:该日的最高与最低气温的温差为8﹣(﹣1)=8+1=9(℃),故选:D.【点睛】本题主要考查有理数的减法法则:减去一个数等于加上这个数的相反数,这是需要熟记的内容.5.A解析:A【解析】【分析】只含有一个未知数(元),并且未知数的指数是1次的整式方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0).据此可得出正确答案.【详解】解:A、213x=5x符合一元一次方程的定义;B、x2+1=3x未知数x的最高次数为2,不是一元一次方程;C、32y=y+2中等号左边不是整式,不是一元一次方程;D、2x﹣3y=1含有2个未知数,不是一元一次方程;故选:A.【点睛】解题的关键是根据一元一次方程的定义,未知数x的次数是1这个条件.此类题目可严格按照定义解题.6.A解析:A【解析】【分析】由已知可得3b﹣6a+5=-3(2a﹣b)+5,把2a﹣b=3代入即可.【详解】3b﹣6a+5=-3(2a﹣b)+5=-9+5=-4.故选:A利用乘法分配律,将代数式变形.7.D解析:D【解析】【分析】根据题意画出图形,再分别计算即可.【详解】根据题意画图如下;(1)∵OC⊥OD,∴∠COD=90°,∵∠AOC=40°,∴∠BOD=180°﹣90°﹣40°=50°,(2)∵OC⊥OD,∴∠COD=90°,∵∠AOC=40°,∴∠AOD=50°,∴∠BOD=180°﹣50°=130°,故选D.【点睛】此题考查了角的计算,关键是根据题意画出图形,要注意分两种情况画图.8.B解析:B【解析】【分析】由31﹣1=2,32﹣1=8,33﹣1=26,34﹣1=80,35﹣1=242,…得出末尾数字以2,8,6,0四个数字不断循环出现,由此用2018除以4看得出的余数确定个位数字即可.【详解】∵2018÷4=504…2,∴32018﹣1的个位数字是8,故选B.【点睛】本题考查了尾数的特征,关键是能根据题意得出个位数字循环的规律是解决问题的关键.9.D解析:D【解析】【分析】根据等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.【详解】解:A、两边都加上3,等式仍成立,故本选项不符合题意.B、两边都减去3,等式仍成立,故本选项不符合题意.C、两边都乘以﹣3,等式仍成立,故本选项不符合题意.D、两边开方,则x=y或x=﹣y,故本选项符合题意.故选:D.【点睛】本题主要考查了等式的基本性质.解题的关键是掌握等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.10.C解析:C【解析】根据倒数的定义可知.解:3的倒数是.主要考查倒数的定义,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.11.B解析:B【解析】【分析】科学记数法的表示形式为10na 的形式,其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】将50万用科学记数法表示为5510⨯,故B 选项是正确答案.【点睛】此题考查了科学记数法的表示方法,科学记数法的表示形式为10n a ⨯的形式,其中1≤|a |<10,n 为整数,表示时正确确定a 的值以及n 的值是解决本题的关键.12.B解析:B【解析】【分析】【详解】∵观察可知:左边三角形的数字规律为:1,2,…,n ,右边三角形的数字规律为:2,22,…,2n ,下边三角形的数字规律为:1+2,222+,…,2n n +,∴最后一个三角形中y 与n 之间的关系式是y=2n +n.故选B .【点睛】考点:规律型:数字的变化类.二、填空题13.1或5.【解析】【分析】根据|x|=3,|y|=2,可得:x =±3,y =±2,据此求出|x+y|的值是多少即可.【详解】解:∵|x|=3,|y|=2,∴x=±3,y =±2,(1)x =3解析:1或5.【解析】【分析】根据|x |=3,|y |=2,可得:x =±3,y =±2,据此求出|x +y |的值是多少即可.【详解】解:∵|x |=3,|y |=2,∴x =±3,y =±2,(1)x =3,y =2时,|x+y|=|3+2|=5(2)x=3,y=﹣2时,|x+y|=|3+(﹣2)|=1(3)x=﹣3,y=2时,|x+y|=|﹣3+2|=1(4)x=﹣3,y=﹣2时,|x+y|=|(﹣3)+(﹣2)|=5故答案为:1或5.【点睛】此题主要考查了有理数的加法的运算方法,以及绝对值的含义和求法,要熟练掌握.14.2【解析】【分析】把x=3代入方程计算即可求出a的值.【详解】解:把x=3代入方程得:6+a=3a+2,解得:a=2.故答案为:2【点睛】此题考查了一元一次方程的解,方程的解即为能解析:2【解析】【分析】把x=3代入方程计算即可求出a的值.【详解】解:把x=3代入方程得:6+a=3a+2,解得:a=2.故答案为:2【点睛】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.15.﹣3或5.【解析】【分析】根据相反数,倒数,以及绝对值的代数意义求出各自的值,代入计算即可求出值.【详解】解:根据题意得:a+b=0,c=﹣,m=2或﹣2,当m=2时,原式=2(a+b)解析:﹣3或5.【解析】【分析】根据相反数,倒数,以及绝对值的代数意义求出各自的值,代入计算即可求出值.【详解】解:根据题意得:a+b=0,c=﹣13,m=2或﹣2,当m=2时,原式=2(a+b)﹣3c+2m=1+4=5;当m=﹣2时,原式=2(a+b)﹣3c+2m=1﹣4=﹣3,综上,代数式的值为﹣3或5,故答案为:﹣3或5.【点睛】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.16.5【解析】【分析】根据达到优秀的人数和所占百分比求出总人数,然后用总人数乘以不合格所占的百分比即可.【详解】解:∵学生总人数=25÷50%=50(人),∴不合格的学生人数=50×(1-5解析:5【解析】【分析】根据达到优秀的人数和所占百分比求出总人数,然后用总人数乘以不合格所占的百分比即可.【详解】解:∵学生总人数=25÷50%=50(人),∴不合格的学生人数=50×(1-50%-40%)=5(人),故答案为:5.【点睛】本题考查了扇形统计图,熟知扇形统计图中各数据所表示的意义是解题关键.17.2+【解析】【分析】先求出点A、B之间的距离,再根据点B、C到点A的距离相等,即可解答.【详解】∵数轴上点A ,B 表示的数分别是1,–,∴AB=1–(–)=1+,则点C 表示的数为1+1+解析:2+2【解析】【分析】先求出点A 、B 之间的距离,再根据点B 、C 到点A 的距离相等,即可解答.【详解】∵数轴上点A ,B 表示的数分别是1,–2,∴AB=1–(–2)=1+2,则点C 表示的数为1+1+2=2+2,故答案为2【点睛】本题考查了数与数轴的对应关系,解决本题的关键是明确两点之间的距离公式,也利用了数形结合的思想.18.16【解析】【分析】本题有两个等量关系;原来的四堆之和=37,变换后的四堆相等,可根据这两个等量关系来求解.【详解】设第一堆为a 个,第二堆为b 个,第三堆为c 个,第四堆有d 个,a+b+c+解析:16【解析】【分析】本题有两个等量关系;原来的四堆之和=37,变换后的四堆相等,可根据这两个等量关系来求解.【详解】设第一堆为a 个,第二堆为b 个,第三堆为c 个,第四堆有d 个,a+b+c+d=37①;2a=b+2=c-3=2d ②; 第二个方程所有字母都用a 来表示可得b=2a-2,c=2a+3,d=4a ,代入第一个方程得a=4, ∴b=6,c=11,d=16,∴这四堆苹果中个数最多的一堆为16.故答案为16.【点睛】本题需注意未知数较多时,要把未知的四个量用一个量来表示,化多元为一元.19.【解析】【分析】根据合并同类项,系数相加,字母及指数不变,可得答案.【详解】解:,故答案为:.【点睛】本题考查合并同类项,熟记合并同类项的法则是解题的关键.解析:5()-a b【解析】【分析】根据合并同类项,系数相加,字母及指数不变,可得答案.【详解】解:3()4()2()(342)()5()-+---=+--=-a b a b a b a b a b ,故答案为:5()-a b .【点睛】本题考查合并同类项,熟记合并同类项的法则是解题的关键.20.81【解析】【分析】根据方位角的表示可知,∠AOB=180°-61°-38°计算即可得出结果.【详解】根据题意可知,OA 表示北偏东61°方向的一条射线,OB 表示南偏东38°方向的一条射线,解析:81【解析】【分析】根据方位角的表示可知,∠AOB=180°-61°-38°计算即可得出结果.【详解】根据题意可知,OA 表示北偏东61°方向的一条射线,OB 表示南偏东38°方向的一条射线, ∴∠AOB=180°-61°-38°=81°,故答案为:81.【点睛】本题考查了方位角及其计算,掌握方位角的概念是解题的关键.21.40°【解析】解:由角的和差,得:∠AOC=∠AOD-∠COD=140°-90°=50°.由余角的性质,得:∠COB=90°-∠AOC=90°-50°=40°.故答案为:40°.解析:40°【解析】解:由角的和差,得:∠AOC=∠AOD-∠COD=140°-90°=50°.由余角的性质,得:∠COB=90°-∠AOC=90°-50°=40°.故答案为:40°.22.(2019,-2)【解析】【分析】观察不难发现,点的横坐标等于运动的次数,纵坐标每4次为一个循环组循环,用2019除以4,余数是几则与第几次的纵坐标相同,然后求解即可.【详解】∵第1次运动解析:(2019,-2)【解析】【分析】观察不难发现,点的横坐标等于运动的次数,纵坐标每4次为一个循环组循环,用2019除以4,余数是几则与第几次的纵坐标相同,然后求解即可.【详解】∵第1次运动到点(1,1),第2次运动到点(2,0),第3次接着运动到点(3,-2),第4次运动到点(4,0),第5次运动到点(5,1)…,∴运动后点的横坐标等于运动的次数,第2019次运动后点P的横坐标为2019,纵坐标以1、0、-2、0每4次为一个循环组循环,∵2019÷4=504…3,∴第2019次运动后动点P的纵坐标是第504个循环组的第3次运动,与第3次运动的点的纵坐标相同,为-2,∴点P(2019,-2),故答案为:(2019,-2).【点睛】本题是对点的坐标的规律的考查,根据图形观察出点的横坐标与纵坐标的变化规律是解题的关键.23.140【解析】【分析】【详解】解:∵OD 平分∠AOC,∴∠AOC=2∠AOD=40°,∴∠COB=180°﹣∠COA=140°故答案为:140解析:140【解析】【分析】【详解】解:∵OD 平分∠AOC ,∴∠AOC =2∠AOD =40°,∴∠COB =180°﹣∠COA =140°故答案为:14024.