(完整版)《整数指数幂》练习题.doc

合集下载

八年级数学整数指数幂测试2.doc

八年级数学整数指数幂测试2.doc

16.2.3 整数指数幂(2)知识领航:科学记数法:把一个数表示成na 10⨯的形式(其中101<≤a ,n 是整数)的记数方法就叫做科学记数法.用科学记数法表示绝对值大于10的n 位整数时,其中10的指数是1-n用科学记数法表示绝对值小于1的正小数时,其中10的指数是第一个非0数字前面0的个数(包括小数点前面的一个0)e 线聚焦【例】一根约为1米长、直径为80毫米的光纤预制棒,可拉成至少400公里长的光纤.试问:1平方厘米是这种光纤的横截面积的多少倍?(保留两位有效数字)分析:可先求光纤的横截面积,再列式计算. 解:光纤的横截面积为: 1×π)10400()21080(323⨯÷⨯⨯-=4π910-⨯(平方米) ∴()9410410--⨯÷π≈8.0310⨯.答:平方厘米是这种光纤的横截面积8.0310⨯倍.双基淘宝◆仔细读题,一定要选择最佳答案哟!1.57000000-用科学记数表示为( )A.61057⨯-B. 6107.5⨯-C. 7107.5⨯D. 7107.5⨯-2.下列运算正确的是( )A.()7232a a a =⋅B.3105005.0-⨯=-C.()4222-=-a aD.()21212101=---+⎪⎭⎫ ⎝⎛- 3.银原子的直径为0.0003微米,用科学记数表示为( )A. 4103⨯微米B. 4103-⨯微米C. 3103-⨯微米D. 3103.0-⨯微米4.2003年10月15日,中国 “神舟”五号载人飞船成功发射,航天员杨利伟在约21小时内环绕地球14圈,飞行总长度约为59万千米,用科学记数法表示飞行的总长度的千米数是( )A.61059⨯B. 4109.5⨯C. 5109.5⨯D. 51059⨯5.已知一个正方体的棱长为2102-⨯米,则这个正方体的体积为( )A.6106-⨯立方米B. 6108-⨯立方米C. 6102-⨯立方米D. 6108⨯立方米6.光年是天文学中的距离单位,1光年大约是9 500 000 000 000km 用科学记数表示为( )A.1010950⨯ kmB. .111095⨯ kmC. .12105.9⨯ kmD. 0.131095⨯ km 7. .2003年10月15日,航天英雄杨利伟乘坐 “神舟五号”载人飞船,于9时9分50秒准确进入预定轨道,开始巡天飞行,飞船绕地球飞行了十四圈后,返回舱与推进舱于16日5时59分分离,结束巡天飞行,飞船共用了20小时49分10秒,巡天飞行了约5106⨯千米,则 “神舟五号”飞船巡天飞行的平均速度约为_____________千米/秒(结果精确到0.1).8.人类的遗传物质就是DNA,人类的DNA 是很长的链,最短的22号染色体也长达3000000个核苷酸,这个数用科学记数法表示是___________.9.计算()()___________1031032125=⨯÷⨯--.10.自从扫描隧道显微镜发明后,世界上便诞生了一门新学科,这就是“纳米技术”,已知52个纳米的长度为0.000000052米,用科学记数法表示这个数为__________.综合运用◆认真解答,一定要细心哟!11.用科学记数法表示下列各数:(1)0.0000896 , (2)0000001.0-.12.地球的体积约为12101.1⨯立方千米,月球的体积约为10102.2⨯立方千米,问地球体积是月球体积的多少倍?13.计算: (1)()119104.4102.2--⨯÷⨯ (2)()()()2258103103104.5--⨯÷⨯÷⨯14.一个长方体的长为cm3102⨯,宽为cm 2105.1⨯,高为cm 3102.1⨯,求它的体积.拓广创新◆试一试,你一定能成功哟!15.已知实数a,b,c 满足01331=-+++-c b a ,求()()239125c b a c b a ⋅⋅÷⋅⋅的值.。

整数指数幂知识点及相关练习题

整数指数幂知识点及相关练习题

整数指数幂:①正整数指数幂a n (n 是正整数),表示n 个相同的因数a 相乘的积。

例如,43= 4×4×4= 。

①零指数幂,任何不等于0的数的零次幂都等于1,即a 0 =1(a ≠0)。

例如,60=1,(31)0= 。

①负整数指数幂p a -(p 是正整数),等于a 的p 次幂的倒数,即p a -=1p a 。

例如,3-2 =231= 。

答案:64 , 1 , 91 例题:一、选择题1、20160 = ( )。

A .0B .1C . -2017D .2017答案:B2、计算|-6| - (-31)0的值是( ) A .5 B .-5 C .532 D .7答案:A解析:原式= 6-1= 5。

3、计算:(-1)2009的结果是( )A .-1B .1C .-2009D .2009答案:A4、计算(-2)-3的结果等于( )A .-8B .8C .-81D .81 答案:C5、计算:(-31)2·3-1=( ) A .31 B .1 C .271 D .-271 答案:C解析:原式=91·31=2716、计算(-2)2 - (π-2016)0 + ( 21)-3的结果为( ) A .-1 B .5 C .8D .11 答案:D解析:原式 = 4-1+ 8 = 11二、填空题1、(23)0= 。

