第三章 核磁共振氢谱

合集下载

03第三章 核磁共振氢谱

03第三章 核磁共振氢谱
例如:B0 =4.7TG时,下列核的共振频率为:
1H 13C
Υ=26.752(107 rad./s.T), 200MHz Υ=6.728 (107 rad./s.T)
(T=104高斯) 50.3MHz
产生NMR条件 (1) I 0的自旋核
(2) 外磁场B0 (3) 与B0相互垂直的射频场B1, 且 1 = 0
所以,h B0 h 0 2
即, 0
B0 2
B0 的单位为特斯拉(T,Kgs-2A-1),1T=104 Gauss
1.3 核的回旋和核磁共振
Lamor进动:当具有磁矩的原子核处于外磁场B0中,受B0和
核自旋的共同作用,核会在自旋的同时绕外磁场方向进行回 旋。
B0 回旋轴 B0
收复杂,研究应用较少;
(3)I=1/2的原子核 1H,13C,19F,31P
原子核可看作核电荷均匀分布的球体,并象陀螺一样自旋,有
磁矩产生,NMR谱线窄,适合检测,是核磁共振研究的主要对 象,C,H是有机物的主要组成元素。



I =
1/2
I >
1/2
I >
1/2
1.2 自旋核在磁场中的取向和能级
扫场:固定射频频率,扫描发生器线圈连续
改变磁场强度,从低磁场扫向高磁场;
扫频:固定磁场强度,通过改变射频频率的
方式扫描。
③射频信号接受器(检测器):当质子的进动频
率与辐射频率相匹配时,发生能级跃迁,吸收
能量,在感应线圈中产生毫伏级信号。
④样品管:外径5mm的玻璃管,测量过程中旋转,
磁场作用均匀。
2002年诺贝尔化学奖的另一半分别授予给美国 耶鲁大学及弗吉尼亚联邦大学的教授John B.

核磁共振氢谱PPT课件

核磁共振氢谱PPT课件


m=I, I-1, I-2, ……-I
• 每种取向各对应一定能量状态
• I=1/2的氢核只有两种取向
• I=1的核在B0中有三种取向
.
10
z
z
z
m =+1
m =
B0
m = +1/2
m =
m =
m =
m = 1/2
m = 1
m = 1 m = 2
I = 1/2
I=1
I=2
I=1/2的氢核 与外磁场平行,能量较低,m=+1/2, E 1/2= -B0
与外磁场方向相反, 能量较高, m= -1/2, .
E -1/2=1B1 0
• 核磁矩与外磁场相互作用而产生的核磁场作用能 E, 即各能级的能量为 E=-ZB0
E 1/2= -B0 E-1/2= B0
.
12
I=1/2的核自旋能级裂分与B0的关系
• 由式 E = -ZB0及图可知1H核在磁场 中,由低能 级E1向高能级E2跃迁,所需能量为 △E=E2-E1= B0 -(-B0) = 2 B0
代入上式得: h I(I1) 2
当I=0时,P=0,原子核没有自旋现象,只有I﹥0,原 子核才有自旋角动量和自旋现象
.
9
二、核自旋能级和核磁共振
(一)核自旋能级
• 把自旋核放在场强为B0的磁场中,由于磁矩 与磁 场相互作用,核磁矩相对外加磁场有不同的取向,共 有2I+1个,各取向可用磁量子数m表示
.
6
• 自旋角动量
– 一些原子核有自旋现象,因而具有自旋角动 量。由于核是带电粒子,故在自旋同时将产 生磁矩。核磁矩与角动量都是矢量,磁矩的 方向可用右手定则确定。

第三章 核磁共振氢谱3-耦合与裂分

第三章 核磁共振氢谱3-耦合与裂分

多数为负值。
例如
O Ha COOH Hb O Hb O 21.5 Ha

Ha X Ha *C C Hb z
Ha Hb 10~ 16Hz
Hb 3.19.1
影响2J 的因素 键角( )的影响:

角增大,2J 值趋向正的方向变化。
Ha 109 o Hb 1016 ~12Hz
O
Ha
O
Hf
Hc
Hb
O
Hc
• 化学等价质子与化学不等价质子的判断
Cl C Cl A Ha Br E Hb Br C Hb Cl B O Br C Cl F a CH 3 b H3C C OCH 3 CH 3 J Ha Hb Hc K Hb Ha Ha Cl C Hb Ha H3C a C Ha Hb CH 3 CH 3 G NO 2 Ha Hb Cl C Hc I C Hb Ha Cl Ha H3C CH C CH 3 Hb L Cl Hb H H3C H3C O CH 3 b Cl Hb D Ha Ha Cl CH 3
峰高比=1:2:3 单 4 3
H C H C
COOCH2CH3 COOCH2CH3
三、核的等价性
包括化学等价和磁等价
化学等价:化学环境完全相同,化学位移相等,
仅出现一组NMR 信号。
化学等价与否,是决定NMR谱图复杂程度的重要因素。 例1:CH3-O-CH3 例2:CH3-CH2-Br 例3:(CH3)2CHCH(CH3)2 例4:CH3-CH2COO-CH3 一组NMR 信号 二组NMR信号 二组NMR 信号 三组NMR 信号
化学不等价,磁不等价:
a X bˊ aˊ
a(a’),b(b’), c
Ha Hb

第3章核磁共振氢谱

第3章核磁共振氢谱

自旋角动量: P h I(I1)
2
核磁矩: •P
I:自旋量子数; h:普朗克常数; γ:磁旋比;
4
第一节 基本原理
➢ 自旋量子数(I)不为零的核都具有磁矩,
➢ 原子的自旋情况可以用(I)表征
自旋量子数与原子核的质量数及质子数关系
质量数(a)原子序数(Z)自旋量子(I) 例子
偶数
偶数
0
12C, 16O, 32S
H2,2个氢,1个直立氢Ha,1个平展氢He。 H3,1个直立氢Ha。-OH在平展位。 H4,Ha还是He?
41
第二节 核磁共振氢谱的主要参数
例题 据化合物C10H10O的氢谱,推测其结构 Ω=6,可能有苯环
3 1
6
J=18Hz
HO CC
H
C CH3
42
第二节 核磁共振氢谱的主要参数
3. 远程偶合(long range coupling) (4J或J远)
➢ 自旋系统:分子中相 互偶合的核构成一个 自旋系统。
OCH 3
➢ 系统内部的核互相偶 合,但不和系统外的 任何核相互作用。
➢ 系统与系统之间是隔
离的.
O
O
CH3
51
第二节 核磁共振氢谱的主要参数
自旋系统表示方法
互相偶合核的Δ较大时(Δυ≥J),用A,M,X表示, 字母右下标数字表示磁全同质子的数目。
44
第二节 核磁共振氢谱的主要参数
• 磁等价
• 分子中一组化学等价核(化学位移相同)对组外其它 任何一个核的偶合相等,则这组核称为磁等价核。
H CH H
化学等价 磁等价
H HCF
F
H H2 H HCC CH
HH

核磁共振氢谱

核磁共振氢谱

核磁共振光谱仪的简单构造示意图
实现核磁共振的方法,只有以下两种: (1)B0不变,改变v 方法是将样品置于强度固定的外加磁场中,并逐步改 变照射用电磁辐射的频率,直至引起共振为止,这种方 法叫扫频(frequency sweep)。 (2)v不变,改变B0 方法是将样品用固定电磁辐射进行照射,并缓缓改变 外加磁场的强度,达到引起共振为止。这种方法叫扫场 (field sweep)。 通常,在实验条件下实现NMR多用2法。
h 2
m:磁量子数(magnetic quantum number), m = I, I-1, I-2,…-I
对于I = 1/2的核,如1H, 13C,m = 1/2, -1/2
自旋运动的原子核与外加磁场的作用能量:
E =- B0
h E Z B0 m B0 大小: 2 1 h 1 h E1 B0 E B 1 0 I = 1/2时, 2 2 2 2 2 2
能级差:
E E

