排序算法稳定性
排序算法

排序算法所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。
排序算法,就是如何使得记录按照要求排列的方法。
排序算法在很多领域得到相当地重视,尤其是在大量数据的处理方面。
一个优秀的算法可以节省大量的资源。
在各个领域中考虑到数据的各种限制和规范,要得到一个符合实际的优秀算法,得经过大量的推理和分析。
分类排序(Sorting) 是计算机程序设计中的一种重要操作,它的功能是将一个数据元素(或记录)的任意序列,重新排列成一个关键字有序的序列。
稳定度(稳定性)一个排序算法是稳定的,就是当有两个相等记录的关键字R和S,且在原本的列表中R出现在S之前,在排序过的列表中R也将会是在S之前。
当相等的元素是无法分辨的,比如像是整数,稳定度并不是一个问题。
然而,假设以下的数对将要以他们的第一个数字来排序。
(4,1)(3,1)(3,7)(5,6)在这个状况下,有可能产生两种不同的结果,一个是依照相等的键值维持相对的次序,而另外一个则没有:(3,1)(3,7)(4,1)(5,6) (维持次序)(3,7)(3,1)(4,1)(5,6) (次序被改变)不稳定排序算法可能会在相等的键值中改变纪录的相对次序,但是稳定排序算法从来不会如此。
不稳定排序算法可以被特别地实现为稳定。
作这件事情的一个方式是人工扩充键值的比较,如此在其他方面相同键值的两个对象间之比较,就会被决定使用在原先数据次序中的条目,当作一个同分决赛。
然而,要记住这种次序通常牵涉到额外的空间负担。
在计算机科学所使用的排序算法通常被分类为:(a)计算的复杂度(最差、平均、和最好性能),依据列表(list)的大小(n)。
一般而言,好的性能是O(nlogn),且坏的性能是O(n^2)。
对于一个排序理想的性能是O(n)。
而仅使用一个抽象关键比较运算的排序算法总平均上总是至少需要O(nlogn)。
(b)存储器使用量(空间复杂度)(以及其他电脑资源的使用)(c)稳定度:稳定的排序算法会依照相等的关键(换言之就是值)维持纪录的相对次序。
算法工程师面试真题单选题100道及答案解析

算法工程师面试真题单选题100道及答案解析1. 以下哪种数据结构适合用于实现快速查找最大值和最小值?A. 栈B. 队列C. 堆D. 链表答案:C解析:堆可以快速地获取最大值和最小值。
2. 快速排序在最坏情况下的时间复杂度是?A. O(nlogn)B. O(n^2)C. O(n)D. O(logn)答案:B解析:快速排序在最坏情况下,每次划分都极不均匀,时间复杂度为O(n^2)。
3. 以下哪种算法常用于在未排序的数组中查找特定元素?A. 冒泡排序B. 二分查找C. 顺序查找D. 插入排序答案:C解析:顺序查找适用于未排序的数组查找特定元素。
4. 一个有向图的邻接表存储结构中,顶点的邻接点是按照什么顺序存储的?A. 随机顺序B. 顶点编号的大小顺序C. 插入的先后顺序D. 无法确定答案:C解析:邻接表中顶点的邻接点是按照插入的先后顺序存储的。
5. 深度优先搜索遍历图的时间复杂度是?A. O(n)B. O(n + e)C. O(n^2)D. O(e)答案:B解析:深度优先搜索遍历图的时间复杂度为O(n + e),其中n 是顶点数,e 是边数。
6. 以下哪种排序算法是稳定的排序算法?A. 快速排序B. 希尔排序C. 冒泡排序D. 选择排序答案:C解析:冒泡排序是稳定的排序算法。
7. 一个具有n 个顶点的无向完全图,其边的数量为?A. n(n - 1) / 2B. n(n - 1)C. n^2D. 2n答案:A解析:无向完全图的边数为n(n - 1) / 2 。
8. 动态规划算法的基本思想是?A. 分治法B. 贪心算法C. 把问题分解成多个子问题并保存子问题的解D. 回溯法答案:C解析:动态规划的基本思想是把问题分解成多个子问题并保存子问题的解,避免重复计算。
9. 以下关于哈希表的说法,错误的是?A. 哈希表的查找时间复杂度为O(1)B. 哈希冲突可以通过开放定址法解决C. 哈希表的空间复杂度是固定的D. 哈希函数的设计会影响哈希表的性能答案:C解析:哈希表的空间复杂度不是固定的,取决于元素数量和负载因子等。