答案:12、23= ,2-2= 。

答案:8,41 3、(-21)-2 + (π-2)0 = 。

答案:5解析:原式 = 4+1=5。

4、计算(-41)-1 ×(1-π) 0 - |-15| = 。

答案:-19解析:原式 = -4×1-15 = -195、计算:20170 – (-1)2019+ (-31)-1 = 。

答案:-1解析:原式 = 1-(-1)+ (-3) = -1。

6、你见过拉面馆的师傅拉面吗?他们用一根粗的面条,第1次把两头捏在一起抻拉得到两根面条,再把两头捏在一起抻拉,反复数次,就能拉出许多根细面条,如下图,第3次捏合抻拉得到 根面条,第5次捏合抻拉得到 根面条,第n 次捏合抻拉得到 根面条,要想得到64根细面条,需 次捏合抻拉。

人教版八年级数学上册《整数指数幂》基础练习

人教版八年级数学上册《整数指数幂》基础练习

《整数指数幂》基础练习一、选择题(本大题共5小题,共25.0分)1.(5分)2﹣3的倒数是()A.8B.﹣8C.D.﹣2.(5分)(﹣)﹣1=()A.B.C.3D.﹣3 3.(5分)计算2﹣1的结果是()A.B.﹣C.﹣2D.2 4.(5分)下列算式结果为﹣3的是()A.﹣31B.(﹣3)0C.3﹣1D.(﹣3)2 5.(5分)计算()﹣2的结果是()A.B.C.9D.6二、填空题(本大题共5小题,共25.0分)6.(5分)将代数式化为只含有正整数指数幂的形式是.7.(5分)计算(﹣)﹣1=.8.(5分)计算:a0b﹣2=.9.(5分)计算:a﹣2b2•(a2b﹣2)﹣3=.10.(5分)计算:(﹣1)3+(﹣)﹣2=.三、解答题(本大题共5小题,共50.0分)11.(10分)计算:(2a6b)﹣1÷(a﹣2b)312.(10分)计算:(﹣1)2018﹣(π﹣3.14)0+()﹣2.13.(10分)计算:.14.(10分)计算:(﹣6×6﹣2)2.15.(10分)计算:.《整数指数幂》基础练习参考答案与试题解析一、选择题(本大题共5小题,共25.0分)1.(5分)2﹣3的倒数是()A.8B.﹣8C.D.﹣【分析】利用负整数指数幂法则,以及倒数的定义判断即可.【解答】解:2﹣3==,则2﹣3的倒数是8,故选:A.【点评】此题考查了负整数指数幂,以及倒数,熟练掌握运算法则是解本题的关键.2.(5分)(﹣)﹣1=()A.B.C.3D.﹣3【分析】根据负整数指数幂的计算法则计算即可求解.【解答】解:(﹣)﹣1=﹣3.故选:D.【点评】考查了负整数指数幂,关键是熟练掌握计算法则正确进行计算.3.(5分)计算2﹣1的结果是()A.B.﹣C.﹣2D.2【分析】根据负整数指数幂:a﹣p=(a≠0,p为正整数)可得答案.【解答】解:原式=,故选:A.【点评】此题主要考查了负整数指数幂,关键是掌握计算公式.4.(5分)下列算式结果为﹣3的是()A.﹣31B.(﹣3)0C.3﹣1D.(﹣3)2【分析】结合负整数指数幂、有理数的乘方以及零指数幂的概念和运算法则进行求解即可.【解答】解:A、﹣31=﹣3,本选项正确;B、(﹣3)0=1≠﹣3,本选项错误;C、3﹣1=≠﹣3,本选项错误;D、(﹣3)2=9≠﹣3,本选项错误.故选:A.【点评】本题考查了负整数指数幂、有理数的乘方以及零指数幂,解答本题的关键在于熟练掌握各知识点的概念和运算法则.5.(5分)计算()﹣2的结果是()A.B.C.9D.6【分析】将化成3﹣1再用幂的乘方即可得出结论.【解答】解:()﹣2=(3﹣1)﹣2=32=9,故选:C.【点评】此题主要考查了幂的乘方,负整数指数幂,熟记a﹣p=是解本题的关键.二、填空题(本大题共5小题,共25.0分)6.(5分)将代数式化为只含有正整数指数幂的形式是.【分析】根据负整数指数幂:a﹣p=(a≠0,p为正整数)进行计算即可.【解答】解:=,故答案为:.【点评】此题主要考查了负整数指数幂,关键是掌握计算公式.7.(5分)计算(﹣)﹣1=﹣5.【分析】根据负整数指数幂的意义即可求出答案.【解答】解:原式=(﹣5)=﹣5,故答案为:﹣5.【点评】本题考查负整数指数幂,解题的关键是正确理解负整数指数幂的意义,本题属于基础题型.8.(5分)计算:a0b﹣2=.【分析】根据零指数幂以及负整数指数幂的意义即可求出答案.【解答】解:原式=1×=,故答案为:.【点评】本题考查负整数指数幂以及零指数幂,解题的关键是正确理解负整数指数幂以及零指数幂的意义,本题属于基础题型.9.(5分)计算:a﹣2b2•(a2b﹣2)﹣3=.【分析】根据负整数指数幂的定义求解即可.【解答】解:原式=•=.故答案为.【点评】本题考查了负整数指数幂:a﹣p=(a≠0,p为正整数),牢记定义是关键.10.(5分)计算:(﹣1)3+(﹣)﹣2=3.【分析】先求出(﹣1)3=﹣1,(﹣)﹣2=(﹣2)2=4,合并即可.【解答】解::(﹣1)3+(﹣)﹣2=﹣1+(﹣2)2=﹣1+4=3故答案为:3.【点评】本题考查指数幂的相关运算.理解负指数幂的运算法则是解答关键.三、解答题(本大题共5小题,共50.0分)11.(10分)计算:(2a6b)﹣1÷(a﹣2b)3【分析】直接利用积的乘方运算法则以及同底数幂的乘除运算法则化简得出答案.【解答】解:(2a6b)﹣1÷(a﹣2b)3=a﹣6b﹣1÷(a﹣6b3)=b﹣4=.【点评】此题主要考查了负整数指数幂计算,正确掌握运算法则是解题关键.12.(10分)计算:(﹣1)2018﹣(π﹣3.14)0+()﹣2.【分析】直接利用零指数幂的性质以及负指数幂的性质化简各数得出答案.【解答】解:原式=1﹣1+4,=4.【点评】此题主要考查了负指数幂的性质和零指数幂的性质,正确掌握相关定义是解题关键.13.(10分)计算:.【分析】本题涉及绝对值、负整数指数幂等知识点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=﹣1+﹣=﹣.故答案为﹣.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、绝对值等考点的运算.14.(10分)计算:(﹣6×6﹣2)2.【分析】先计算括号中的,6﹣2=,再计算括号的乘方.【解答】解:(﹣6×6﹣2)2=(﹣6×)2,=(﹣)2=.【点评】幂的负整数指数运算,先把底数化成其倒数,然后将负整数指数幂当成正的进行计算.15.(10分)计算:.【分析】本题涉及零指数幂、负整数指数幂.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=(﹣4)+4×1=0.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.。