1 2
E1
2
h B0 2
h B0 2
任意两个能级的能量差:
E m
量子力学选律: m = 1的跃迁是许可跃迁 任意相邻两个能级的能量差:
h E B0 2
核磁共振现象:Larmor(拉莫)进动
当原子核的核磁矩处于外加磁场B0 中,由于核自身 的旋转,而外加磁场又力求它取向于磁场方向,在这两 种力的作用下,核会在自旋的同时绕外磁场的方向进行 回旋,这种运动称为Larmor (拉莫)进动。 近似于陀 螺在重力场中的进动 两种取向不完全与外磁场平行,相互作用, 产生进动 (拉莫进动)进动频率 ; 角速度; = 2 = B0 磁旋比; B0外磁场强度; 两种进动取向不同的氢核之间的能级差:E= B0 (磁矩)

核磁共振氢谱

核磁共振氢谱
17
组成:磁铁、射频发生器、检测器、放大器、记录仪(放大器)、样品管
脉冲频率发射器
核磁管
脉冲频率放大器
检测器
扫描发生器
核磁共振光谱仪的简单构造示意图 原理:扫频--固定 H0,改变υ射,使υ射与H0匹配;
扫场--固定υ射,改变H0,使H0与υ射匹配;
记录仪
18
19
20
21
三、化学位移
1.化学位移的产生
的效应称为溶剂效应。
30
4.1 诱导效应
影响电子云密度的一个重要因素是与质子相连接的原子或 基团的电负性的强弱.
电负性强的取代基, 它们通过诱导效应使与其相邻接的核 外电子密度降低, 从而减少电子云对核的屏蔽 作用叫做电子的屏蔽效应). 使核的共振频率向低场移动.
24
例如: 图1给出了乙基苯在100MHz时的高分辨率核 磁共振图谱. 在乙基苯的分子中, -CH3 上的三个质子, -CH2- 上的两个质子, C6H5-上的五个质子.它们在 不同的磁场强度下产生共振吸收峰, 也就是说,它们 有着不同的化学位移.
3H C6H5-
2H
-CH3
5H
-CH2-
TMS
7.0 6.0 5.0 4.0 3.0 2.0 1.0 0
11
2.核磁共振
如果以射频照射处于外磁场H0 中的核,且照射频 率υ恰好满足下列关系时
hυ= △E 或 υ= ( /2)B0 处于低能级的核将吸收射频能量而跃迁至高能 级, 这种现象称为核磁共振现象。 由上式可知, 一个核的跃迁频率与磁场强度B0 成正比, 使1H 核发生共振,由自旋m = ½取向变成m = -1/2 的取向。应供给△E 的电磁波(射频)。照射频率 与外加磁场强度成正比。

核磁共振氢谱

核磁共振氢谱
核——原子核自旋 磁——外加磁场B0 共振——外界= 0进动 I≠0 诱导产生自旋能级分裂 能级跃迁
ν =
γ H0

γ — 磁旋比(物质的特征常数)
射频频率与磁场H0有正比关系, 即磁场强度愈高,发生核磁共 振所需的射频频率也愈高。
E = hν = γ
h 2π
H0
例:60MHz的NMR谱仪,其磁铁的磁场 强度多大?
1
H 核:
自旋取向数 = 2×1/2 + 1 = 2
如果把H核放在外磁场中,由于磁场间的相互作用, 即:H核在外场有两个自旋方向相反的取向。 氢核的磁场方向会发生变化:
H' H'
一 致
H0
相 反
每一种取向都对映一个能级状态,有一个ms 。如: 1H核:标记ms为-1/2 和 +1/2
高能态
ν= 数)
Proton NMR, Sample #1
Analysis:
C3H6O2 Help with Analysis
Proton NMR, Sample #2
Analysis:
C5H10O Help with Analysis
Advanced Nuclear Magnetic Resonance Spectroscopy
1,氢的类型:通过化学位移来判断。例如,在氢谱中,可以制定甲基氢、芳 氢、烯氢、醛氢等等。
2,氢的化学环境:通过偶尔常数和自旋-自旋裂分来判断。例如,在氢谱中 可以判别甲基是与CH2相连,还是和CH相连。 3,氢的相对数量:可以通过峰面积或积分曲线显示各组质子间的相对数量。
4,氢的相对距离:通过核的Overhause效应可以测得质子在空间的相对距离。
1945年12月,珀塞尔和他的小组在石蜡样品中观察到质子的 核磁共振吸收信号,1946年1月,布洛赫和他的小组在水样品 中也观察到质子的核感应信号。他们两人用的方法稍有不同, 几乎同时在凝聚态物质中发现了核磁共振。他们发展了斯特恩 开创的分子束方法和拉比的分子束磁共振方法,精确地测定了 核磁矩。以后许多物理学家进入了这个领域,形成了一门新兴 实验技术,几年内便取得了丰硕的成果