【解析】【分析】从地面到高山上高度升高了2400米,用升高的高度除以100再乘以0.6得出下降的温度,再用地面的气温减去此值即可.【详解】解:由题意可得,高度是2400米高的山上的气温是解析:18.4C -︒【解析】【分析】从地面到高山上高度升高了2400米,用升高的高度除以100再乘以0.6得出下降的温度,再用地面的气温减去此值即可.【详解】解:由题意可得,高度是2400米高的山上的气温是:-4-2400÷100×0.6=-4-14.4=-18.4℃,故答案为:-18.4℃.【点睛】本题考查有理数的混合运算,解答本题的关键是根据题意列出正确的算式.三、压轴题25.(1)4;(2)12或72;(3)27或2213或2 【解析】【分析】(1)根据题目得出棋子一共运动了t+2t+3t=6t 个单位长度,当t=4时,6t=24,为MN 长度的整的偶数倍,即棋子回到起点M 处,点3Q 与M 点重合,从而得出13Q Q 的长度.(2)根据棋子的运动规律可得,到3Q 点时,棋子运动运动的总的单位长度为6t,,因为t<4,由(1)知道,棋子运动的总长度为3或12+9=21,从而得出t 的值.(3)若t 2,≤则棋子运动的总长度10t 20≤,可知棋子或从M 点未运动到N 点或从N 点返回运动到2Q 的左边或从N 点返回运动到2Q 的右边三种情况可使242Q Q =【详解】解:(1)∵t+2t+3t=6t,∴当t=4时,6t=24,∵24122=⨯,∴点3Q 与M 点重合,∴134Q Q =(2)由已知条件得出:6t=3或6t=21, 解得:1t 2=或7t 2= (3)情况一:3t+4t=2, 解得:2t 7= 情况二:点4Q 在点2Q 右边时:3t+4t+2=2(12-3t) 解得:22t 13= 情况三:点4Q 在点2Q 左边时:3t+4t-2=2(12-3t)解得:t=2.综上所述:t 的值为,2或27或2213. 【点睛】本题是一道探索动点的运动规律的题目,考查了学生数形结合的能力,探索规律的能力,用一元一次方程解决问题的能力.最后要注意分多种情况讨论.26.(1)3;(2)12;-3,2,-4或2,-3,-4.(3)a=11或4或10. 【解析】【分析】(1)根据上述材料给出的方法计算其相应的最佳值为即可;(2)按照三个数不同的顺序排列算出最佳值,由计算可以看出,要求得这些数列的最佳值的最小值;只有当前两个数的和的绝对值最小,最小只能为|−3+2|=1,由此得出答案即可;(3)分情况算出对应的数值,建立方程求得a 的数值即可.【详解】(1)因为|−4|=4,-4-32=3.5,-4-312+=3,所以数列−4,−3,1的最佳值为3.故答案为:3;(2)对于数列−4,−3,2,因为|−4|=4,432--=72,432||2--+=52,所以数列−4,−3,2的最佳值为52;对于数列−4,2,−3,因为|−4|=4,||422-+=1,432||2--+=52,所以数列−4,2,−3的最佳值为1;对于数列2,−4,−3,因为|2|=2,224-=1,432||2--+=52,所以数列2,−4,−3的最佳值为1;对于数列2,−3,−4,因为|2|=2,223-=12,432||2--+=52,所以数列2,−3,−4的最佳值为1 2∴数列的最佳值的最小值为223-=12,数列可以为:−3,2,−4或2,−3,−4.故答案为:12,−3,2,−4或2,−3,−4.(3)当22a+=1,则a=0或−4,不合题意;当92a-+=1,则a=11或7;当a=7时,数列为−9,7,2,因为|−9|=9,972-+=1,9722-++=0,所以数列2,−3,−4的最佳值为0,不符合题意;当972a-++=1,则a=4或10.∴a=11或4或10.【点睛】此题考查数字的变化规律,理解新定义运算的方法是解决问题的关键.27.(1)﹣4,6;(2)①4;②1319,22或【解析】【分析】(1)根据多项式的常数项与次数的定义分别求出a,b的值,然后在数轴上表示即可;(2)①根据PA ﹣PB =6列出关于t 的方程,解方程求出t 的值,进而得到点P 所表示的数;②在返回过程中,当OP =3时,分两种情况:(Ⅰ)P 在原点右边;(Ⅱ)P 在原点左边.分别求出点P 运动的路程,再除以速度即可.【详解】(1)∵多项式3x 6﹣2x 2﹣4的常数项为a ,次数为b ,∴a =﹣4,b =6.如图所示:故答案为﹣4,6;(2)①∵PA =2t ,AB =6﹣(﹣4)=10,∴PB =AB ﹣PA =10﹣2t .∵PA ﹣PB =6,∴2t ﹣(10﹣2t )=6,解得t =4,此时点P 所表示的数为﹣4+2t =﹣4+2×4=4;②在返回过程中,当OP =3时,分两种情况:(Ⅰ)如果P 在原点右边,那么AB+BP =10+(6﹣3)=13,t =132; (Ⅱ)如果P 在原点左边,那么AB+BP =10+(6+3)=19,t =192. 【点睛】本题考查了一元一次方程的应用,路程、速度与时间关系的应用,数轴以及多项式的有关定义,理解题意利用数形结合是解题的关键.28.(1)图1中∠AOD=60°;图2中∠AOD=10°;(2)图1中∠AOD=n m 2+;图2中∠AOD=n m 2-. 【解析】【分析】(1)图1中∠BOC=∠AOC ﹣∠AOB=20°,则∠BOD=10°,根据∠AOD=∠AOB+∠BOD 即得解;图2中∠BOC=∠AOC+∠AOB=120°,则∠BOD=60°,根据∠AOD=∠BOD ﹣∠AOB 即可得解;(2)图1中∠BOC=∠AOC ﹣∠AOB=n ﹣m ,则∠BOD=n m 2﹣,故∠AOD=∠AOB+∠BOD=n m 2+;图2中∠BOC=∠AOC+∠AOB=m+n ,则∠BOD=n m 2+,故∠AOD=∠BOD ﹣∠AOB=n m 2-. 【详解】解:(1)图1中∠BOC=∠AOC ﹣∠AOB=70°﹣50°=20°,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=10°, ∴∠AOD=∠AOB+∠BOD=50°+10°=60°;图2中∠BOC=∠AOC+∠AOB=120°,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=60°, ∴∠AOD=∠BOD ﹣∠AOB=60°﹣50°=10°;(2)根据题意可知∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,如图1中,∠BOC=∠AOC ﹣∠AOB=n ﹣m ,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=n m 2﹣, ∴∠AOD=∠AOB+∠BOD=n m 2+; 如图2中,∠BOC=∠AOC+∠AOB=m+n ,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=n m 2+, ∴∠AOD=∠BOD ﹣∠AOB=n m 2-. 【点睛】 本题主要考查角平分线,解此题的关键在于根据题意进行分类讨论,所有情况都要考虑,切勿遗漏.29.(1)90°;(2)30°;(3)12秒或48秒.【解析】【分析】(1)依据图形可知旋转角=∠NOB,从而可得到问题的答案;(2)先求得∠AOC的度数,然后依据角的和差关系可得到∠NOC=60°-∠AON,∠AOM=90°-∠AON,然后求得∠AOM与∠NOC的差即可;(3)可分为当OM为∠BOC的平分线和当OM的反向延长为∠BOC的平分线两种情况,然后再求得旋转的角度,最后,依据旋转的时间=旋转的角度÷旋转的速度求解即可.【详解】(1)由旋转的定义可知:旋转角=∠NOB=90°.故答案为:90°(2)∠AOM﹣∠NOC=30°.理由:∵∠AOC:∠BOC=1:2,∠AOC+∠BOC=180°,∴∠AOC=60°.∴∠NOC=60°﹣∠AON.∵∠NOM=90°,∴∠AOM=90°﹣∠AON,∴∠AOM﹣∠NOC=(90°﹣∠AON)﹣(60°﹣∠AON)=30°.(3)如图1所示:当OM为∠BOC的平分线时,∵OM为∠BOC的平分线,∴∠BOM=∠BOC=60°,∴t=60°÷5°=12秒.如图2所示:当OM的反向延长为∠BOC的平分线时,∵ON为为∠BOC的平分线,∴∠BON=60°.∴旋转的角度=60°+180°=240°.∴t=240°÷5°=48秒.故答案为:12秒或48秒.【点睛】本题主要考查的是三角形的综合应用,解答本题主要应用了旋转的定义、直角三角形的定义以及角的和差计算,求得三角板旋转的角度是解题的关键.30.(1)存在满足条件的点P,对应的数为﹣92和72;(2)正确的结论是:PM﹣34BN的值不变,且值为2.5.【解析】【分析】(1)先利用数轴上两点间的距离公式确定出AB的长,然后求得方程的解,得到C表示的点,由此求得12BC+AB=8设点P在数轴上对应的数是a,分①当点P在点a的左侧时(a<﹣3)、②当点P在线段AB上时(﹣3≤a≤2)和③当点P在点B的右侧时(a>2)三种情况求点P所表示的数即可;(2)设P点所表示的数为n,就有PA=n+3,PB=n﹣2,根据已知条件表示出PM、BN的长,再分别代入①PM﹣34BN和②12PM+34BN求出其值即可解答.【详解】(1)∵点A在数轴上对应的数为﹣3,点B对应的数为2,∴AB=5.解方程2x+1=12x﹣5得x=﹣4.所以BC=2﹣(﹣4)=6.所以.设存在点P满足条件,且点P在数轴上对应的数为a,①当点P在点a的左侧时,a<﹣3,PA=﹣3﹣a,PB=2﹣a,所以AP+PB=﹣2a﹣1=8,解得a=﹣,﹣<﹣3满足条件;②当点P在线段AB上时,﹣3≤a≤2,PA=a﹣(﹣3)=a+3,PB=2﹣a,所以PA+PB=a+3+2﹣a=5≠8,不满足条件;③当点P在点B的右侧时,a>2,PA=a﹣(﹣3)=a+3,PB=a﹣2.,所以PA+PB=a+3+a﹣2=2a+1=8,解得:a=,>2,所以,存在满足条件的点P,对应的数为﹣和.(2)设P点所表示的数为n,∴PA=n+3,PB=n﹣2.∵PA的中点为M,∴PM=12PA=.N为PB的三等分点且靠近于P点,∴BN=PB=×(n﹣2).∴PM﹣34BN=﹣34××(n﹣2),=(不变).②12PM+34BN=+34××(n﹣2)=34n﹣(随P点的变化而变化).∴正确的结论是:PM﹣BN的值不变,且值为2.5.【点睛】本题考查了一元一次方程的解,数轴的运用,数轴上任意两点间的距离公式的运用,去绝对值的运用,解答时了灵活运用两点间的距离公式求解是关键.31.(1)10,(a+b);(2)①60个单位长度;②10-3t,0≤t≤7.5;③不存在,理由见解析.【解析】【分析】(1)根据数轴上两点间的距离公式结合A、B两点表示的数,即可得出结论;(2)①点P运动的时间与A、B相遇所用时间相等,根据路程=速度×时间即可求得;②由P点用最短的时间首次碰到A点,且与B点未碰到,可知开始时点P是和点A相向而行的;③点P与点A的距离越来越小,而点P与点B的距离越来越大,不存在PA=PB的时候.【详解】解:(1)∵A、B所对应的数值分别为-20和40,∴AB=40-(-20)=60,∵P是AB的中点,∴AP=60=30,∴点P表示的数是-20+30=10;∵如图,点A、B对应的数值分别是a和b,∴AB=b-a,∵P是AB的中点,∴AP=(b-a)∴点P表示的数是a+(b-a) =(a+b).(2)①点A和点B相向而行,相遇的时间为=20(秒),此即整个过程中点P运动的时间.所以,点P的运动路程为3×20=60(单位长度),故答案是60个单位长度.②由P点用最短的时间首次碰到A点,且与B点未碰到,可知开始时点P是和点A相向而行的.所以这个过程中0≤t≤7.5.P点经过t秒钟后,在数轴上对应的数值为10-3t.故答案是:10-3t,0≤t≤7.5.。