数据结构的稳定性分析保证数据有序性的重要性

数据结构的稳定性分析保证数据有序性的重要性数据结构是计算机科学中的一个重要概念,用于组织和存储数据,以及实现各种操作。
其中,数据的有序性是一个关键特征,它能够保证数据的有效性和可靠性。
本文将探讨数据结构中的稳定性分析,并阐述保证数据有序性的重要性。
1. 稳定性分析的概念及意义稳定性分析是评估数据结构的一个重要方法,它用于检测和评估数据结构在插入、删除或其他操作后是否会改变数据元素的相对顺序。
在很多应用场景中,特定的数据顺序对结果的正确性有着关键影响,因此稳定性分析能够保证数据操作的正确性和一致性。
2. 稳定性分析的方法和工具稳定性分析通常使用数学模型和算法来判断数据结构的变化情况。
可以通过数学证明和推导来分析特定操作对数据结构的影响,也可以使用计算机模拟和实验验证结果的正确性。
此外,还有一些专门的工具和软件用于辅助进行稳定性分析,例如数据结构可视化工具和算法模拟器。
3. 稳定性分析在排序算法中的应用排序算法是数据结构中最常见的应用之一,通过对数据元素进行排序,可以提高数据访问和查找的效率。
在选择和实施排序算法时,稳定性分析是评估算法是否满足排序需求的一个重要指标。
例如,如果需要保留相等元素的原始相对顺序,则需要选择稳定的排序算法,如归并排序。
反之,如果相等元素的相对顺序并不重要,则可以选择非稳定的排序算法,如快速排序。
4. 稳定性分析在查找算法中的应用查找算法是数据结构中另一个重要的应用领域,它用于在数据集合中快速定位和检索特定元素。
在一些特定的应用场景中,对数据的有序性要求非常高,特定元素的相对顺序对查找结果有着决定性的影响。
因此,稳定性分析在查找算法的设计和实现中也起着重要作用。
例如,在二分查找算法中,输入数据必须是有序的,否则无法正确找到目标元素。
5. 数据有序性的重要性数据的有序性直接影响到数据操作的正确性和效率。
在很多实际应用中,需要对数据进行排序、查找或其他操作,如果数据结构不具备稳定性,就会导致操作结果的不准确或不完整。
七大基本排序算法

一.七大排序算法基本属性1.稳定性KMP模糊匹配算法二叉树的建立顺序查找:哨兵设置二.七大排序算法()/jingmoxukong/p/4329079.html1.冒泡排序:冒泡排序是一种交换排序。
什么是交换排序呢?交换排序:两两比较待排序的关键字,并交换不满足次序要求的那对数,直到整个表都满足次序要求为止。
算法思想它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。
走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。
这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端,故名。
假设有一个大小为N 的无序序列。
冒泡排序就是要每趟排序过程中通过两两比较,找到第i 个小(大)的元素,将其往上排。
图-冒泡排序示例图以上图为例,演示一下冒泡排序的实际流程:假设有一个无序序列{ 4. 3. 1. 2, 5 }第一趟排序:通过两两比较,找到第一小的数值1 ,将其放在序列的第一位。
第二趟排序:通过两两比较,找到第二小的数值2 ,将其放在序列的第二位。
第三趟排序:通过两两比较,找到第三小的数值3 ,将其放在序列的第三位。
至此,所有元素已经有序,排序结束。
要将以上流程转化为代码,我们需要像机器一样去思考,不然编译器可看不懂。
假设要对一个大小为N 的无序序列进行升序排序(即从小到大)。
(1) 每趟排序过程中需要通过比较找到第i 个小的元素。
所以,我们需要一个外部循环,从数组首端(下标0) 开始,一直扫描到倒数第二个元素(即下标N - 2) ,剩下最后一个元素,必然为最大。
(2) 假设是第i 趟排序,可知,前i-1 个元素已经有序。
现在要找第i 个元素,只需从数组末端开始,扫描到第i 个元素,将它们两两比较即可。