核磁共振氢谱

核磁共振氢谱
= 10 -
3.3.3 核磁共振氢谱图示
NMR谱仪都配备有自动积分仪,对每组 峰的峰面积进行自动积分,在谱中以积 分高度显示。各组峰的积分高度之简比, 代表了相应的氢核数目之比。(P82:图3.7)
记录NMR谱的图纸已打印好刻度。
乙苯的1H NMR图谱
3.4 影响化学位移的因素
温度:温度可能引起化合物分子结构的变化。 溶剂:一般化合物在CCl4或CDCl3中测得的
NMR谱重复性较好,在其它溶剂中测试,值 会稍有所改变,有时改变较大。这是溶剂与溶 质间相互作用的结果。这种作用称溶剂效应。
3.4.6 各类质子的化学位移及经验计算
1.烷烃 利用表3.1的数据及Shoolery公式可计
原子或原子团的亲电能力有关,与化学 键的类型有关。如CH3-Si,氢核外围电 子云密度大,·B0大,共振吸收出现在 高场;CH3-O,氢核外围电子云密度小, ·B0亦小;共振吸收出现在低场。
3.3.2 化学位移
为了克服测试上的困难和避免因仪器不 同所造成的误差,在实际工作中,使用 一个与仪器无关的相对值表示。即以某 一标准物质的共振吸收峰为标准(B标或 标),测出样品中各共振吸收峰(B样或 样)与标样的差值B或(可精确到 1Hz),采用无因次的值表示,值与核 所处的化学环境有关,故称化学位移。
= 0.23 + Ci (3.19)
例如:BrCH2C1(括号内为实测值) = 0.23 + 2.33 + 2.53 = 5.09 ppm(5.16
ppm)
诱导效应是通过成键电子传递的,随着 与电负性取代基距离的增大,诱导效应 的影响逐渐减弱,通常相隔3个以上碳的 影响可以忽略不计。例如:
算X—CH<YZ中质子的值(见3.4.1)。 烷基化合物(RY)的化学位移见表3.2。 利用表3.2,可直接查出相对于取代基
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