山东省临沂市兰陵县七年级(上)期末数学试卷(解析版)

山东省临沂市兰陵县七年级(上)期末数学试卷一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给的4个选项中,只有一项是符合题目要求的。
1. (3分)计算(-3)X| - 2|的结果等于()A. 6B. 5C. - 6D.- 52. (3分)下列说法中,正确的是()A. 0是最小的整数B•最大的负整数是-1C. 有理数包括正有理数和负有理数D. —个有理数的平方总是正数3. (3分)已知a-2b=3,则3 (a-b)-(a+b)的值为()A. 3B. 6C. - 3D.- 64. (3分)下列利用等式的性质,错误的是()A.由a=b,得到1 - a=1 - bB.由:二,,得到a=bC.由a=b,得至U ac=bcD. 由ac=bc,得至U a=b5. (3分)若关于x的方程2x- m=x- 2的解为x=3,则m的值为()A.- 5B. 5C. - 7 D . 76 . (3 分)-1+2 - 3+4 - 5+6+…-2011+2012 的值等于()A . 1B . - 1 C. 2012 D . 10067. (3分)如图,C,D是数轴上的两点,它们分别表示-2.4,1.6, O为原点,则线段CD的中点表示的有理数是()q一 ? \鼻V -2-101 ?A. - 0.4 B . - 0.8 C. 2 D . 1 …8 . (3分)如果一个角的补角比它的余角度数的3倍少10°则这个角的度数是()A . 60°B . 50° C. 45°D . 40°9. (3分)互联网微商”经营已成为大众创业新途径,某微信平台上一件商品标价为220元,按标价的五折销售,仍可获利10%,则这件商品的进价为(A. 120 元B. 100 元C. 80 元D. 60 元10. (3分)解方程」十I'去分母后'结果正确的是()A. 2 (x—1) =1—(3x+1)B. 2 (x—1) =6- 3x+1C. 2x—1=6-3x+1 -1)=6-(3x+1)11. (3分)若关于x的方程2x- 4=3m与方程=::=-5有相同的解,贝U m()A. Z 1与/AOB表示同一个角B. Z AOC也可以用/ O来表示C. Z B表示的是/ BOCD. 图中共有三个角:/ AOB,Z AOC, / BOC13. (3分)下列说法中,正确的有()①经过两点有且只有一条直线;②两点之间,直线最短;③同角(或等角)的余角相等;④若AB=BC则点B是线段AC的中点.A. 1个B. 2个C. 3个D. 4个D. 2 (x 的值是-8 C. - 10 D. 8F列表示角的方法,错误的是(A. 10B.A. 5月22日B. 6月22日C. 8月22日D. 2月24日14. (3分)身份证号码告诉我们很多信息,某人的身份证号码是XXXXX 199704010012,其中前六位数字是此人所属的省(市、自治区)、市、县区)的编码,1997、04、01是此人出生的年、月、日,001是顺序码,验码.那么身份证号码是XXXXXX 200306224522的人的生日是(X(市、2为校A. 5月22日B. 6月22日C. 8月22日D. 2月24日二、填空题(每小题4分,共20分) 15. (4 分)计算:-9< <' = _________ .16. (4分)若式子3a - 7与5- a 的值互为相反数,则a 的值为 ________ . 17. (4分)某种商品每件的进价为80元,标价为120元,后来由于该商品积压, 将此商品打七折销售,则该商品每件销售利润为 元.18. (4分)如图是用棋子摆成的“T ”图案:o oo ooooo ooo oooo从图案中可以看出,第一个“T ”图案需要5枚棋子,第二个“T ”图案需要8枚 棋子,第三个“T ”图案需要11枚棋子.则摆成第n 个图案需要 ____________ 枚棋子. 19. (4分)已知线段AB=8cm,在直线AB 上有一点C,且BC=4cm M 是线段 AC 的中点,则线段AM 的长为 ________ .三、解答题(本大题共8小题,共计68分) 20. (10分)计算(1) 4+ (- 2) 2X 2-( - 36)十 4 (2) - 72+2X ( - 3) 2+ (- 6)^(-.) 221. (6 分)先化简,再求值:(3x 2- xy+y )- 2 (5xy -4x 2+y ),其中 x=- 2,y# .22. (6分)设一个两位数的个位数字为 a ,十位数字为b (a ,b 均为正整数,且 a > b ),若把这个两位数的个位数字和十位数字交换位置得到一个新的两位数, 则新的两位数与原两位数的差一定是 9的倍数,试说明理由.23. (6分)《九章,算术》中有一道阐述 盈不足术”的问题,原文如下: 今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何? 译文为: 现有一些人共同买一个物品,每人出 8元,还盈余3元;每人出7元,则还差4 元,问共有多少人?这个物品的价格是多少? 请解答上述问题.oooo③24. (7分)如图,点C在线段AB上,AC=6cm MB=10cm,点M , N分别为AC, BC 的中点.(1)求线段BC, MN的长;(2)若C在线段AB的延长线上,且满足AC- BC=acm M , N分别是线段AC, BC 的中点,请画出图形,并用a的式子表示MN的长度.卫-V C V 525. (7分)某风景名胜区的原门票价格是:成人票每张100元,学生票每张80 元.为吸引游客,风景名胜区管委会决定实行打折优惠,其中成人票打8折,学生票打6折.(1)设某旅游团有成人x人,学生y人,请用含x、y的代数式表示出该旅游团打折后所付的门票费;(2)若某旅游团的成人比学生多12人,所付门票费比不打折少1228元,求该旅游团成人和学生各有多少人?26. (7分)如图,已知轮船A在灯塔P的北偏东30°勺方向上,轮船B在灯塔P 的南偏东70°的方向上.(1)求从灯塔P看两轮船的视角(即/ APB的度数?(2)轮船C在/APB的角平分线上,则轮船C在灯塔P的什么方位?27. (9分)如图(1),将两块直角三角尺的直角顶点C叠放在一起,(1)若/ DCE=35,Z ACB= _______ ;若/ ACB=140,贝DCE _________ ;(2)猜想/ ACB与/ DCE的大小有何特殊关系,并说明理由;(3)如图(2),若是两个同样的直角三角尺60°锐角的顶点A重合在一起,则/ DAB与/ CAE的大小又有何关系,请说明理由.参考答案与试题解析一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给的4个选项中,只有一项是符合题目要求的。
人教版2017-2018学年临沂市兰陵县七年级数学下册期末试卷及解析

2017-2018学年临沂市兰陵县七年级下学期期末数学试卷一、选择题(本大题共14小题,每小题3分,共42分)1.的算术平方根为()A.9B.±9C.3D.±32.将点A(1,﹣1)向上平移2个单位后,再向左平移3个单位,得到点B,则点B的坐标为()A.(﹣2,1)B.(﹣2,﹣1)C.(2,1)D.(2,﹣1)3.已知实数a,b,若a>b,则下列结论错误的是()A.a﹣7>b﹣7B.6+a>b+6C.D.﹣3a>﹣3b4.不等式组的解集在数轴上表示正确的是()5.已知面积为8的正方形边长是x,则关于x的结论中,正确的是()A.x是有理数B.x不能在数轴上表示C.x是方程4x=8的解D.x是8的算术平方根6.在平面直角坐标系内,点P(a,a+3)的位置一定不在()A.第一象限B.第二象限C.第三象限D.第四象限7.如图,已知AB∥CD,∠1=115°,∠2=65°,则∠C等于()A.40°B.45°C.50°D.60°8.某同学在研究传统文化“抖空竹”时有一个发现:他把它抽象成数学问题,如图所示:已知AB∥CD,∠BAE=87°,∠DCE=121°,则∠E的度数是()A.28°B.34°C.46°D.56°9.如图,∠B=∠C,∠A=∠D,下列结论:①AB∥CD;②AE∥DF;③AE⊥BC;④∠AMC=∠BND,其中正确的结论有()A.①②④B.②③④C.③④D.①②③④10.甲、乙两人从A地出发,沿同一方向练习跑步,如果甲让乙先跑10米,则甲跑5秒就可追上乙,如果甲让乙先跑2秒,那么甲跑4秒就能追上乙,设甲、乙每秒钟分别跑x米和y米,则可列方程组为()A.B.C.D.11.如图,根据2013﹣2017年某市财政总收入(单位:亿元)统计图所提供的信息,下列判断正确的是()A.2013~2017年财政总收入呈逐年增长B.预计2018年的财政总收入约为253.43亿元C.2014~2015年与2016~2017年的财政总收入下降率相同D.2013~2014年的财政总收入增长率约为6.3%12.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:通话时间x/分钟0<x≤55<x≤1010<x≤1515<x≤20频数(通话次数)201695则5月份通话次数中,通话时间不超过15分钟的所占百分比是()A.10%B.40%C.50%D.90%13.某校对全体学生开展心理健康知识测试,七、八、九三个年级共有800名学生,各年级的合格人数如表所示,则下列说法正确的是()年级七年级八年级九年级合格人数270262254A.七年级的合格率最高B.八年级的学生人数为262名C.八年级的合格率高于全校的合格率D.九年级的合格人数最少14.若不等式组的解集为x<2m﹣2,则m的取值范围是()A.m≤2B.m≥2C.m>2D.m<2二、填空题(每小题4分,共20分)15.(4分)计算:|2﹣|的相反数是.16.(4分)若方程x﹣y=﹣1的一个解与方程组的解相同,则k的值为.17.(4分)为了解植物园内某种花卉的生长情况,在一片约有3000株此类花卉的园地内,随机抽测了200株的高度作为样本,统计结果整理后列表如下:(每组数据可包括最低值,不包括最高值)高度(cm)40~4545~5050~5555~6060~6565~70频数334222244336试估计该园地内此类花卉高度小于55厘米且不小于45厘米的约为株.18.