(完整版)初二整数指数幂练习题

(完整版)初二整数指数幂练习题

1、=23 ;=03 ;=-23 ;=-2)3( ;=-0)3( ;=--2)3( ;=2b ;=0b ;=-2b;2、27a a ÷= ;=--3132)(y x y x _ ___。

=-321)(b a ;=•---32222)(b a b a ___ ___。

=÷nm a a ;=⎪⎭⎫ ⎝⎛nb a ___ ___。

(参见P25页)=•--2223ab b a ;=--3)3(b ab _ ___; =÷---32232)()2(b a c ab ___;=-÷--)2(4122yz x z xy ; =•--332223)2(n m n m 。

3、用科学记数法表示:-0.00002009= .-0.000000001= .0.0012= . 0.000000345= . -0.00003= . 0.00000000108= . 4、计算(-4×106)÷(2×103)=__________.63(210)(3.210)-⨯⨯⨯=____ __. 6243(210)(10)--⨯÷=__________. 323(210)(510)--⨯⨯⨯=_________. 5212(310)(310)--⨯÷⨯=_______.1201(1)5(2004)2π-⎛⎫-+-÷- ⎪⎝⎭=_________.5、计算:(13-)0+(31)-1-2)5(--|-1| 6、计算,并把负指数化为正:21232)()2------n m mn (1、下列计算正确的是( )A 、m m m x x x 2=+B 、22=-n n x xC 、633x x x =⋅D 、326x x x =÷ 2、下列算式结果是-3的是( )A 、1)3(--B 、0)3(-C 、)3(--D 、|3|--3、计算4222x x x x x x ⎛⎫-÷ ⎪-+-⎝⎭的结果是( ) A.12x + B.-12x + C.-1 D.14计算、(1)()1132)(--•÷•n m n mx x x x (2)(-3a)3-(-a)·(-3a)2(3) ()[]3m n -p()[]5)(p n m n m --• (4)()m ma b b a 25)(--()m a b 7-÷ (m 为偶数,b a ≠)5、要使(x -1)0-(x +1)-2有意义,x 的取值应满足什么条件?2、如果等式()1122=-+a a ,则a 的值为 6、已知:()1242=--x x ,求x 的值.7、你能求出满足(n-3)n=(n-3)2n-2的正整数n 吗?8、你能求出满足(n-3)n+3=(n-3)2n的正整数n 吗?一、选择题 1. 分式22x yx y -+有意义的条件是( )A .x ≠0B .y ≠0C .x ≠0或y ≠0D .x ≠0且y ≠0 2.若分式(1)(2)(1)(2)x x x x +-++的值为零,则的值是( )A .-1B .-1或2C .2 D.-2A .x >3B .x <3C .x <3且x ≠0D .x >-3且x ≠0 4.如果正数x 、y 同时扩大10倍,那么下列分式中值保持不变的是( )A .11--y xB .11++y xC .32yx D .y x x +5.下列化简结果正确的是( )A .222222z y z x y x -=+- B.))((22b a b a b a -+--=0 C .y x yx 263=3x 3 D .12-+m m aa =a 3 6.计算2222n n m m m n-÷⋅的结果是( )A .-22n mB .-3n mC .-4mnD .-n7. 分式方程53211xx x-+=--的解是 ( ) A .x=4B .x=3C .x=0D .无解8、下列方程不是分式方程的是 ( )A 、31x x-= B 、1111x x x +=+- C 、342xy+= D 、1223x x --=9、将分式12x-y x 5 +y 3 的分子和分母中的各项系数都化为整数,应为( ).(A )x-2y 3x+5y (B )15x-15y 3x+5y (C ) 15x-30y 6x+10y (D )x-2y5x+3y10.甲从A 地到B 地要走m 小时,乙从B 地到A 地要走n 小时,若甲、乙二人同时从A 、B 两地出发,经过几小时相遇( )A .(m +n)小时 B .2n m +小时 C .mn n m +小时 D .nm mn+小时二、填空题11、当x __________时,分式392--x x 的值为零。