E KT
△E为能级的能量差, K为Boltzmann 常数,T为绝对 温度。对于1H核,当T=300K时,N+/N-≈1.000009。 对于其他的核,γ值较小,比值会更小。因此,在NMR 中,若无有效的弛豫过程,饱和现象很容易发生。
有两种弛豫过程,自旋-晶格弛豫和自旋-自旋弛豫。
15
二、核磁共振仪
18
由于电子的屏蔽效应, 使某一个质子实际上受到的磁场强度不 完全与外磁场强度一致,分子中处于不同化学环境中的质子, 核外电子云的分布情况不同。因此, 不同化学环境中的质子, 受到不同程度的屏蔽作用。在此情况下质子实际受到的磁场强 度Beff等于 外加磁场强度B0 减去其外围电子产生的对抗磁场B’ , 可用下式表示:
但在核磁共振波谱中,△E很小,自发辐射的几率几乎 为0。要想维持NMR信号,必须有某个过程,这个过 程就是弛豫过程,即:高能态的核与非辐射的方式放 出能量回到低能态,重建Boltzmann分布的过程。
14
根据Boltzmann分布,低能态的核与高能态的核的关系 可以用因子来表示:
N+ N_
=e
E/KT ~ 1+
量数和原子序数均为偶数的核,自旋量子数ms =0, 即没有自旋 现象; 当自旋量子数ms =1/2时, 有自旋现象, 核电荷呈球型
分布, 它们的核磁共振现象较为简单。有 1H1,13C6,15N7, 19F9, 31P15 等。 原子核有自旋现象, 则有磁矩, 在磁场中能够受磁场作用, 能发 生核磁共振现象; 原子核无自旋现象, 则无磁矩, 不能发生核 磁共振现象.
第三章 核磁共振氢谱 (H NMR)
核磁共振波谱法是吸收光谱的一种,用适宜的频率的 电磁波照射置于强磁场下的原子核(使其能级发生分裂)。 当核吸收的能量与核能级差相等时,就会发生核能级的跃迁, 同时产生核磁共振信号,从而得到一种吸收光谱的核磁共振 波谱,以这种原理建立的方法称核磁共振波谱法。
核磁共振波谱法是结构分析的重要工具之一,经常使 用的是1H和13C 的共振波谱,大学本科主要需掌握1H谱。 核磁共振波谱中最常用的氢谱将提供: 1. 分子中不同种类氢原子有关化学环境的信息 2. 不同环境下氢原子的数目 3. 每个氢原子相邻的基团的结构
H+
H+
H+
自旋
H+
β
能量较高 ΔE
H+
H+
H+
α 自旋
H+ 能量较低
没有磁场
有磁场B0
质子在没有磁场和有磁场情况下的磁矩方向
B0
9
若将自旋核放入磁场为H0 磁场中, 由于磁矩与磁场 相互作用, 核磁矩相对外加磁场有不同的取向, 按 照量子力学原理有m=2 I +1个取向。 对于氢核I =1/2, 即有m=2个取向, m=+1/2, m= -1/2两种取向, 即当自旋取向与外加磁场一致时, m=+1/2, 氢核处于一种低能级状态. (E1=-μz B0 ), 相反时m= -1/2时, 则处于一种高能级状态(E2=+μz B0 )
原子核的自旋
原子核的自旋量子数:ms 与原子的质量数和原子序数之间的关系:
A、Z均为偶数,ms=0
A Z
X
A为偶数,Z为奇数, ms=1,2,3…整数 A为奇数,Z为奇或偶数, ms=1/2,3/2,
5/2…半整数
当ms≠0时,原子核的自旋运动有NMR讯号。
6
由自旋量子数与原子的质量数及原子序数的关系可知:Байду номын сангаас原子质
10
高能级与低能级的能量差△E应由下式定:
△E= E (-1/2)- E (+1/2) =(h/2)B0
式中: B0 外加磁场强度
磁矩与外加磁场相反 高能自旋取向
E2 = (+1/2)(h/2)B0 m = +1/2
磁距与外加磁场一致 低能自旋取向 E1 = (-1/2)(h/2)B0 m = -1/2
解:
δ =(υ样 - υ标) /υ标× 106
= 60Hz / (60 × 106 Hz )× 106
=1 PPm.
早期文献中用τ 表示化学位移,δ与τ的关系为:
δ= 10 –τ
TMS的位移用δ表示为0 PPm.用τ表示为10 PPm.
国际纯粹与应用化学协会(IUPAC)规定化学位移用δ表示
25
3. 影响化学位移的因素
脉冲频率发射器
核磁管
脉冲频率放大器
检测器
扫描发生器
核磁共振光谱仪的简单构造示意图 原理:扫频--固定 H0,改变υ射,使υ射与H0匹配;
扫场--固定υ射,改变H0,使H0与υ射匹配;
记录仪
17
三、化学位移
1.化学位移的产生
由υ= ( /2)B0可知, 1H 核的共振频率由外加磁场强度和核
的磁矩决定。若照射频率一定, 例如60兆赫, 则使其产生核磁 共振的磁场强度也就一定, 例14092高斯, 即所有的1H 核都在 磁场强度为14092高斯处发生共振。产生共振峰, 其实不然, 因为任何原子核都被电子所包围, 在外磁场作用下, 核外电子 会产生环电流, 并感应产生一个与外磁场方向相反的对抗磁场, 这种对抗磁场的作用被称为电子屏蔽效应。
20
例如: 图1给出了乙基苯在100MHz时的高分辨率核磁共
振图谱. 在乙基苯的分子中, -CH3 上的三个质子, -CH2上的两个质子, C6H5-上的五个质子.它们在不同的磁 场强度下产生共振吸收峰, 也就是说,它们有着不同的化
学位移.
C6H5-
3H 2H
-CH3
5H
-CH2-
TMS
7.0 6.0 5.0 4.0 3.0 2.0 1.0 0
12
1H 的核磁共振( 1H NMR)
a. 无外加磁场,H0=0时,两自旋态的能量相同ms=±1/2。 b. 有外加磁场,H0≠0,两自旋态的能量不同:
1H 自旋产生的磁矩与H0同向平行,为低能态; 1H 自旋产生的磁矩与H0反向平行,为高能态。 两能级之差:ΔE=γhH0/2π c. 核磁共振的条件:E射=△E,
δ的单位为 ppm,以此得到的化学位移与仪器条件无关。
23
例如, 用60兆周和100兆周(100MHz)仪器测得的同一样品化学 位移值相同,一般以标准峰(TMS)为原点(δ等于0).在标准之左δ 为正值, 在标准之右δ为负值.
TMS