(4分)如图,将长方形ABCD折叠,折痕为EF,且∠1=70°,则∠AEF的度数是.19.(4分)在平面直角坐标系中,如果对任意一点(a,b),规定两种变换:f(a,b)=(﹣a,﹣b),g(a,b)=(b,﹣a),那么g[f(1,﹣2)]=.三、解答题(共58分)20.(10分)(1)计算:+﹣|﹣2|(2)解不等式组21.(8分)如图,DE∥BF,∠1与∠2互补.(1)试说明:FG∥AB;(2)若∠CFG=60°,∠2=150°,则DE与AC垂直吗?请说明理由.22.(8分)为了庆祝即将到来的“五四”青年节,某校举行了书法比赛,赛后随机抽查部分参赛同学的成绩,并制作成图表如下:分数段频数频率60≤x<70300.1570≤x<80m0.4580≤x<9060n90≤x≤100200.1请根据以上图表提供的信息,解答下列问题:(1)这次随机抽查了名学生;表中的数m=,n=;(2)请在图中补全频数分布直方图;(3)若绘制扇形统计图,分数段60≤x<70所对应扇形的圆心角的度数是;(4)全校共有600名学生参加比赛,估计该校成绩80≤x<100范围内的学生有多少人?23.(8分)在△ABC中,点D在边BA或BA的延长线上,过点D作DE∥BC,交∠ABC的角平分线于点E.(1)如图1,当点D在边BA上时,点E恰好在边AC上,求证:∠ADE=2∠DEB;(2)如图2,当点D在BA的延长线上时,请直接写出∠ADE与∠DEB之间的数量关系,并说明理由.24.(12分)某校计划购买篮球、排球共20个.购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同.(1)篮球和排球的单价各是多少元?(2)若购买篮球不少于8个,所需费用总额不超过800元.请你求出满足要求的所有购买方案,并直接写出其中最省钱的购买方案.25.(12分)甲、乙两商场以同样价格出售同样的商品,并且各自又推出不同的优惠方案:在甲商场累计购物超过200元后,超出200元的部分按90%收费;在乙商场累计购物超过100元后,超出100元的部分按95%收费.设小李在同一商场累计购物x元,其中x>200.(1)当x为何值时,小李在甲、乙两商场的实际花费相同?(2)根据小李购物花费的不同金额,请你确定在哪家商场购物更合算?【解析卷】2017-2018学年临沂市兰陵县七年级下学期期末数学试卷一、选择题(本大题共14小题,每小题3分,共42分)1.的算术平方根为()A.9B.±9C.3D.±3【分析】直接根据算术平方根的定义进行解答即可.【点评】本题考查的是算术平方根的定义,即一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.2.将点A(1,﹣1)向上平移2个单位后,再向左平移3个单位,得到点B,则点B的坐标为()A.(﹣2,1)B.(﹣2,﹣1)C.(2,1)D.(2,﹣1)【专题】几何图形.【分析】让A点的横坐标减3,纵坐标加2即为点B的坐标.【解答】解:由题中平移规律可知:点B的横坐标为1-3=-2;纵坐标为-1+2=1,∴点B的坐标是(-2,1).故选:A.【点评】本题考查了坐标与图形变化-平移,平移变换是中考的常考点,平移中点的变化规律是:左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.3.已知实数a,b,若a>b,则下列结论错误的是()A.a﹣7>b﹣7B.6+a>b+6C.D.﹣3a>﹣3b【专题】方程与不等式.【分析】根据不等式的基本性质对各选项进行逐一分析即可.【解答】解:a>b,A、a-7>b-7,故A选项正确;B、6+a>b+6,故B选项正确;D、-3a<-3b,故D选项错误.故选:D.【点评】本题考查的是不等式的基本性质,熟知不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变是解答此题的关键.4.不等式组的解集在数轴上表示正确的是()【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解不等式3-x≥2,得:x≤1,∴不等式组的解集为x<-2,故选:B.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.已知面积为8的正方形边长是x,则关于x的结论中,正确的是()A.x是有理数B.x不能在数轴上表示C.x是方程4x=8的解D.x是8的算术平方根【专题】实数.【分析】根据算术平方根的意义,无理数的意义,实数与数轴的关系,可得答案.【解答】解:由题意,得A、x是无理数,故A不符合题意;B、x能在数轴上表示处来,故B不符合题意;C、x是x2=8的解,故C不符合题意;D、x是8的算术平方根,故D符合题意;故选:D.【点评】本题考查了实数与数轴,利用算术平方根的意义,无理数的意义,实数与数轴的关系是解题关键.6.在平面直角坐标系内,点P(a,a+3)的位置一定不在()A.第一象限B.第二象限C.第三象限D.第四象限【专题】常规题型.【分析】判断出P的横纵坐标的符号,进而判断出相应象限即可.【解答】解:当a为正数的时候,a+3一定为正数,所以点P可能在第一象限,一定不在第四象限,当a为负数的时候,a+3可能为正数,也可能为负数,所以点P可能在第二象限,也可能在第三象限,故选:D.【点评】此题主要考查了点的坐标,根据a的取值判断出相应的象限是解决本题的关键7.如图,已知AB∥CD,∠1=115°,∠2=65°,则∠C等于()A.40°B.45°C.50°D.60°【分析】根据两直线平行,同位角相等可得∠1=∠EGD=115°,再根据三角形内角与外角的性质可得∠C的度数.【解答】解:∵AB∥CD,∴∠1=∠EGD=115°,∵∠2=65°,∴∠C=115°-65°=50°,故选:C.【点评】此题主要考查了平行线的性质,以及三角形内角与外角的性质,关键是掌握两直线平行,同位角相等.8.某同学在研究传统文化“抖空竹”时有一个发现:他把它抽象成数学问题,如图所示:已知AB∥CD,∠BAE=87°,∠DCE=121°,则∠E的度数是()A.28°B.34°C.46°D.56°【专题】线段、角、相交线与平行线.【分析】延长DC交AE于F,依据AB∥CD,∠BAE=87°,可得∠CFE=87°,再根据三角形外角性质,即可得到∠E=∠DCE-∠CFE.【解答】解:如图,延长DC交AE于F,∵AB∥CD,∠BAE=87°,∴∠CFE=87°,又∵∠DCE=121°,∴∠E=∠DCE-∠CFE=121°-87°=34°,故选:B.【点评】本题主要考查了平行线的性质,解决问题的关键是掌握:两直线平行,同位角相等.9.如图,∠B=∠C,∠A=∠D,下列结论:①AB∥CD;②AE∥DF;③AE⊥BC;④∠AMC=∠BND,其中正确的结论有()A.①②④B.②③④C.③④D.①②③④【分析】由条件可先证明AB∥CD,再证明AE∥DF,结合平行线的性质及对顶角相等可得到∠AMC=∠BND,可得出答案.【解答】解:∵∠B=∠C,∴AB∥CD,∴∠A=∠AEC,又∵∠A=∠D,∴∠AEC=∠D,∴AE∥DF,∴∠AMC=∠FNM,又∵∠BND=∠FNM,∴∠AMC=∠BND,故①②④正确,由条件不能得出∠AMC=90°,故③不一定正确;故选:A.【点评】本题主要考查平行线的性质和判定,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a∥b,b∥c⇒a∥c.10.甲、乙两人从A地出发,沿同一方向练习跑步,如果甲让乙先跑10米,则甲跑5秒就可追上乙,如果甲让乙先跑2秒,那么甲跑4秒就能追上乙,设甲、乙每秒钟分别跑x米和y米,则可列方程组为()A.B.C.D.【专题】方程与不等式.【分析】本题的等量关系:(1)乙先跑10米,甲跑5秒就追上乙;(2)如果让乙先跑2秒,那么甲跑4秒就追上乙,可以列出方程组.【解答】解:设甲、乙每秒分别跑x米,y米,由题意知:故选:D.【点评】本题考查了二元一次方程组的实际应用,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.11.如图,根据2013﹣2017年某市财政总收入(单位:亿元)统计图所提供的信息,下列判断正确的是()A.2013~2017年财政总收入呈逐年增长B.预计2018年的财政总收入约为253.43亿元C.2014~2015年与2016~2017年的财政总收入下降率相同D.2013~2014年的财政总收入增长率约为6.3%【专题】统计的应用.【分析】根据题意和折线统计图可以判断选项中的说法是否正确【解答】解:根据题意和折线统计图可知,从2013-2014财政收入增长了,2014-2015财政收入下降了,故选项A错误;由折线统计图无法估计2018年的财政收入,故选项B错误;∵2014-2015年的下降率是:(230.68-229.01)÷230.68≈0.72%,2016-2017年的下降率是:(243.12-238.86)÷243.12≈1.75%,故选项C错误;2013-2014年的财政总收入增长率是:(230.68-217)÷217≈6.3%,故选项D正确;故选:D.【点评】本题考查折线统计图、用样本估计总体,解题的关键是明确题意,找出所求问题需要的条件.12.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:通话时间x/分钟0<x≤55<x≤1010<x≤1515<x≤20频数(通话次数)201695则5月份通话次数中,通话时间不超过15分钟的所占百分比是()A.10%B.40%C.50%D.90%【专题】常规题型;统计的应用.【分析】根据表格可以得到总的频数和通话时间不超过15分钟的频数,从而可以求得通话时间不超过15分钟的百分比.【解答】故选:D.【点评】本题考查频数分布表,解题的关键是明确题意,找出所求问题需要的条件.13.某校对全体学生开展心理健康知识测试,七、八、九三个年级共有800名学生,各年级的合格人数如表所示,则下列说法正确的是()年级七年级八年级九年级合格人数270262254A.七年级的合格率最高B.八年级的学生人数为262名C.八年级的合格率高于全校的合格率D.九年级的合格人数最少【分析】分析统计表,可得出各年级合格的人数,然后结合选项进行回答即可.【解答】解:∵七、八、九年级的人数不确定,∴无法求得七、八、九年级的合格率.∴A错误、C错误.由统计表可知八年级合格人数是262人,故B错误.∵270>262>254,∴九年级合格人数最少.故D正确.故选:D.【点评】本题主要考查的是统计表的认识,读懂统计表,能够从统计表中获取有效信息是解题的关键.14.