整数指数幂练习题

整数指数幂练习题

整数指数幂练习题(2)【典型例题】 例1. 1、若式子有意义,求x 的取值范围。

2、要使(242--x x )0有意义,则x 满足条件_______________. 例2. 计算:(1)、(2)、 例3. 计算下列各式,并把结果化为只含有正整数指数幂的形式. (1)(2)例4. 用科学记数法表示下列各数.(1) (2)0.00003092 (3)-309200 (4)-0.000003092例5. 用小数表示下列各数.(1)(2)例6. 已知,求的值. 【强化练习】 一. 选择题:1. 下列算式中正确的是( )A.B.C. D. 2. 下列计算正确的是( )A. B.C. D. 3. 下面的数或式:, 为负数的个数是( )A. 1个B. 2个C. 3个D. 0个4. 下面是一名同学所做6道练习题:①,②,③,④,⑤,,他做对的题的个数是( )A. 0B. 1C. 2D. 35. 若 则a 、b 、c 、d 的大小关系是( ).A. a<b<c<dB. b<a<d<cC. a<d<c<bD. c<a<d<b6. 纳米是一种长度单位,1nm=,已知某种植物花粉的直径约为35000nm ,那么用科学记数法表示该种花粉直径为( )(21)x -1322(3)m n ----22123[2()()][()()]x y x y x y x y -----+⋅-⋅+⋅-56.2310--⨯38(2)10--⨯1x x a -+=22x x -+0(0.0001)01=-4100.0001-=()010251-⨯=()20.010.01-=355410m m m a a a ---÷=4322x x x x ÷÷=()010251-⨯=001.0104=-104525÷()031-=336a a a+=()()532a a a -÷-=-22144m m -=()3236xy x y =2=910m -32031110()(5)(3)0.31230π--+⨯---⨯+-42310[()()](0)a a a a -⋅-÷≠()2021117,4,,4--⎛⎫-- ⎪⎝⎭A.B. C. D.二. 填空题:8.= 。

人教版八年级数学上15.2.3整数指数幂-同步练习.docx

人教版八年级数学上15.2.3整数指数幂-同步练习.docx

初中数学试卷 桑水出品15.2.3 整数指数幂15.2.3 第1课时 整数指数幂一、选择题1.下列计算中,正确的是( )A .0a =1B .23-=-9C .5.6×210-=560D .21()5-=25 2.下列式子中与()2a -计算结果相同的是( )()()12224244. . . . A a B a a C a a D a a --÷-g g --3.111()x y ---+=( ) A .x y = B .1x y + C .xy x y + D .x y xy+ 4.已知m a ,0≠是正整数,下列各式中,错误的是( ) A m m aa 1=- B m m a a )1(=- C m m a a -=- D 1)(--=m m a a 5.下列计算中,正确的是 ( )A .22112()2m n m m n n -----+=++B .212()m n m n --=C .339(2)8x x --=D .11(4)4x x --=6.在:①()110=-,②()111-=-,③22313aa =-, ④()()235x x x -=-÷-中,其中正确的式子有( )A 、1个B 、2个C 、3个D 、 4个7.将11()6-,0(2)-,2(3)-这三个数按从小到大的顺序排列,正确的结果是 ( ) A .0(2)-<11()6-<2(3)- B .11()6-<0(2)-<2(3)- C .2(3)-<0(2)-<11()6- D .0(2)-<2(3)-<11()6- 8.n 正整数,且n n ---=-2)2(则n 是( )A 、偶数B 、奇数C 、正偶数D 、负奇数二、填空题9.填空:=-25 ,=⎪⎭⎫ ⎝⎛--321 . 10.计算:3-a = ,21-⎪⎭⎫ ⎝⎛-a = . 11.()=-31322b a b a ,()=--2223x b a .12.计算(-3-2)2的结果是_________.13.计算2323()a b a b --÷= .14.将式子32213--yx b a 化为不含负整数指数的形式是 . 15.化简:))()((2211---+-+y x y x y x =______________.16.若63=-n x ,则=n x 6.17.已知:57,37==n m ,则=-n m 27________________.18.已知:9432278321=⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛--x x , 则x=____________. 三、解答题19.(2013曲靖)计算:12-+|﹣|+()0. 20.计算(1)()()22223y x y x -- (2)()()32121223---y x yz x (3)()()232212353z xy z y x --- (4)()()232232----n m n m 21.已知2=x a ,求()()12233---++x x x x a a a a 的值.22.已知0)1(22=-++-b a b ,求32--b a 的值.23.拓展延伸【例题】阅读第(1)题的解题过程,再做第(2)题:(1)已知13x x -+=,求33x x -+的值.解:因为1222()29x x x x --+=++=所以227x x -+=所以332211()()()73318x x x x x x x x ----+=++-+=⨯-=;(2)已知13x x -+=,求55x x -+的值.15.2.3 整数指数幂第1课时 整数指数幂一、选择题1.D2.D3.C4.C5.D6. B7. A8.B二、填空题 9.251、8- 10.31a 、2a 11.a b 68、464xa b 12.811 13.64b a 14.2323ax y b 15.441y x - 16.361 17.59 18.58 三、解答题19.2 20.(1)102x y (2)2472zy x (3)848925y x z (4)244m n 21.()()()()[]()()[]()()34652222122331223312233=++=++=++---------x x x x x x x x a a a a a a a a 22.⎩⎨⎧=-+=-0102b a b 解得⎩⎨⎧=-=21b a 则 ()81213232=⨯-=----b a 23.()()()12337181223355=-⨯=+-++=+----x x x x x x x x15.3 分式方程第1课时 分式方程一、选择题1.A 2.A 3.B 4.D 5.D 6. D 7. C 8.A 二、填空题9.2-=x 10.2=x 11.3=x 12.—3 13.5-=x 14.3=x 15.5 16.1- 17.1- 18.43+=+=n x n x 或三、解答题19.9=x 20.3=x21.把2=x 代入原分式方程得()5822-=+a a ,解得910-=a 22.根据题意可知321=--x x ,解得25=x23.解原分式方程得k x 36-=,2,036,0><-<∴解得即原分式方程有负解,k x Θ。