所以,需要一个内部循环,从数组末端开始(下标N - 1),扫描到(下标i + 1)。
核心代码public void bubbleSort(int[] list) {int temp = 0; // 用来交换的临时数// 要遍历的次数for (int i = 0; i < list.length - 1; i++) {// 从后向前依次的比较相邻两个数的大小,遍历一次后,把数组中第i小的数放在第i个位置上for (int j = list.length - 1; j > i; j--) {// 比较相邻的元素,如果前面的数大于后面的数,则交换if (list[j - 1] > list[j]) {temp = list[j - 1];list[j - 1] = list[j];list[j] = temp;}}}}时间复杂度若文件的初始状态是正序的,一趟扫描即可完成排序。
第7章 排序 习题参考答案

习题七参考答案一、选择题1.内部排序算法的稳定性是指( D )。
A.该排序算法不允许有相同的关键字记录B.该排序算法允许有相同的关键字记录C.平均时间为0(n log n)的排序方法D.以上都不对2.下面给出的四种排序算法中,( B )是不稳定的排序。
A.插入排序B.堆排序C.二路归并排序D.冒泡排序3. 在下列排序算法中,哪一种算法的时间复杂度与初始排序序列无关(D )。
A.直接插入排序B.冒泡排序C.快速排序D.直接选择排序4.关键字序列(8,9,10,4,5,6,20,1,2)只能是下列排序算法中( C )的两趟排序后的结果。
A.选择排序 B.冒泡排序 C.插入排序 D.堆排序5.下列排序方法中,( D )所需的辅助空间最大。
A.选择排序B.希尔排序C.快速排序D.归并排序6.一组记录的关键字为(46,79,56,38,40,84),则利用快速排序的方法,以第一个记录为支点得到的一次划分结果为(C )。
A.(38,40,46,56,79,84) B.(40,38,46,79,56,84)C.(40,38,46,56,79,84) D.(40,38,46,84,56,79)7.在对一组关键字序列{70,55,100,15,33,65,50,40,95},进行直接插入排序时,把65插入,需要比较( A )次。
A. 2B. 4C. 6D. 88.从待排序的序列中选出关键字值最大的记录放到有序序列中,该排序方法称为( B )。
A. 希尔排序B. 直接选择排序C. 冒泡排序D. 快速排序9.当待排序序列基本有序时,以下排序方法中,( B )最不利于其优势的发挥。
A. 直接选择排序B. 快速排序C.冒泡排序D.直接插入排序10.在待排序序列局部有序时,效率最高的排序算法是( B )。
A. 直接选择排序B. 直接插入排序C. 快速排序D.归并排序二、填空题1.执行排序操作时,根据使用的存储器可将排序算法分为内排序和外排序。
排序算法稳定不稳定

首先,排序算法的稳定性大家应该都知道,通俗地讲就是能保证排序前2个相等的数其在序列的前后位置顺序和排序后它们两个的前后位置顺序相同。
在简单形式化一下,如果Ai = Aj, Ai原来在位置前,排序后Ai还是要在Aj位置前。
其次,说一下稳定性的好处。
排序算法如果是稳定的,那么从一个键上排序,然后再从另一个键上排序,第一个键排序的结果可以为第二个键排序所用。
基数排序就是这样,先按低位排序,逐次按高位排序,低位相同的元素其顺序再高位也相同时是不会改变的。
另外,如果排序算法稳定,对基于比较的排序算法而言,元素交换的次数可能会少一些(个人感觉,没有证实)。
回到主题,现在分析一下常见的排序算法的稳定性,每个都给出简单的理由。
(1)冒泡排序冒泡排序就是把小的元素往前调或者把大的元素往后调。
比较是相邻的两个元素比较,交换也发生在这两个元素之间。
所以,如果两个元素相等,我想你是不会再无聊地把他们俩交换一下的;如果两个相等的元素没有相邻,那么即使通过前面的两两交换把两个相邻起来,这时候也不会交换,所以相同元素的前后顺序并没有改变,所以冒泡排序是一种稳定排序算法。