若不等式组的解集为x<2m﹣2,则m的取值范围是()A.m≤2B.m≥2C.m>2D.m<2【专题】计算题.【分析】根据不等式的性质求出不等式的解集,根据不等式和不等式组解集得出m≥2m-2,求出即可.【解答】由①得:x<2m-2,由②得:x<m,∵不等式组的解集为x<2m-2,∴m≥2m-2,∴m≤2.故选:A.【点评】本题主要考查对不等式的性质,解一元一次不等式(组)等知识点的理解和掌握,能根据题意得出m≥2m-2是解此题的关键.二、填空题(每小题4分,共20分)15.(4分)计算:|2﹣|的相反数是.【专题】计算题.16.(4分)若方程x﹣y=﹣1的一个解与方程组的解相同,则k的值为.【专题】计算题;一次方程(组)及应用.【分析】联立不含k的方程组成方程组,求出方程组的解得到x与y的值,即可确定出k 的值.【解答】代入方程得:2-6=k,解得:k=-4,故答案为:-4【点评】此题考查了二元一次方程组的解,以及二元一次方程的解,熟练掌握运算法则是解本题的关键.17.(4分)为了解植物园内某种花卉的生长情况,在一片约有3000株此类花卉的园地内,随机抽测了200株的高度作为样本,统计结果整理后列表如下:(每组数据可包括最低值,不包括最高值)高度(cm)40~4545~5050~5555~6060~6565~70频数334222244336试估计该园地内此类花卉高度小于55厘米且不小于45厘米的约为株.【专题】常规题型;统计的应用.【分析】用总人数300乘以样本中高度小于55厘米且不小于45厘米的数量占被调查株数的比例.【解答】故答案为:960.【点评】本题考查了统计表以及用样本估计总体的思想,此题主要考查从统计表中获取信息的能力.统计表可以将大量数据的分类结果清晰、一目了然地表达出来.18.(4分)如图,将长方形ABCD折叠,折痕为EF,且∠1=70°,则∠AEF的度数是.【专题】几何图形.【分析】再根据AD∥BC,即可得到∠AEF=180°-∠BFE=125°.【解答】解:∵∠1=70°,∴∠BFB'=110°,又∵AD∥BC,∴∠AEF=180°-∠BFE=125°.故答案为:125°【点评】本题主要考查了折叠问题以及平行线的性质的运用,解题时注意:两直线平行,同旁内角互补.19.(4分)在平面直角坐标系中,如果对任意一点(a,b),规定两种变换:f(a,b)=(﹣a,﹣b),g(a,b)=(b,﹣a),那么g[f(1,﹣2)]=.【专题】常规题型.【分析】首先根据变换方法可得f(1,-2)=(-1,2),再根据变换方法可得g(-1,2)=(2,1),从而可得答案.【解答】解:由题意得:f(1,-2)=(-1,2),g(-1,2)=(2,1),故答案为:(2,1).【点评】此题主要考查了点的坐标,关键是理解题意,掌握变换的方法.三、解答题(共58分)20.(10分)(1)计算:+﹣|﹣2|(2)解不等式组【专题】数与式;方程与不等式.【分析】(1)根据立方根、算术平方根、绝对值的性质化简计算即可;(2)先求出其中各不等式的解集,再求出这些解集的公共部分即可;【解答】(2)解:由①得,x≤3,由②得,x>0,不等式组的解集为0<x≤3.【点评】本题考查实数的运算、不等式组等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21.(8分)如图,DE∥BF,∠1与∠2互补.(1)试说明:FG∥AB;(2)若∠CFG=60°,∠2=150°,则DE与AC垂直吗?请说明理由.【专题】线段、角、相交线与平行线.【分析】(1)依据同角的补角相等,可得∠1=∠DBF,即可得到FG∥AB;(2)依据FG∥AB,∠CFG=60°可得∠A=∠CFG=60°,再根据∠2是△ADE的外角,可得∠2=∠A+∠AED,进而得出∠AED=150°-60°=90°,可得DE⊥AC.【解答】解:(1)∵DE∥BF∴∠2+∠DBF=180°∵∠1与∠2互补∴∠1+∠2=180°∴∠1=∠DBF∴FG∥AB(2)DE与AC垂直理由:∵FG∥AB,∠CFG=60°∴∠A=∠CFG=60°∵∠2是△ADE的外角∴∠2=∠A+∠AED∵∠2=150°∴∠AED=150°-60°=90°∴DE⊥AC【点评】本题主要考查了平行线的性质与判断,平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.22.(8分)为了庆祝即将到来的“五四”青年节,某校举行了书法比赛,赛后随机抽查部分参赛同学的成绩,并制作成图表如下:分数段频数频率60≤x<70300.1570≤x<80m0.4580≤x<9060n90≤x≤100200.1请根据以上图表提供的信息,解答下列问题:(1)这次随机抽查了名学生;表中的数m=,n=;(2)请在图中补全频数分布直方图;(3)若绘制扇形统计图,分数段60≤x<70所对应扇形的圆心角的度数是;(4)全校共有600名学生参加比赛,估计该校成绩80≤x<100范围内的学生有多少人?【专题】常规题型;统计的应用.【分析】(1)根据60≤x<70的频数及其频率求得总人数,进而计算可得m、n的值;(2)根据(1)的结果,可以补全直方图;(3)用360°乘以样本中分数段60≤x<70的频率即可得;(4)总人数乘以样本中成绩80≤x<100范围内的学生人数所占比例.【解答】解:(1)本次调查的总人数为30÷0.15=200人,则m=200×0.45=90,n=60÷200=0.3,故答案为:200、90、0.3;(2)补全频数分布直方图如下:(3)若绘制扇形统计图,分数段60≤x<70所对应扇形的圆心角的度数是360°×0.15=54°,故答案为:54°;答:估计该校成绩80≤x<100范围内的学生有240人.【点评】本题考查条形统计图、图表等知识.结合生活实际,绘制条形统计图或从统计图中获取有用的信息,是近年中考的热点.只要能认真准确读图,并作简单的计算,一般难度不大.23.(8分)在△ABC中,点D在边BA或BA的延长线上,过点D作DE∥BC,交∠ABC的角平分线于点E.(1)如图1,当点D在边BA上时,点E恰好在边AC上,求证:∠ADE=2∠DEB;(2)如图2,当点D在BA的延长线上时,请直接写出∠ADE与∠DEB之间的数量关系,并说明理由.【专题】线段、角、相交线与平行线;三角形.【分析】(1)根据角平分线的定义可得出∠ABE=∠CBE,由平行线的性质可得出∠CBE=∠DEB、∠ADE=∠ABC,进而可得出∠ABE=∠DEB,再利用三角形外角的性质即可证出∠ADE=2∠DEB;(2)根据角平分线的定义可得出∠ABC=2∠CBE,利用平行线的性质可得出∠DEB=∠CBE,进而可得出∠ABC=2∠DEB,再利用“两直线平行,同旁内角互补”可证出∠ADE+2∠DEB=180°.【解答】证明:(1)∵BE平分∠ABC,∴∠ABE=∠CBE.∵DE∥BC,∴∠CBE=∠DEB,∠ADE=∠ABC,∴∠ABE=∠DEB,∴∠ADE=∠ABE+∠DEB=2∠DEB.(2)∠ADE+2∠DEB=180°.∵BE平分∠ABC,∴∠ABC=2∠CBE.∵DE∥BC,∴∠DEB=∠CBE,∠ADE+∠ABC=180°,∴∠ABC=2∠DEB,∴∠ADE+2∠DEB=180°.【点评】本题考查了三角形内角和定理、角平分线的定义、平行线的性质以及三角形的外角性质,解题的关键是:(1)利用角平分线的定义结合平行线的性质找出∠ABE=∠DEB;(2)利用角平分线的定义结合平行线的性质找出∠ADE+2∠DEB=180°.24.(12分)某校计划购买篮球、排球共20个.购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同.(1)篮球和排球的单价各是多少元?(2)若购买篮球不少于8个,所需费用总额不超过800元.请你求出满足要求的所有购买方案,并直接写出其中最省钱的购买方案.【专题】销售问题.【分析】(1)设篮球每个x元,排球每个y元,根据题意列出二元一次方程组,解方程组即可;(2)根据购买篮球不少于8个,所需费用总额不超过800元列出不等式,解不等式即可.【解答】解:(1)设篮球每个x元,排球每个y元,依题意,得答:篮球每个50元,排球每个30元;(2)设购买篮球m个,则购买排球(20-m)个,依题意,得50m+30(20-m)≤800.解得m≤10,又∵m≥8,∴8≤m≤10.∵篮球的个数必须为整数,∴m只能取8、9、10,∴满足题意的方案有三种:①购买篮球8个,排球12个;②购买篮球9,排球11个;③购买篮球10个,排球10个,以上三个方案中,方案①最省钱.【点评】本题考查的是二元一次方程组、一元一次不等式的应用,根据题意正确列出方程组、一元一次不等式是解题的关键.25.(12分)甲、乙两商场以同样价格出售同样的商品,并且各自又推出不同的优惠方案:在甲商场累计购物超过200元后,超出200元的部分按90%收费;在乙商场累计购物超过100元后,超出100元的部分按95%收费.设小李在同一商场累计购物x元,其中x>200.(1)当x为何值时,小李在甲、乙两商场的实际花费相同?(2)根据小李购物花费的不同金额,请你确定在哪家商场购物更合算?人教版2017-2018学年临沂市兰陵县七年级数学下册期末试卷及解析【专题】方程与不等式.【分析】(1)根据已知得出甲商场200+(x-200)×90%以及乙商场100+(x-100)×95%,相等列等式,进而得出答案;(2)根据200+(x-200)×90%与100+(x-100)×95%大于、小于、等于,列三个式子,从而得出正确结论.【解答】解:(1)依题意,得200+(x-200)×90%=100+(x-100)×95%,…(2分)解得x=300.…(3分)即当x=300时,小李在甲、乙两商场的实际花费相同;…(4分)(2)①当200+(x-200)×90%>100+(x-100)×95%时,解得x<300.…(5分)②当200+(x-200)×90%<100+(x-100)×95%时,解得x>300.…(6分)③当200+(x-200)×90%=100+(x-100)×95%时,解得x=300.…(7分)答:当小李购物花费少于300元时,在乙商场购物合算;当小李购物花费多于300元时,在甲商场购物合算,当小李购物等于300元时,到两家商场花费一样多.…(8分)【点评】此题考查了一元一次不等式和一元一次方程的应用,关键是读懂题意,列出不等式,再根据实际情况进行讨论,不要漏项.21。
临沂市兰陵县2017-2018学年七年级下期末数学试题(含答案解析)