人教版八年级数学上册《15.2.3整数指数幂》同步测试题及答案

人教版八年级数学上册《15.2.3整数指数幂》同步测试题及答案

人教版八年级数学上册《15.2.3整数指数幂》同步测试题及答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.计算052-+的结果是( )A .3-B .7C .4-D .62.计算01-,以下结果正确的是( )A .011-=-B .010-=C .011-=D .01-无意义 3.若()()013224x x ----有意义,则x 取值范围是( )A .3x ≠B .2x ≠C .3x ≠且2x ≠-D .3x ≠且2x ≠ 4.计算()323a a -⋅的结果是( )A .2aB .3aC .5aD .9a 5.计算:()23a b -=( )A .621a b B .62a b C .521a b D .32a b -6.若22a =- ()22b -=- 212c -⎛⎫=- ⎪⎝⎭ 012d ⎛⎫=- ⎪⎝⎭则a ,b ,c ,d 的大小关系是( ) A .b d c a <<<B .a b d c <<<C .b a d c <<<D .a d b c <<< 7.已知312a -⎛⎫=- ⎪⎝⎭()20231b =- ()0314.c =-则a ,b ,c 的大小关系是( ) A .a b c >> B .c a b >> C .b c a >> D .c b a >>8.芯片内部有数以亿计的晶体管,为追求更高质量的芯片和更低的电力功耗,需要设计4积更小的晶体管.目前,某品牌手机自主研发了最新型号芯片,其晶体管栅极的宽度为0.000000014米,将数据0.000000014用科学记数法表示为( )A .81.410-⨯B .71410-⨯C .60.1410-⨯D .91.410-⨯9.将0.000000018用科学记数法表示为( )A .61.810-⨯B .81.810-⨯C .71.810-⨯D .71810-⨯10.我国古代数学家祖冲之推算出π的近似值为355113,它与π的误差小于0.0000003.将0.0000003用科学记数法可以表示为( )A .7310-⨯B .60.310-⨯C .6310-⨯D .7310⨯11.奥密克戎是新型冠状病毒,其直径为140纳米(1纳米0.000000001=米).“140纳米”用科学记数法表示为( )A .111.410-⨯米B .100.1410-⨯米C .71.410-⨯米D .60.1410-⨯米12.一个数用科学记数法表示为22.0310-⨯,则这个数是( )A .203-B .203C .0.0203D .0.0020313.某微生物的直径为55.1310-⨯,则原数为( )A .0.00513B .0.0000513C .51300D .513000二、填空题14.计算:05(23)-+= . 15.计算)101202312-⎛⎫+= ⎪⎝⎭ . 16.计算:2031(21)83-⎛⎫+-= ⎪⎝⎭ . 17.比较大小:22- 03.(选填>,=,<)18.已知实数a ,b 满足()2210a b -++=,则b a = .19.计算:0202121(π2022)(1)()2----+-= . 20.计算212-⎛⎫ ⎪⎝⎭= . 21.计算:()1223213m n m n --⎛⎫⋅-= ⎪⎝⎭ . 22.溶度积是化学中沉淀的溶解平衡常数.常温下3CaCO 的溶度积约为0.0000000028,将数据0.0000000028用科学记数法表示为 .23.中国抗疫新型冠状病毒2019−nCoV 取得了巨大成就,堪称奇迹,为世界各国防控疫情提供了重要的借鉴和支持,让中国人倍感自豪,该病毒直径在0.00008毫米到0.00012毫米之间,将0.00012用科学记数法表示为 .24.石墨烯目前是世界上最薄、最坚硬的纳米材料,其理论厚度仅0.00000000034,这个数用科学记数法表示为 .三、解答题25.计算:(1)()()22012011 3.142π-⎛⎫-+--- ⎪⎝⎭ (2)32332(2)(2)(2)(2)x y xy x y x ⋅-+-÷(3)()()222226633m n m n m m --÷-26.计算:0112433-⨯-+.27.计算:021(3)3624--π--+.28019(2022)2--+.29.用科学记数法表示下列数:(1)0.0000000467;(2)0.0000208-.30.用科学记数法表示下列数或算式的结果:(1)0.000000567;(2)0.00002023-;(3)()()2259310310--⨯⨯⨯. 参考答案1.【答案】D【分析】根据求一个数的绝对值,零指数幂进行计算即可求解. 【详解】解:052-+516=+=故选:D .【点睛】本题考查了求一个数的绝对值,零指数幂,熟练掌握求一个数的绝对值,零指数幂是解题的关键. 2.【答案】A【分析】根据零次幂可进行求解.【详解】解:011-=-;故选A .【点睛】本题主要考查零次幂,熟练掌握零次幂的意义是解题的关键.3.【答案】D【分析】直接利用负整数指数幂的性质以及零指数幂的性质得出答案.【详解】解:若()()013224x x ----有意义则30x -≠且240x -≠解得:3x ≠且2x ≠.故选:D .【点睛】此题主要考查了负整数指数幂的性质以及零指数幂的性质,正确把握相关定义是解题的关键. 4.【答案】B【分析】直接利用幂的乘方和同底数幂的乘法法则进行计算即可.【详解】解:原式=633·a a a -=;故选:B .