(2)选择排序选择排序是给每个位置选择当前元素最小的,比如给第一个位置选择最小的,在剩余元素里面给第二个元素选择第二小的,依次类推,直到第n-1个元素,第n个元素不用选择了,因为只剩下它一个最大的元素了。
那么,在一趟选择,如果当前元素比一个元素小,而该小的元素又出现在一个和当前元素相等的元素后面,那么交换后稳定性就被破坏了。
比较拗口,举个例子,序列5 8 5 2 9,我们知道第一遍选择第1个元素5会和2交换,那么原序列中2个5的相对前后顺序就被破坏了,所以选择排序不是一个稳定的排序算法。
(3)插入排序插入排序是在一个已经有序的小序列的基础上,一次插入一个元素。
当然,刚开始这个有序的小序列只有1个元素,就是第一个元素。
比较是从有序序列的末尾开始,也就是想要插入的元素和已经有序的最大者开始比起,如果比它大则直接插入在其后面,否则一直往前找直到找到它该插入的位置。
排序算法稳定性比较

这几天笔试了好几次了,连续碰到一个关于常见排序算法稳定性判别的问题,往往还是多选,对于我以及和我一样拿不准的同学可不是一个能轻易下结论的题目,当然如果你笔试之前已经记住了数据结构书上哪些是稳定的,哪些不是稳定的,做起来应该可以轻松搞定。
本文是针对老是记不住这个或者想真正明白到底为什么是稳定或者不稳定的人准备的。
首先,排序算法的稳定性大家应该都知道,通俗地讲就是能保证排序前2个相等的数其在序列的前后位置顺序和排序后它们两个的前后位置顺序相同。
在简单形式化一下,如果Ai = Aj, Ai原来在位置前,排序后Ai还是要在Aj位置前。
其次,说一下稳定性的好处。
排序算法如果是稳定的,那么从一个键上排序,然后再从另一个键上排序,第一个键排序的结果可以为第二个键排序所用。
基数排序就是这样,先按低位排序,逐次按高位排序,低位相同的元素其顺序再高位也相同时是不会改变的。
另外,如果排序算法稳定,对基于比较的排序算法而言,元素交换的次数可能会少一些(个人感觉,没有证实)。
回到主题,现在分析一下常见的排序算法的稳定性,每个都给出简单的理由。
(1)冒泡排序冒泡排序就是把小的元素往前调或者把大的元素往后调。
比较是相邻的两个元素比较,交换也发生在这两个元素之间。
所以,如果两个元素相等,我想你是不会再无聊地把他们俩交换一下的;如果两个相等的元素没有相邻,那么即使通过前面的两两交换把两个相邻起来,这时候也不会交换,所以相同元素的前后顺序并没有改变,所以冒泡排序是一种稳定排序算法。
(2)选择排序选择排序是给每个位置选择当前元素最小的,比如给第一个位置选择最小的,在剩余元素里面给第二个元素选择第二小的,依次类推,直到第n-1个元素,第n个元素不用选择了,因为只剩下它一个最大的元素了。
那么,在一趟选择,如果当前元素比一个元素小,而该小的元素又出现在一个和当前元素相等的元素后面,那么交换后稳定性就被破坏了。
比较拗口,举个例子,序列5 8 5 2 9,我们知道第一遍选择第1个元素5会和2交换,那么原序列中2个5的相对前后顺序就被破坏了,所以选择排序不是一个稳定的排序算法。
排序算法实验报告

数据结构实验报告八种排序算法实验报告一、实验内容编写关于八种排序算法的C语言程序,要求包含直接插入排序、希尔排序、简单项选择择排序、堆排序、冒泡排序、快速排序、归并排序和基数排序。
二、实验步骤各种内部排序算法的比较:1.八种排序算法的复杂度分析〔时间与空间〕。
2.八种排序算法的C语言编程实现。
3.八种排序算法的比较,包括比较次数、移动次数。
三、稳定性,时间复杂度和空间复杂度分析比较时间复杂度函数的情况:时间复杂度函数O(n)的增长情况所以对n较大的排序记录。
一般的选择都是时间复杂度为O(nlog2n)的排序方法。
时间复杂度来说:(1)平方阶(O(n2))排序各类简单排序:直接插入、直接选择和冒泡排序;(2)线性对数阶(O(nlog2n))排序快速排序、堆排序和归并排序;(3)O(n1+§))排序,§是介于0和1之间的常数。
希尔排序(4)线性阶(O(n))排序基数排序,此外还有桶、箱排序。