山东省临沂市兰陵县2017-2018学年七年级下学期期末考试数学试题一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给的4个选项中只有一项是符合题目要求的1)A.9 B.±9 C.3 D.±3【分析】直接根据算术平方根的定义进行解答即可.【点评】本题考查的是算术平方根的定义,即一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.2.将点A(1,﹣1)向上平移2个单位后,再向左平移3个单位,得到点B,则点B的坐标为()A.(﹣2,1)B.(﹣2,﹣1)C.(2,1)D.(2,﹣1)【专题】几何图形.【分析】让A点的横坐标减3,纵坐标加2即为点B的坐标.【解答】解:由题中平移规律可知:点B的横坐标为1-3=-2;纵坐标为-1+2=1,∴点B的坐标是(-2,1).故选:A.【点评】本题考查了坐标与图形变化-平移,平移变换是中考的常考点,平移中点的变化规律是:左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.3.已知实数a,b,若a>b,则下列结论错误的是()A.a﹣7>b﹣7 B.6+a>b+6 C.D.﹣3a>﹣3b【专题】方程与不等式.【分析】根据不等式的基本性质对各选项进行逐一分析即可.【解答】解:a>b,A、a-7>b-7,故A选项正确;B、6+a>b+6,故B选项正确;D、-3a<-3b,故D选项错误.故选:D.【点评】本题考查的是不等式的基本性质,熟知不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变是解答此题的关键.4.不等式组的解集在数轴上表示正确的是()【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解不等式3-x≥2,得:x≤1,∴不等式组的解集为x<-2,故选:B.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.已知面积为8的正方形边长是x,则关于x的结论中,正确的是()A.x是有理数B.x不能在数轴上表示C.x是方程4x=8的解D.x是8的算术平方根【专题】实数.【分析】根据算术平方根的意义,无理数的意义,实数与数轴的关系,可得答案.【解答】解:由题意,得A、x是无理数,故A不符合题意;B、x能在数轴上表示处来,故B不符合题意;C、x是x2=8的解,故C不符合题意;D、x是8的算术平方根,故D符合题意;故选:D.【点评】本题考查了实数与数轴,利用算术平方根的意义,无理数的意义,实数与数轴的关系是解题关键.6.在平面直角坐标系内,点P(a,a+3)的位置一定不在()A.第一象限B.第二象限C.第三象限D.第四象限【专题】常规题型.【分析】判断出P的横纵坐标的符号,进而判断出相应象限即可.【解答】解:当a为正数的时候,a+3一定为正数,所以点P可能在第一象限,一定不在第四象限,当a为负数的时候,a+3可能为正数,也可能为负数,所以点P可能在第二象限,也可能在第三象限,故选:D.【点评】此题主要考查了点的坐标,根据a的取值判断出相应的象限是解决本题的关键7.如图,已知AB∥CD,∠1=115°,∠2=65°,则∠C等于()A.40°B.45°C.50°D.60°【分析】根据两直线平行,同位角相等可得∠1=∠EGD=115°,再根据三角形内角与外角的性质可得∠C的度数.【解答】解:∵AB∥CD,∴∠1=∠EGD=115°,∵∠2=65°,∴∠C=115°-65°=50°,故选:C.【点评】此题主要考查了平行线的性质,以及三角形内角与外角的性质,关键是掌握两直线平行,同位角相等.8.某同学在研究传统文化“抖空竹”时有一个发现:他把它抽象成数学问题,如图所示:已知AB∥CD,∠BAE=87°,∠DCE=121°,则∠E的度数是()A.28°B.34°C.46°D.56°【专题】线段、角、相交线与平行线.【分析】延长DC交AE于F,依据AB∥CD,∠BAE=87°,可得∠CFE=87°,再根据三角形外角性质,即可得到∠E=∠DCE-∠CFE.【解答】解:如图,延长DC交AE于F,∵AB∥CD,∠BAE=87°,∴∠CFE=87°,又∵∠DCE=121°,∴∠E=∠DCE-∠CFE=121°-87°=34°,故选:B.【点评】本题主要考查了平行线的性质,解决问题的关键是掌握:两直线平行,同位角相等.9.如图,∠B=∠C,∠A=∠D,下列结论:①AB∥CD;②AE∥DF;③AE⊥BC;④∠AMC=∠BND,其中正确的结论有()A.①②④B.②③④C.③④D.①②③④【分析】由条件可先证明AB∥CD,再证明AE∥DF,结合平行线的性质及对顶角相等可得到∠AMC=∠BND,可得出答案.【解答】解:∵∠B=∠C,∴AB∥CD,∴∠A=∠AEC,又∵∠A=∠D,∴∠AEC=∠D,∴AE∥DF,∴∠AMC=∠FNM,又∵∠BND=∠FNM,∴∠AMC=∠BND,故①②④正确,由条件不能得出∠AMC=90°,故③不一定正确;故选:A.【点评】本题主要考查平行线的性质和判定,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a∥b,b∥c⇒a∥c.10.甲、乙两人从A地出发,沿同一方向练习跑步,如果甲让乙先跑10米,则甲跑5秒就可追上乙,如果甲让乙先跑2秒,那么甲跑4秒就能追上乙,设甲、乙每秒钟分别跑x米和y米,则可列方程组为()A.B.C.D.【专题】方程与不等式.【分析】本题的等量关系:(1)乙先跑10米,甲跑5秒就追上乙;(2)如果让乙先跑2秒,那么甲跑4秒就追上乙,可以列出方程组.【解答】解:设甲、乙每秒分别跑x米,y米,由题意知:故选:D.【点评】本题考查了二元一次方程组的实际应用,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.11.如图,根据2013﹣2017年某市财政总收入(单位:亿元)统计图所提供的信息,下列判断正确的是()A.2013~2017年财政总收入呈逐年增长B.预计2018年的财政总收入约为253.43亿元C.2014~2015年与2016~2017年的财政总收入下降率相同D.2013~2014年的财政总收入增长率约为6.3%【专题】统计的应用.【分析】根据题意和折线统计图可以判断选项中的说法是否正确【解答】解:根据题意和折线统计图可知,从2013-2014财政收入增长了,2014-2015财政收入下降了,故选项A错误;由折线统计图无法估计2018年的财政收入,故选项B错误;∵2014-2015年的下降率是:(230.68-229.01)÷230.68≈0.72%,2016-2017年的下降率是:(243.12-238.86)÷243.12≈1.75%,故选项C错误;2013-2014年的财政总收入增长率是:(230.68-217)÷217≈6.3%,故选项D正确;故选:D.【点评】本题考查折线统计图、用样本估计总体,解题的关键是明确题意,找出所求问题需要的条件.12.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:则5月份通话次数中,通话时间不超过15分钟的所占百分比是()A.10% B.40% C.50% D.90%【专题】常规题型;统计的应用.【分析】根据表格可以得到总的频数和通话时间不超过15分钟的频数,从而可以求得通话时间不超过15分钟的百分比.【解答】故选:D.【点评】本题考查频数分布表,解题的关键是明确题意,找出所求问题需要的条件.13.某校对全体学生开展心理健康知识测试,七、八、九三个年级共有800名学生,各年级的合格人数如表所示,则下列说法正确的是()A.七年级的合格率最高B.八年级的学生人数为262名C.八年级的合格率高于全校的合格率D.九年级的合格人数最少【分析】分析统计表,可得出各年级合格的人数,然后结合选项进行回答即可.【解答】解:∵七、八、九年级的人数不确定,∴无法求得七、八、九年级的合格率.∴A错误、C错误.由统计表可知八年级合格人数是262人,故B错误.∵270>262>254,∴九年级合格人数最少.故D正确.故选:D.【点评】本题主要考查的是统计表的认识,读懂统计表,能够从统计表中获取有效信息是解题的关键.14.若不等式组的解集为x<2m﹣2,则m的取值范围是()A.m≤2B.m≥2C.m>2 D.m<2【专题】计算题.【分析】根据不等式的性质求出不等式的解集,根据不等式和不等式组解集得出m≥2m-2,求出即可.【解答】由①得:x<2m-2,由②得:x<m,∵不等式组的解集为x<2m-2,∴m≥2m-2,∴m≤2.故选:A.【点评】本题主要考查对不等式的性质,解一元一次不等式(组)等知识点的理解和掌握,能根据题意得出m≥2m-2是解此题的关键.二、填空题(每小题4分,共20分)15.(4分)计算:|2﹣|的相反数是.【专题】计算题.16.(4分)若方程x﹣y=﹣1的一个解与方程组的解相同,则k的值为.【专题】计算题;一次方程(组)及应用.【分析】联立不含k的方程组成方程组,求出方程组的解得到x与y的值,即可确定出k的值.【解答】代入方程得:2-6=k,解得:k=-4,故答案为:-4【点评】此题考查了二元一次方程组的解,以及二元一次方程的解,熟练掌握运算法则是解本题的关键.17.(4分)为了解植物园内某种花卉的生长情况,在一片约有3000株此类花卉的园地内,随机抽测了200株的高度作为样本,统计结果整理后列表如下:(每组数据可包括最低值,不包括最高值)试估计该园地内此类花卉高度小于55厘米且不小于45厘米的约为株.【专题】常规题型;统计的应用.【分析】用总人数300乘以样本中高度小于55厘米且不小于45厘米的数量占被调查株数的比例.【解答】故答案为:960.【点评】本题考查了统计表以及用样本估计总体的思想,此题主要考查从统计表中获取信息的能力.统计表可以将大量数据的分类结果清晰、一目了然地表达出来.18.(4分)如图,将长方形ABCD折叠,折痕为EF,且∠1=70°,则∠AEF的度数是.【专题】几何图形.【分析】再根据AD∥BC,即可得到∠AEF=180°-∠BFE=125°.【解答】解:∵∠1=70°,∴∠BFB'=110°,又∵AD∥BC,∴∠AEF=180°-∠BFE=125°.故答案为:125°【点评】本题主要考查了折叠问题以及平行线的性质的运用,解题时注意:两直线平行,同旁内角互补.19.(4分)在平面直角坐标系中,如果对任意一点(a,b),规定两种变换:f(a,b)=(﹣a,﹣b),g(a,b)=(b,﹣a),那么g[f(1,﹣2)]=.【专题】常规题型.【分析】首先根据变换方法可得f(1,-2)=(-1,2),再根据变换方法可得g (-1,2)=(2,1),从而可得答案.【解答】解:由题意得:f(1,-2)=(-1,2),g(-1,2)=(2,1),故答案为:(2,1).【点评】此题主要考查了点的坐标,关键是理解题意,掌握变换的方法.三、解答题(共58分)20.(10分)(1)计算:+﹣|﹣2|(2)解不等式组【专题】数与式;方程与不等式.【分析】(1)根据立方根、算术平方根、绝对值的性质化简计算即可;(2)先求出其中各不等式的解集,再求出这些解集的公共部分即可;【解答】(2)解:由①得,x≤3,由②得,x>0,不等式组的解集为0<x≤3.