【点睛】本题考查了幂的乘方和同底数幂的运算法则,其中涉及到了负整数指数幂等知识,解决本题的关键是牢记相应法则,并能够按照正确的运算顺序进行计算即可,本题较为基础,考查了学生的基本功.【分析】根据积的乘方,幂的乘方以及负整数指数幂运算法则计算即可.【详解】解:()23621a b a b -= 故选:A .【点睛】本题考查积的乘方,幂的乘方以及负整数指数幂等知识点,熟记相关定义与运算法则是解答本题的关键.6.【答案】B【分析】首先根据乘方和负整数指数幂,零指数幂,分别进行计算,再比较大小即可.【详解】解:224a =-=-;()2124b -=-=; 2412c -⎛⎫=- ⎪⎭=⎝; 0112d ⎛⎫=-= ⎪⎝⎭ 14144-<<< a b d c ∴<<<故选:B .【点睛】此题主要考查了乘方和负整数指数幂、零指数幂的运算,关键是掌握计算公式.7.【答案】D【分析】直接利用负整数指数幂的性质以及零指数幂的性质、有理数的乘方运算法则分别化简,进而得出答案.【详解】解:∵3812a -⎛⎫=- ⎝⎭=-⎪ ()202311b ==-- ()01314.c =-= ∵c b a >>,故D 正确.故选:D .【点睛】此题主要考查了负整数指数幂的性质以及零指数幂的性质、有理数的乘方运算,正确化简各数是解题关键.【分析】科学计数法的记数形式为:10n a ⨯,其中1a 10≤<,当数值绝对值大于1时,n 是小数点向右移动的位数;当数值绝对值小于1时,n 是小数点向左移动的位数的相反数.【详解】解:80.000000014 1.410-=⨯故选A .【点睛】本题考查科学计数法,掌握科学计数法的记数形式是解题的关键.9.【答案】B【分析】科学记数法的表示形式为10n a ⨯的形式,其中≤<110a ,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于或等于10时,n 是正整数;当原数的绝对值小于1时,n 是负整数.【详解】解:将0.000000018用科学记数法表示为81.810-⨯;故选B .【点睛】本题主要考查科学记数法,熟练掌握科学记数法是解题的关键.10.【答案】A【分析】绝对值较小的数的科学记数法的一般形式为:a ×10-n ,在本题中a 应为3,10的指数为-7.【详解】解:0.00000037310故选A【点睛】本题考查的是用科学记数法表示绝对值较小的数,一般形式为a ×10-n ,其中1≤|a |<10,n 由原数左边起第一个不为零的数字前面的0的个数决定.11.【答案】C【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】解:140纳米0000000001140=⨯.米0.00000014=米71.410-=⨯米故选:C .【点睛】此题考查科学记数法,注意n 的值的确定方法,当原数大于等于10时,n 等于原数的整数数位个数减1,当原数小于1时, n 等于原数的第一个不为0的数字前的0的个数的相反数.【分析】科学记数法就是用幂的方式来表示,写成10n a ⨯的形式,2n =-,则2的前面有两个零.【详解】解:22.03100.0203-⨯=.故选:C .【点睛】本题考查了科学记数法,科学记数法就是用幂的方式来表示,科学记数法表示数时要注意其指数是正指数、还是负指数,正指数幂是较大的数,负指数幂是较小的数.13.【答案】B【分析】用科学记数法表示较小的数,一般形式为10n a -⨯,其中≤<110a ,n 为整数,据此判断即可.【详解】解:55.13100.0000513-⨯=.故选:B .【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为10n a -⨯,其中≤<110a ,n 为由原数左边起第一个不为零的数字前面的0的个数所决定,确定a 与n 的值是解题的关键.14.【答案】6【分析】根据绝对值、零指数幂法则计算即可. 【详解】解:05(23)516-+=+=.故答案为:6.【点睛】本题考查了实数的混合运算,熟练掌握相关运算法则是解决本题的关键.15.【答案】3【分析】根据零指数幂和负整数指数幂的计算法则求解即可. 【详解】解:)101202312-⎛⎫+ ⎪⎝⎭ 12=+3=故答案为:3.【点睛】本题主要考查了零指数幂和负整数指数幂,正确计算是解题的关键,注意非零底数的零指数幂的结果为1.16.【答案】8【分析】根据零次幂、负整数指数幂和立方根的性质化简,然后计算即可.【详解】解:原式192=+-8=故答案为:8.【点睛】本题考查了实数的混合运算,熟练掌握零次幂、负整数指数幂和立方根的性质是解题的关键. 17.【答案】< 【分析】先计算2124-= 031=然后比较大小即可. 【详解】解:2124-= 031= ∵114< ∴2023-<故答案为:<.【点睛】本题主要考查有理数的大小比较,负整数指数幂的运算,零次幂的运算,熟练掌握运算法则是解题关键.18.【答案】12【分析】由非负数的性质可得20a -=且10b +=,求解a ,b 的值,再代入计算即可.【详解】解:∵()2210a b -++=∵20a -=且10b +=解得:2a = 1b =-; ∵1122b a -==; 故答案为:12. 【点睛】本题考查的是绝对值的非负性,偶次方的非负性的应用,负整数指数幂的含义,理解非负数的性质,熟记负整数指数幂的含义是解本题的关键.19.【答案】6【分析】根据负整数指数幂的意义、零指数幂的意义以及乘方运算即可求出答案.【详解】解:原式()114--+=114=++6=.故答案为:6.