低场
高场0
24
例:当使用照射频率为60MHz的NMR仪测定时,发现待测氢核共 振峰与TMS峰之间频率差为60Hz,试问待测氢核的化学位移是多 少PPm?
即:hυ射= γhH0/2π
13
3. 弛豫过程
当射频电池波的能量hv等于样品分子的某种能级差△E 时,分子吸收能量,由低能态跃迁至高能态。
高能态的粒子可以通过自发辐射放出能量,回到低能 态,其几率与两能级的能量差△E成正比。一般的吸收 光谱△E较大,自发辐射相当有效,能维持Boltzmann 分布。
1
δ / ppm
溴乙烷的1H NMR (400 MHz)
2
异丙苯的1H NMR (400 MHz)
3
4
丁酸的1H NMR(400 MHz)
5
一、核磁共振基本原理
原子核除具有电荷和质量外, 许多原子核还具有自旋现象。
通常用自旋量子数 I或ms表示, 原子的质量数 A 表示,及原 子序数 Z 表示。 (见书66页)。

29
例1解 解:化合物A的氢核发生NMR时,共振峰将出现在较低磁
场区,因为此氢核邻接OH,O是电负性较强的基团,使A中的 H 电 子云密度降低,化学位移向底常移动,δ值增大。
NMR波谱仪按照磁体分类,可分为:永久磁体,电磁 体和超导磁体。 按照射频频率(1H的共振频率)分类,可分为:60,80, 90,100,200,300,400,500,600 MHz等。 按照射频源分类,又可以分为:连续波波谱仪(CWNMR)和傅里叶变换波谱仪(PFT-NMR)。
16
组成:磁铁、射频发生器、检测器、放大器、记录仪(放大器)、样品管
图1:乙基苯(10% CCl4 溶液)于100兆赫的NMR
21
2. 化学位移的表示
由于化学位移的差别范围很小(10×10-6), 所以精确测出绝对数 值比较困难。 现均以相对数表示:即以被测质子共振时的磁 场强度B0样与某一标准物质的质子共振时的磁场强度B0标之差和 标准物质共振时磁场强度B0标的比值δ来表示:
的效应称为溶剂效应。
26
3.1 诱导效应
影响电子云密度的一个重要因素是与质子相连接的原子或基团 的电负性的强弱. 电负性强的取代基, 它们通过诱导效应使与其相邻接的核外电 子密度降低, 从而减少电子云对核的屏蔽. (核外电子在外加 磁场作用下产生与外加磁场相对抗的作用, 这种作用叫做电子 的屏蔽效应). 使核的共振频率向低场移动. 即质子的化学位移随邻接取代基的电负性增大而增大,核的共 振频率向高场移动,化学位移δ值增大。
7
1. 核的自旋运动
一些原子核有自旋现象, 因而具有自旋角动量P, I和P的关系 为:
h
P= 2 I(I+1)·
式中: h为普朗克常数 自旋不为0的原子核,都有磁矩,用μ表示, 磁矩随角动量增加成正比增加.
μ= r·P
式中r 为磁旋比, 不同的核具有不同的磁旋比。
8
NMR技术是观察原子序数或其质量数为奇数的原子核自旋的手 段。质子是最简单的原子核,它的原子序数是奇数且最小为1, 可以自旋。自旋的质子相当于带正电荷的小球在旋转运动中产 生磁场。
化学位移是由核外电子云密度决定的, 因此, 影响电子云密度 的各种因素都将影响化学位移. 影响因素有内部的如:诱导效应, 共轭效应,磁的各向异性效应等; 外部的如: 溶剂效应, 氢键的 形成等.
相关文档
最新文档