【点评】本题考查实数的运算、不等式组等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21.(8分)如图,DE∥BF,∠1与∠2互补.(1)试说明:FG∥AB;(2)若∠CFG=60°,∠2=150°,则DE与AC垂直吗?请说明理由.【专题】线段、角、相交线与平行线.【分析】(1)依据同角的补角相等,可得∠1=∠DBF,即可得到FG∥AB;(2)依据FG∥AB,∠CFG=60°可得∠A=∠CFG=60°,再根据∠2是△ADE的外角,可得∠2=∠A+∠AED,进而得出∠AED=150°-60°=90°,可得DE⊥AC.【解答】解:(1)∵DE∥BF∴∠2+∠DBF=180°∵∠1与∠2互补∴∠1+∠2=180°∴∠1=∠DBF∴FG∥AB(2)DE与AC垂直理由:∵FG∥AB,∠CFG=60°∴∠A=∠CFG=60°∵∠2是△ADE的外角∴∠2=∠A+∠AED∵∠2=150°∴∠AED=150°-60°=90°∴DE⊥AC【点评】本题主要考查了平行线的性质与判断,平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.22.(8分)为了庆祝即将到来的“五四”青年节,某校举行了书法比赛,赛后随机抽查部分参赛同学的成绩,并制作成图表如下:请根据以上图表提供的信息,解答下列问题:(1)这次随机抽查了名学生;表中的数m=,n=;(2)请在图中补全频数分布直方图;(3)若绘制扇形统计图,分数段60≤x<70所对应扇形的圆心角的度数是;(4)全校共有600名学生参加比赛,估计该校成绩80≤x<100范围内的学生有多少人?【专题】常规题型;统计的应用.【分析】(1)根据60≤x<70的频数及其频率求得总人数,进而计算可得m、n 的值;(2)根据(1)的结果,可以补全直方图;(3)用360°乘以样本中分数段60≤x<70的频率即可得;(4)总人数乘以样本中成绩80≤x<100范围内的学生人数所占比例.【解答】解:(1)本次调查的总人数为30÷0.15=200人,则m=200×0.45=90,n=60÷200=0.3,故答案为:200、90、0.3;(2)补全频数分布直方图如下:(3)若绘制扇形统计图,分数段60≤x<70所对应扇形的圆心角的度数是360°×0.15=54°,故答案为:54°;答:估计该校成绩80≤x<100范围内的学生有240人.【点评】本题考查条形统计图、图表等知识.结合生活实际,绘制条形统计图或从统计图中获取有用的信息,是近年中考的热点.只要能认真准确读图,并作简单的计算,一般难度不大.23.(8分)在△ABC中,点D在边BA或BA的延长线上,过点D作DE∥BC,交∠ABC 的角平分线于点E.(1)如图1,当点D在边BA上时,点E恰好在边AC上,求证:∠ADE=2∠DEB;(2)如图2,当点D在BA的延长线上时,请直接写出∠ADE与∠DEB之间的数量关系,并说明理由.【专题】线段、角、相交线与平行线;三角形.【分析】(1)根据角平分线的定义可得出∠ABE=∠CBE,由平行线的性质可得出∠CBE=∠DEB、∠ADE=∠ABC,进而可得出∠ABE=∠DEB,再利用三角形外角的性质即可证出∠ADE=2∠DEB;(2)根据角平分线的定义可得出∠ABC=2∠CBE,利用平行线的性质可得出∠DEB=∠CBE,进而可得出∠ABC=2∠DEB,再利用“两直线平行,同旁内角互补”可证出∠ADE+2∠DEB=180°.【解答】证明:(1)∵BE平分∠ABC,∴∠ABE=∠CBE.∵DE∥BC,∴∠CBE=∠DEB,∠ADE=∠ABC,∴∠ABE=∠DEB,∴∠ADE=∠ABE+∠DEB=2∠DEB.(2)∠ADE+2∠DEB=180°.∵BE平分∠ABC,∴∠ABC=2∠CBE.∵DE∥BC,∴∠DEB=∠CBE,∠ADE+∠ABC=180°,∴∠ABC=2∠DEB,∴∠ADE+2∠DEB=180°.【点评】本题考查了三角形内角和定理、角平分线的定义、平行线的性质以及三角形的外角性质,解题的关键是:(1)利用角平分线的定义结合平行线的性质找出∠ABE=∠DEB;(2)利用角平分线的定义结合平行线的性质找出∠ADE+2∠DEB=180°.24.(12分)某校计划购买篮球、排球共20个.购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同.(1)篮球和排球的单价各是多少元?(2)若购买篮球不少于8个,所需费用总额不超过800元.请你求出满足要求的所有购买方案,并直接写出其中最省钱的购买方案.【专题】销售问题.【分析】(1)设篮球每个x元,排球每个y元,根据题意列出二元一次方程组,解方程组即可;(2)根据购买篮球不少于8个,所需费用总额不超过800元列出不等式,解不等式即可.【解答】解:(1)设篮球每个x元,排球每个y元,依题意,得答:篮球每个50元,排球每个30元;(2)设购买篮球m个,则购买排球(20-m)个,依题意,得50m+30(20-m)≤800.解得m≤10,又∵m≥8,∴8≤m≤10.∵篮球的个数必须为整数,∴m只能取8、9、10,∴满足题意的方案有三种:①购买篮球8个,排球12个;②购买篮球9,排球11个;③购买篮球10个,排球10个,以上三个方案中,方案①最省钱.【点评】本题考查的是二元一次方程组、一元一次不等式的应用,根据题意正确列出方程组、一元一次不等式是解题的关键.25.(12分)甲、乙两商场以同样价格出售同样的商品,并且各自又推出不同的优惠方案:在甲商场累计购物超过200元后,超出200元的部分按90%收费;在乙商场累计购物超过100元后,超出100元的部分按95%收费.设小李在同一商场累计购物x元,其中x>200.(1)当x为何值时,小李在甲、乙两商场的实际花费相同?(2)根据小李购物花费的不同金额,请你确定在哪家商场购物更合算?【专题】方程与不等式.【分析】(1)根据已知得出甲商场200+(x-200)×90%以及乙商场100+(x-100)×95%,相等列等式,进而得出答案;(2)根据200+(x-200)×90%与100+(x-100)×95%大于、小于、等于,列三个式子,从而得出正确结论.【解答】解:(1)依题意,得200+(x-200)×90%=100+(x-100)×95%,…(2分)解得x=300.…(3分)即当x=300时,小李在甲、乙两商场的实际花费相同;…(4分)(2)①当200+(x-200)×90%>100+(x-100)×95%时,解得x<300.…(5分)②当200+(x-200)×90%<100+(x-100)×95%时,解得x>300.…(6分)③当200+(x-200)×90%=100+(x-100)×95%时,解得x=300.…(7分)答:当小李购物花费少于300元时,在乙商场购物合算;当小李购物花费多于300元时,在甲商场购物合算,当小李购物等于300元时,到两家商场花费一样多.…(8分)【点评】此题考查了一元一次不等式和一元一次方程的应用,关键是读懂题意,列出不等式,再根据实际情况进行讨论,不要漏项.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年山东省临沂市兰陵县七年级(上)期末数学试卷一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给的4个选项中,只有一项是符合题目要求的。
1. 计算(﹣3)×|﹣2|的结果等于()A. 6B. 5C. ﹣6D. ﹣5【答案】C【解析】解:原式=(﹣3)×2=﹣6.故选C.2. 下列说法中,正确的是()A. 0是最小的整数B. 最大的负整数是﹣1C. 有理数包括正有理数和负有理数D. 一个有理数的平方总是正数【答案】B【解析】分析:根据负数、正数、整数和有理数的定义选出正确答案.特别注意:没有最大的正数,也没有最大的负数,最大的负整数是-1.正确理解有理数的定义.解答:解:A、0不是最小的整数,故本选项错误;B、最大的负整数-1,故本选项正确;C、有理数分为整数和分数,故本选项错误;D、0的平方还是0,不是正数,故本选项错误.故选B.3. 已知a﹣2b=3,则3(a﹣b)﹣(a+b)的值为()A. 3B. 6C. ﹣3D. ﹣6【答案】B【解析】∵a﹣2b=3,∴3(a﹣b)﹣(a+b)=3a-3b-a-b=2a-4b=2(a-2b)=2×3=6故选B.4. 下列利用等式的性质,错误的是()A. 由a=b,得到1﹣a=1﹣bB. 由=,得到a=bC. 由a=b,得到ac=bcD. 由ac=bc,得到a=b【答案】D【解析】A选项正确,由a=b等式左右两边同时先乘以-1再同时加1得到1﹣a=1﹣b;B选项正确,由等式左右两边同时乘以2得到a=b;C选项正确,由a=b等式左右两边同时乘以c得到ac=bc;D选项错误,当c=0时,a可能不等于b.故选D.点睛:由ac=bc不能得到a=b.5. 若关于x的方程2x﹣m=x﹣2的解为x=3,则m的值为()A. ﹣5B. 5C. ﹣7D. 7【答案】B【解析】把x=3代入方程2x-m=x-2得到:,解得:m=5.故选B.6. ﹣1+2﹣3+4﹣5+6+…﹣2011+2012的值等于()A. 1B. ﹣1C. 2012D. 1006【答案】D【解析】解:原式=(﹣1+2)+(﹣3+4)+(﹣5+6)+…+(﹣2011+2012)=+1+1+1+…+1=1006.故选D.点睛:本题考查了有理数的混合运算,正确根据式子的特点进行正确分组是关键.7. 如图,C,D是数轴上的两点,它们分别表示﹣2.4,1.6,O为原点,则线段CD的中点表示的有理数是()A. ﹣0.4B. ﹣0.8C. 2D. 1【答案】A【解析】解:∵C,D是数轴上的两点,它们分别表示﹣2.4,1.6,∴线段CD的中点表示的有理数是(﹣2.4+1.6)=﹣0.4.故选A.8. 如果一个角的补角比它的余角度数的3倍少10°,则这个角的度数是()A. 60°B. 50°C. 45°D. 40°【答案】D【解析】解:设这个角为x,由题意得:180°﹣x=3(90°﹣x)﹣10°,解得:x=40°.故选D.点睛:本题考查的是余角和补角的概念,若两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补.9. 互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为220元,按标价的五折销售,仍可获利10%,则这件商品的进价为()A. 120元B. 100元C. 80元D. 60元【答案】B【解析】解:设该商品的进价为x元/件,依题意得:(x+20)÷=200,解得:x=80.∴该商品的进价为80元/件.故选C.10. 解方程=1﹣,去分母后,结果正确的是()A. 2(x﹣1)=1﹣(3x+1)B. 2(x﹣1)=6﹣3x+1C. 2x﹣1=6﹣3x+1D. 2(x﹣1)=6﹣(3x+1)【答案】D【解析】=1-,去分母,得:2(x-1)=6-(3x+1),故选B.11. 