【点睛】本题考查负整数指数幂的意义、零指数幂的意义以及乘方运算,本题属于基础题型. 20.【答案】4【分析】根据负整数指数幂进行计算即可求解. 【详解】解:212-⎛⎫ ⎪⎝⎭224== 故答案为:4.【点睛】本题考查了负整数指数幂,掌握负整数指数幂的运算法则是解题的关键.21.【答案】473m n - 【分析】根据整数指数幂的运算法则计算即可.【详解】解:()1223213m n m n --⎛⎫⋅- ⎪⎝⎭ ()46213m n m n ---=⋅-473m n -=-473m n=-; 故答案为:473m n- 【点睛】本题考查的负整数指数幂的含义,整数指数幂的运算,熟记运算法则是解本题的关键. 22.【答案】92.810-⨯【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:90.0000000028 2.810-=⨯.故答案为:92.810-⨯.【点睛】本题考查用科学记数法表示较小的数,一般形式为10n a -⨯,其中1||10a ≤<,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.23.【答案】41.210-⨯【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:40.00012 1.210-=⨯故答案为:41.210-⨯.【点睛】本题考查用科学记数法表示较小的数,一般形式为10n a -⨯,其中110a ≤<,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.24.【答案】-103.410⨯【分析】根据科学记数法的表示方法解答即可.【详解】解:100.00000000034 3.410-=⨯,故答案为:103.410-⨯.【点睛】此题考查了科学记数法的表示方法,科学记数法的表示形式为10n a ⨯的形式,其中≤<110a ,n 为整数,解题的关键是要确定a 的值及n 的值.25.【答案】(1)4(2)7312x y -(3)2221-++n n 【分析】(1)利用-1的偶次幂的法则、负指数幂法则、零指数幂法则即可得到答案;(2)根据乘方法则再利用单项式乘除单项式法则即可得到答案;(3)根据多项式除以单项式法则计算即可得到答案;【详解】解:(1)()()22012011 3.142π-⎛⎫-+--- ⎪⎝⎭ 1414=+-=(2)32332(2)(2)(2)(2)x y xy x y x ⋅-+-÷629324(2)(8)2x y xy x y x =⋅-+-÷7373(8)(4)x y x y -+-=7312x y =-(3)()()222226633m n m n m m --÷-=()()222221(3)3n n m m -++-÷- 2221n n =-++【点睛】本题考查了整式的混合运算,知识点有:-1的偶次幂的法则、负指数幂法则、零指数幂法则、单项式乘除单项式、多项式除以单项式,熟练掌握公式及法则是做题的关键.26.【答案】2【分析】本题主要考查了实数的运算,零指数幂,负整数指数幂,先计算零指数幂,负整数指数幂和算术平方根,再计算乘法,最后计算加减法即可. 【详解】解:0112433-⨯- 111233⨯+-= 11233=+- 2=.27.【答案】7【分析】利用零指数幂的运算法则,绝对值的意义,二次根式的化简及负整数指数幂的运算法则计算即可. 【详解】解:原式111644=-++ 7=【点睛】本题考查零指数幂的运算法则,绝对值的意义,二次根式的化简及负整数指数幂的运算法则,熟练掌握实数的运算法则是解答此类问题的关键.28.【答案】52【分析】根据求一个数的算术平方根、零指数和负整数指数幂的运算法则进行运算,即可求得. 019(2022)2--+1312=-+ 52=. 【点睛】本题考查了求一个数的算术平方根、零指数和负整数指数幂的运算法则,熟练掌握和运用各运算法则是解决本题的关键.29.【答案】(1)84.6710-⨯ (2)52.0810--⨯【分析】绝对值小于1的数可以利用科学记数法表示,一般形式为()10110n a a -⨯≤<,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】(1)解:0.0000000467用科学记数法表示为84.6710-⨯;(2)解:0.0000208-用科学记数法表示为52.0810--⨯.【点睛】本题考查用科学记数法表示绝对值小于1的数,一般形式为10-⨯n a ,其中110≤<a ,n 为由原数左边起第一个不为零的数字前面的0的个数所决定,解题的关键是确定a 和n 的值.30.【答案】(1)75.6710-⨯ (2)52.02310--⨯ (3)278.110-⨯【分析】本题考查了用科学记数法表示绝对值小于10的数,负整数指数幂的运算等知识.(1)用科学记数法表示绝对值小于10的数,一般形式为10n a ⨯,其中110a ≤<,n 为整数位数减1,据此即可解答;(2)用科学记数法表示绝对值小于10的数,一般形式为10n a ⨯,其中110a ≤<,n 为整数位数减1,据此即可解答;(3)先根据积的乘方和幂的乘方化为1018910910--⨯⨯⨯,再根据同底数幂的乘法法则进行计算,即可求解.【详解】(1)解:70.000000567 5.6710-=⨯;(2)解:50.00002023 2.02310--=-⨯;(3)解:()()2259310310--⨯⨯⨯1018910910--=⨯⨯⨯ 288110-=⨯288.11010-=⨯⨯278.110-=⨯.。