说明:当原表有序或基本有序时,直接插入排序和冒泡排序将大大减少比较次数和移动记录的次数,时间复杂度可降至O〔n〕;而快速排序则相反,当原表基本有序时,将蜕化为冒泡排序,时间复杂度提高为O〔n2〕;原表是否有序,对简单项选择择排序、堆排序、归并排序和基数排序的时间复杂度影响不大。
稳定性:排序算法的稳定性:假设待排序的序列中,存在多个具有相同关键字的记录,经过排序,这些记录的相对次序保持不变,则称该算法是稳定的;假设经排序后,记录的相对次序发生了改变,则称该算法是不稳定的。
稳定性的好处:排序算法如果是稳定的,那么从一个键上排序,然后再从另一个键上排序,第一个键排序的结果可以为第二个键排序所用。
基数排序就是这样,先按低位排序,逐次按高位排序,低位相同的元素其顺序再高位也相同时是不会改变的。
另外,如果排序算法稳定,可以防止多余的比较;稳定的排序算法:冒泡排序、插入排序、归并排序和基数排序不是稳定的排序算法:选择排序、快速排序、希尔排序、堆排序四、设计细节排序有内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大,一次不能容纳全部的排序记录,在排序过程中需要访问外存。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
各种排序算法稳定性的探讨
首先,排序算法的稳定性大家应该都知道,通俗地讲就是能保证排序前2个相等的数其在序列的前后位置顺序和排序后它们两个的前后位置顺序相同。
在简单形式化一下,如果Ai = Aj, Ai原来在位置前,排序后Ai还是要在Aj位置前。
为了简便下面讨论的都是不降序排列的情形,对于不升序排列的情形讨论方法和结果完全相同。
其次,说一下稳定性的好处。
排序算法如果是稳定的,那么从一个键上排序,然后再从另一个键上排序,第一个键排序的结果可以为第二个键排序所用。
基数排序就是这样,先按低位排序,逐次按高位排序,低位相同的元素其顺序再高位也相同时是不会改变的。
另外,如果排序算法稳定,对基于比较的排序算法而言,元素交换的次数可能会少一些(个人感觉,没有证实)。
回到主题,现在分析一下常见的排序算法的稳定性,每个都给出简单的理由。
(1)冒泡排序
冒泡排序是通过相邻比较、实时交换、缩小范围实现排序的。
第1次操作n个元素,通过相邻比较将0~n-1中的最大元素交换到位置n-1上,第2次操作n-1个元素,通过相邻比较将0~n-2中的最大元素交换到位置n-2上……第n-1次操作2个元素,通过相邻比较将0~1上的最大元素交换到位置1上完成排序。
在相邻比较时如果两个元素相等,一般不执行交换操作,因此冒泡排序是一种稳定排序算法。
(2)选择排序
选择排序是通过不断缩小排序序列长度来实现的。
第1次操作n个元素,选择0~n-1中的最小者交换到位置0上,第2次操作n-1个元素,选择1~n-1中的最小者交换到位置1上……第n-1次操作2个元素,选择n-2~n-1上的最小者交换到位置n-2上完成排序。
在每次选择最小元素进行交换时,可能破坏稳定性。
这种情况可以描述为:约定要发生交换的位置称为当前位置,被交换的位置称为被交换位置,被交换位置上的元素为选中的最小元素。
如果当前位置之后和被交换位置之前存在与当前位置相等的元素,执行交换后就破坏了稳定性。
如序列5 8 5 2 9,我们知道第一遍选择第1个元素5会和2交换,那么原序列中2个5的相对前后顺序就被破坏了,所以选择排序不是一个稳定的排序算法。
(3)插入排序
插入排序是通过不断扩大排序序列的长度来实现的。
第1次操作1个元素,直接放到位置0上即可;第2次操作2个元素,在0~1上为当前元素找到合适位置并插入;第3次操作3个元素,用在0~2上为当前元素找到合适位置并插入它……第n次操作n个元素,在0~n-1上为当前元素找到合适位置并插入完成排序。
讨论元素的插入过程,假设当前是第n次操作,要在0~n-1上为当前元素寻找合适位置,设置一个工作指针初始化为n-1,向前移动工作指针直到遇到一个不大于当前元素的元素,就在这个元素的后面插入当前元素,仔细体会这个插入过程,不难理解插入排序是稳定的。
(4)快速排序