若关于x的方程2x﹣4=3m与方程=﹣5有相同的解,则m的值是()A. 10B. ﹣8C. ﹣10D. 8【答案】B【解析】解:解方程x=﹣5得:x=﹣10,把x=﹣10代入方程2x﹣4=3m,得:﹣20﹣4=3m,解得:m=﹣8.故选B.12. 如图,下列表示角的方法,错误的是()A. ∠1与∠AOB表示同一个角B. ∠AOC也可以用∠O来表示C. ∠β表示的是∠BOCD. 图中共有三个角:∠AOB,∠AOC,∠BOC【答案】B【解析】解:由于顶点O处,共有3个角,所以∠AOC不可以用∠O来表示,故B错误.故选B.13. 下列说法中,正确的有()①经过两点有且只有一条直线;②两点之间,直线最短;③同角(或等角)的余角相等;④若AB=BC,则点B是线段AC的中点.A. 1个B. 2个C. 3个D. 4个【答案】B【解析】解:经过两点有且只有一条直线.故选项①正确;两点之间,线段最短.故选项②错误;同角(或等角)的余角相等.故选项③正确;若AB=BC,点A、B、C不一定在同一直线上,所以点B不一定是线段AC的中点.故选项④错误.故选B.14. 身份证号码告诉我们很多信息,某人的身份证号码是××××××199704010012,其中前六位数字是此人所属的省(市、自治区)、市、县(市、区)的编码,1997、04、01是此人出生的年、月、日,001是顺序码,2为校验码.那么身份证号码是××××××200306224522的人的生日是()A. 5月22日B. 6月22日C. 8月22日D. 2月24日【答案】B【解析】解:由题意:身份证号码是××××××200306224522,则2003、06、22是此人出生的年、月、日,452是顺序码,2为校验码.故选B.二、填空题(每小题4分,共20分)15. 计算:﹣9÷=_____.【答案】﹣4【解析】解:原式=﹣9××=﹣4.故答案为:﹣4.16. 若式子3a﹣7与5﹣a的值互为相反数,则a的值为_____.【答案】1【解析】解:根据题意得:3a﹣7+5﹣a=0,移项合并得:2a=2,解得:a=1.故答案为:1.17. 某种商品每件的进价为80元,标价为120元,后来由于该商品积压,将此商品打七折销售,则该商品每件销售利润为_____元.【答案】4【解析】试题分析:设该商品每件销售利润为x元,根据进价+利润=售价列出方程,求解即可.设该商品每件销售利润为x元,根据题意,得80+x=120×0.7,解得x=4.答:该商品每件销售利润为4元.故答案为4.考点:一元一次方程的应用.18. 如图是用棋子摆成的“T”字图案:从图案中可以看出,第一个“T”字图案需要5枚棋子,第二个“T”字图案需要8枚棋子,第三个“T”字图案需要11枚棋子.则摆成第n个图案需要_____枚棋子.【答案】(3n+2)【解析】解:∵第一个“T”字图案需要5枚棋子,即3×1+2,第二个“T”字图案需要8枚棋子,即3×2+2,第三个“T”字图案需要11枚棋子,即3×3+2,则第n个“T”字图案需要(3n+2)枚棋子.故答案为:(3n+2).点睛:本题主要考查了学生通过特例分析从而归纳总结出一般结论的能力.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后直接利用规律求解.19. 已知线段AB=8cm,在直线AB上有一点C,且BC=4cm,M是线段AC的中点,则线段AM的长为_____.【答案】6cm或2cm【解析】试题分析:分两种情况讨论:如图(1),当点C在线段AB上时,AC=AB-BC=8-4=4(cm),∵M是AC的中点,∴AM=AC=×4=2(cm).如图(2),当点C在线段AB的延长线上时,AC=AB+BC=8+4=12(cm),∵M是AC的中点,∴AM=AC=×12=6(cm),所以线段AM的长是2 cm或6 cm.考点:1.线段的中点;2.线段的长度计算.三、解答题(本大题共8小题,共计68分)20. 计算:(1)4+(﹣2)2×2﹣(﹣36)÷4(2)﹣72+2×(﹣3)2+(﹣6)÷(﹣)2【答案】(1)21;(2)﹣85.【解析】试题分析:(1)根据有理数混合运算顺序和运算法则计算可得;(2)根据有理数混合运算顺序和运算法则计算可得.试题解析:解:(1)原式=4+4×2+9=4+8+9=21;(2)原式=﹣49+2×9+(﹣6)×9=﹣49+18﹣54=﹣85.点睛:本题主要考查有理数的混合运算,熟练掌握有理数的混合运算的顺序和法则是解题的关键.21. 先化简,再求值:(3x2﹣xy+y)﹣2(5xy﹣4x2+y),其中x=﹣2,y=.【答案】11x2﹣11xy﹣y,51【解析】试题分析:原式去括号合并得到最简结果,将x与y的值代入计算即可求出值.试题解析:原式=3x2﹣xy+y﹣10xy+8x2﹣2y=3x2+8x2﹣xy﹣10xy+y﹣2y=11x2﹣11xy﹣y当x=﹣2,y=时,原式=44+﹣=5122. 设一个两位数的个位数字为a,十位数字为b(a,b均为正整数,且a>b),若把这个两位数的个位数字和十位数字交换位置得到一个新的两位数,则新的两位数与原两位数的差一定是9的倍数,试说明理由.【答案】见解析【解析】试题分析:由题意可得出原两位数字为10b+a,新两位数字为:10a+b,然后结合整式加减法的运算法则进行求解即可.试题解析:解:原两位数字为10b+a,则新的两位数字为10a+b,则:(10a+b)﹣(10b+a)=10a+b﹣10b﹣a=9a﹣9b=9(a﹣b)∵a和b都为正整数,且a>b,∴a﹣b也为正整数,∴新的两位数与原两位数字的差一定是9的倍数.点睛:本题考查了整式的加减,解答本题的关键在于根据题意得出原两位数字为10b+a,新两位数字为:10a+b,然后结合整式加减法的运算法则进行计算求解.23. 《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?请解答上述问题.【答案】共有7人,这个物品的价格是53元...................试题解析:解:设共有人,根据题意,得,解得,所以物品价格为(元).答:共有7人,物品的价格为53元.考点:一元一次方程的应用.24. 如图,点C在线段AB上,AC=6cm,MB=10cm,点M,N分别为AC,BC的中点.(1)求线段BC,MN的长;(2)若C在线段AB的延长线上,且满足AC﹣BC=acm,M,N分别是线段AC,BC的中点,请画出图形,并用a的式子表示MN的长度.【答案】(1)6.5cm;(2)acm.【解析】试题分析:(1)根据“点M、N分别是AC、BC的中点”,先求出MC、CN的长度,再利用BC=MB ﹣MC,MN=CM+CN即可求出线段BC,MN的长度即可.(2)先画图,再根据线段中点的定义得MC=AC,NC=BC,然后利用MN=MC﹣NC得到MN=acm.试题解析:解:(1)∵M是AC的中点,∴MC=AC=3cm,∴BC=MB﹣MC=7cm,又N为BC的中点,∴CN=BC=3.5cm,∴MN=MC+NC=6.5cm;(2)如图:∵M是AC的中点,∴CM=AC.∵N是BC的中点,∴CN=BC,∴MN=CM﹣CN=AC﹣BC=(AC﹣BC)=acm.点睛:本题主要考查了两点间的距离,线段的中点定义,线段的中点把线段分成两条相等的线段.25. 某风景名胜区的原门票价格是:成人票每张100元,学生票每张80元.为吸引游客,风景名胜区管委会决定实行打折优惠,其中成人票打8折,学生票打6折.(1)设某旅游团有成人x人,学生y人,请用含x、y的代数式表示出该旅游团打折后所付的门票费;(2)若某旅游团的成人比学生多12人,所付门票费比不打折少1228元,求该旅游团成人和学生各有多少人?【答案】(1)旅游团打折后所付的门票费为:(80x+48y)元;(2)该旅游团学生有19人,则成人有31人.【解析】试题分析:(1)根据打折后的单价×数量=总价表示出门票费;(2)设该旅游团学生有a人,则成人有(a+12)人,根据所付门票费比不打折少1228元建立方程求出其解即可.解:(1)由题意,得旅游团打折后所付的门票费为:(80x+48y)元;(2)设该旅游团学生有a人,则成人有(a+12)人,由题意,得80a+100(a+12)﹣48a﹣80(a+12)=1228,解得:a=19,∴成人有12+19=31人.答:该旅游团学生有19人,则成人有31人.考点:一元一次方程的应用;列代数式.26. 如图,已知轮船A在灯塔P的北偏东30°的方向上,轮船B在灯塔P的南偏东70°的方向上.(1)求从灯塔P看两轮船的视角(即∠APB)的度数?(2)轮船C在∠APB的角平分线上,则轮船C在灯塔P的什么方位?【答案】(1)80°;(2)轮船C在灯塔P的北偏东70°的方向上.【解析】试题分析:(1)根据∠APB=180°﹣∠APN﹣∠BPS即可求出;(2)根据PC平分∠APB求出∠APC,然后根据∠NPC=∠APN+∠APC即可解答.试题解析:解:(1)由题意可知:∠APN=30°,∠BPS=70°,∴∠APB=180°﹣∠APN﹣∠BPS=80°;∴轮船C在灯塔P的北偏东70°的方向上.点睛:本题主要考查方向角的知识点,解答本题的关键是搞懂方向角的概念和利用好角平分线的知识点.27. 如图(1),将两块直角三角尺的直角顶点C叠放在一起,(1)若∠DCE=35°,∠ACB=_____;若∠ACB=140°,则∠DCE=_____;(2)猜想∠ACB与∠DCE的大小有何特殊关系,并说明理由;(3)如图(2),若是两个同样的直角三角尺60°锐角的顶点A重合在一起,则∠DAB与∠CAE的大小又有何关系,请说明理由.【答案】(1). 145°(2). 40°【解析】试题分析:(1)本题已知两块直角三角尺实际就是已知三角板的各个角的度数,根据角的和差就可以求出∠ACB,∠DCE的度数;(2)根据前个小问题的结论猜想∠ACB与∠DCE的大小关系,结合前问的解决思路得出证明.(3)根据(1)(2)解决思路确定∠DAB与∠CAE的大小并证明.试题解析:(1)∵∠ECB=90°,∠DCE=25°,∴∠DCB=90°-25°=65°,∵∠ACD=90°,∴∠ACB=∠ACD+∠DCB=155°.∵∠ACB=150°,∠ACD=90°,∴∠DCB=150°-90°=60°,∵∠ECB=90°,∴∠DCE=90°-60°=30°.故答案为155°,30°;(2)猜想得:∠ACB+∠DCE=180°(或∠ACB与∠DCE互补).理由:∵∠ECB=90°,∠ACD=90°,∴∠ACB=∠ACD+∠DCB=90°+∠DCB,∠DCE=∠ECB-∠DCB=90°-∠DCB,∴∠ACB+∠DCE=180°;(3)∠DAB+∠CAE=120°.理由如下:∵∠DAB=∠DAE+∠CAE+∠CAB,故∠DAB+∠CAE=∠DAE+∠CAE+∠CAB+∠CAE=∠DAC+∠BAE=120°.考点:①余角和补角;②角的计算.。