人教版八年级数学上册整数指数幂.docx

人教版八年级数学上册整数指数幂.docx

初中数学试卷 桑水出品整数指数幂例1:计算下列各式,并把结果化为只含有正整数指数幂的形式:①()321b a -; ② ()32222---⋅b a b a例2:用科学记数法表示下列各数:0.000012;0.00001例3:计算:4122b b a b a b a ÷--⋅⎪⎭⎫ ⎝⎛ 例4:先化简,再求值:()242442+⋅-+-x x x x ,其中5=x .A 档(巩固专练)1.计算:(1)810÷810= ;(2)10-2= ;(3)101031-⨯⎪⎭⎫ ⎝⎛= 。

(4)(-0.1)0= ;(5)020031⎪⎭⎫ ⎝⎛= ; (6)2-2= ; (7)221-⎪⎭⎫ ⎝⎛= 。

2.计算:(1)()()202010101010-⨯-+⨯;(2)()()44062242222410--⎡⎤-⨯-⨯÷-÷⨯÷⎣⎦(3)16÷(—2)3—(31)-1+(3-1)03.用小数表示下列各数:(1)10-4= ; (2)2.1×10-5= ;(3)-10-3×(-2)= ; (4)(8×105)÷(-2×104)3= 。

4.计算(2mn 2)-3(mn -2)-5并且把结果化为只含有正整数指数幂的形式。

5.计算下列各式,并且把结果化为只含有正整数指数幂的形式:(1)(a -3)2(ab 2)-3; (2)(2mn 2)-2(m -2n -1)-3.6.一个纳米粒子的直径是35纳米,它等于多少米?请用科学记数法表示.7.练习①用科学记数法表示:(1)0.000 03= ;(2)-0.000 0064= ;(3)0.000 0314= ;(4)2013 000= .②用科学记数法填空:(1)1秒是1微秒的1000000倍,则1微秒=_________秒;(2)1毫克=_________千克;(3)1微米=_________米; (4)1纳米=_________微米;(5)1平方厘米=_________平方米; (6)1毫升=_________立方米.B 档(提升精练)填空题1.用小数表示2.61×10-5=__________, =-0)14.3(π . 2.(3x -2)0=1成立的条件是_________.3.用科学记数法表示0.000695并保留两个有效数字为_______.4.计算(-3-2)3的结果是_________.5.若x 2+x -2=5,则x 4+x -4的值为_________6.若1,则x+x -1=__________.7.计算(-2a -5)2的结果是_________.8.若,152=-k 则k 的值是 .9.用正整数指数幂表示215a bc--= . 10.若0235=--y x ,则y x351010÷ = 选择题 11.化简11)(--+y x 为( )A 、y x +1B 、y x 1+ C.、1+xy y D 、1+xy x 12.下列计算正确的是( )A 、1221-=÷-B 、x x x214243=÷-- C 、6326)2(x x =--- D 、222743x x x =+-- 13.已知21=+-a a ,则22-+a a 等于( )A 、2B 、4C 、 6D 、814.化简111))((---++y x y x 的结果是( )A 、xyB 、xy 1C 、221yx D 、221y x + 15.国家质检总局出台了国内销售的纤维制品甲醛含量标准, 从2003年1月1 日起正式实施.该标准规定:针织内衣. 床上用品等直接接触皮肤的制品,甲醛含量应在百万分之七十五以下. 百万分之七十五用科学记数法表示应写成………( )A 、75×10-7;B 、75×10-6;C 、7.5×10-6;D 、7.5×10-516.在:①()110=-,②()111-=-,③22313aa =-, ④()()235x x x -=-÷-中,其中正确的式子有( ) A 、1个 B 、2个 C 、3个 D 、 4个17.002=-x 成立的条件是( )A 、x 为大于2的整数B 、x 为小于2的整数C 、x 为不等于2的整数D 、x 这不大于2的整数18.n 为正整数,且n n ---=-2)2(则n 是( )A 、偶数B 、奇数C 、正偶数D 、负奇数19.1642m n ÷÷等于( )A 、12--n mB 、122--n mC 、1232--n mD 、1242--n m20.若23.0-=a ,23--=b ,21()3c -=-,0)31(-=d ,则( ) A 、a <b <c <d B 、b <a <d <c C 、a <d <c <b D 、c <a <d <bC 档(跨越导练)计算,并使结果只含正整数指数幂:1. 1203122006-⎪⎭⎫ ⎝⎛+- 2. 2313(2)a b a b -3. 2313()()a bc ---4. )()2(2422222b a b a b a ----÷-⋅5. a a a a a -+÷++--)()2(122 6. 322224)2(3----⋅b a ab b a7. 2322212)()2(-----÷-m n m mn8. 20072007024)25.0()51(31)51()5131(⨯-+-+-÷⨯--9.已知a 、b 互为相反数,c 、d 互为倒数,12=-x ,2=y ,求22007)(y cd x b a --++ 的值.10.已知a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,求)21()())((21m m cd b a b a +-÷+-+-的值.11.若2010=a , 1510-=b 求b a 239÷的值.12.(1)据统计,全球每分钟约有8500000 t 污水排入江河湖海,这个排污量用科学记数法表示应为多少?(2)自从扫描隧道显微镜发明后,世界上便诞生了一门新学科,这就是“纳米技术”.已知52个纳米长为0.000000052 m ,用科学记数法表示此数为多少米?13.阅读下列材料:关于x 的方程:121212111,;222,;333,;x c x c x x c cx c x c x x c cx c x c x x c c +=+==+=+==+=+==的解是的解是的解是 请观察上述方程与解的特征,比较关于x 的方程(0)m m x c m x c+=+≠与它们的关系,猜想它的解是什么?并加以验证整数指数幂参考答案例1:①()3663321a b b a b a ==--; ②()8888662232222a b b a b a b a b a b a ==⋅=⋅------ 例2:551000001.0,102.1000012.0--=⨯=例3: ()()()()()()b a b ab b a b ab a a b a b b a a b a b a b a b a b a bb a b a b a b b a b a b a -=-+-=----=--=⋅--⋅=÷--⋅⎪⎭⎫ ⎝⎛222222222222244444444414412 例4:()242442+⋅-+-x x x x ()()()()()2212221222222-=+-=+⋅--=x x x x x x 当5=x 时,()21225252122122=-=-⨯=-x A 档(巩固专练)略B 档(提升精练)填空题1.用小数表示2.61×10-5=0.0000261, =-0)14.3(π 1. 2.(3x -2)0=1成立的条件是32≠x . 3.用科学记数法表示0.000695并保留两个有效数字为4100.7⨯.4.计算(-3-2)3的结果是7291-.5.若x 2+x -2=5,则x 4+x -4的值为 236.若1,则x+x -17.计算(-2a -5)2的结果是4a-10_. 8.若,152=-k 则k 的值是 2 .9.用正整数指数幂表示215a bc --= ca b 25 .10.若0235=--y x ,则y x 351010÷ = 100选择题11.C 12.D 13.A 14.B 15.D 16.B 17.A 18.B 19.D 20.BC 档(跨越导练)1-8 略9.4-10.1或9111.8112.(1)6105.8⨯(2)8102.5⨯13.略。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档