快速排序有两个方向,左边的i下标当a[i] <= a[center]时一直往右走,其中center是中枢元素的数组下标,一般取为当前排序段的第一个元素。
而右边的j下标当a[j] > a[center]时一直往左走。
如果i和j都走不动了,这时必有结论a[i] > a[center] >= a[j],我们的目的是将a 分成不大于a[center]和大于a[center]的两个部分,其中前者位于左半部分后者位于右半部分。
所以如果i>j(i不能等于j,为什么?)表明已经分好,否则需要交换两者。
当左右分好时,j 指向了左侧的最后一个元素,这时需要将a[center]与a[j],交换,这个时侯可能会破坏稳定性。
这种情形可以这样描述:center位置之后j位置前存在与j相等的元素,指向center与j的交换后,稳定性破坏。
比如序列为5 3 3 4 3 8 9 10 11,现在中枢元素5和3(第5个元素,下标从1开始计)交换就会把元素3的稳定性打乱,所以快速排序是一个不稳定的排序算法。
(5)归并排序
归并排序是把序列递归地分成短序列,递归出口是短序列只有1个元素(认为直接有序)或者2个序列(1次比较和交换),然后把各个有序的段序列合并成一个有序的长序列,不断合并直到原序列全部排好序。
可以发现,在1个或2个元素时,1个元素不会交换,2个元素如果大小相等也没有人故意交换,这不会破坏稳定性。
那么,在短的有序序列合并的过程中,稳定是是否受到破坏?没有,合并过程中我们可以保证如果两个当前元素相等时,我们把处在前面的序列的元素保存在结果序列的前面,这样就保证了稳定性。
所以,归并排序也是稳定的排序算法。
(6)基数排序
基数排序是按照低位先排序,然后收集;再按照高位排序,然后再收集;依次类推,直到最高位。
有时候有些属性是有优先级顺序的,先按低优先级排序,再按高优先级排序,最后的次序就是高优先级高的在前,高优先级相同的低优先级高的在前。
基数排序基于分别排序,分别收集,所以其是稳定的排序算法。
(7)希尔排序(shell)
希尔排序是按照不同步长对元素进行插入排序,当刚开始元素很无序的时候,步长最大,所以插入排序的元素个数很少,速度很快;当元素基本有序了,步长很小,插入排序对于有序的序列效率很高。
所以,希尔排序的时间复杂度会比o(n^2)好一些。
由于多次插入排序,我们知道一次插入排序是稳定的,不会改变相同元素的相对顺序,但在不同的插入排序过程中,相同的元素可能在各自的插入排序中移动,最后其稳定性就会被打乱,所以shell排序是不稳定的。
(8)堆排序
我们知道基于0序的堆结构,节点i的孩子为2*i+1和2*i+2节点,大顶堆要求父节点大于等于其2个子节点,小顶堆要求父节点小于等于其2个子节点。
在一个长为n的序列,堆排序的过程是从第n/2开始和其子节点共3个值选择最大(大顶堆)或者最小(小顶堆),这3个元素之间的选择当然不会破坏稳定性。
但当为n/2-1, n/2-2, ...1这些个父节点选择元素时,就会破坏稳定性。
有可能第n/2个父节点交换把后面一个元素交换过去了,而第n/2-1个父节点把后面一个相同的元素没有交换,那么这2个相同的元素之间的稳定性就被破坏了。
所以,堆排序不是稳定的排序算法。
通过上面的论述不难发现规律:存在不相邻交换的排序算法一般是不稳定的,相邻交换的排序算法一般是稳定的;对于相邻交换的稳定排序算法,通过控制交换条件可以转换成不稳定排序算法;冒泡、插入、归并和基数排序是稳定的;选择、快速、希尔和堆排序是不稳定的。
排序算法的性能可以由排序过程中比较次数来衡量。
待排序的初始化顺序有可能影响某个具体排序算法的性能,下面我对常用排序算法的性能与待排数组的循序的关系作一个总结:
1)冒泡:无关;
2)选择:无关;
3)插入:有关,排序程度越大,比较越少;
4)shell:有关,它的基本思想基于插入排序;
5)融合:有关,排序程度愈大,融合过程的比较次数越少;
6)堆排序:有关,排序程度越大,建立堆下沉操作越少;
7)快排序:有关,如果选择最后值作为阀值,那么排序程度越好,就越可能退化成O(n^2);无关,随机选择阀值,那么与排序程度无关。