实验一基本电工仪表的使用与测量误差的计算

合集下载

基本电工仪表的使用实验报告

基本电工仪表的使用实验报告

基本电工仪表的使用实验报告基本电工仪表的使用实验报告引言:电工仪表是电力行业中常见的工具,用于测量电流、电压、电阻等电学量。

本次实验旨在通过使用基本电工仪表,掌握其使用方法和原理,进一步了解电学知识。

实验一:电流表的使用电流表是用来测量电流的仪表。

在实验中,我们使用了直流电路进行测量。

首先,将电流表的两个接线端与电路中的测量位置相连接。

然后,打开电路,读取电流表的示数。

需要注意的是,电流表的接线应符合电路的正负极性,并且选择适当的量程,以保证测量的准确性。

实验二:电压表的使用电压表是用来测量电压的仪表。

在实验中,我们使用了直流电路进行测量。

首先,将电压表的两个接线端与电路中的测量位置相连接。

然后,打开电路,读取电压表的示数。

需要注意的是,电压表的接线应符合电路的正负极性,并且选择适当的量程,以保证测量的准确性。

实验三:电阻表的使用电阻表是用来测量电阻的仪表。

在实验中,我们使用了直流电路进行测量。

首先,将电阻表的两个接线端与电路中的测量位置相连接。

然后,打开电路,读取电阻表的示数。

需要注意的是,电阻表的接线应符合电路的正负极性,并且选择适当的量程,以保证测量的准确性。

实验四:万用表的使用万用表是一种多功能的电工仪表,可以测量电流、电压、电阻等多种电学量。

在实验中,我们使用了万用表进行多种测量。

首先,选择合适的测量模式和量程。

然后,将万用表的接线端与电路中的测量位置相连接。

最后,打开电路,读取万用表的示数。

需要注意的是,万用表的接线应符合电路的正负极性,并且选择适当的量程,以保证测量的准确性。

实验五:测量误差的分析在实验中,我们发现测量结果与理论值之间存在一定的误差。

这是由于仪表本身的误差、接线不准确、电路中的其他元件等因素所导致的。

为了减小误差,我们应该选择合适的量程、仔细接线,并进行多次测量取平均值。

结论:通过本次实验,我们掌握了基本电工仪表的使用方法和原理。

电流表、电压表、电阻表和万用表在电路测量中起到了重要的作用。

实验报告基本电工仪表的使用

实验报告基本电工仪表的使用

实验报告基本电工仪表的使用篇一:实验一基本电工仪表的使用及测量误差的计算实验一基本电工仪表的使用及测量误差的计算一、实验目的1. 熟悉实验台上各类电源及各类测量仪表的布局和使用方法。

2. 掌握指针式电压表、电流表内阻的测量方法。

3. 熟悉电工仪表测量误差的计算方法。

二、原理说明1. 为了准确地测量电路中实际的电压和电流,必须保证仪表接入电路后不会改变被测电路的工作状态。

这就要求电压表的内阻为无穷大;电流表的内阻为零。

而实际使用的指针式电工仪表都不能满足上述要求。

因此,当测量仪表一旦接入电路,就会改变电路原有的工作状态,这就导致仪表的读数值与电路原有的实际值之间出现误差。

误差的大小与仪表本身内阻的大小密切相关。

只要测出仪表的内阻,即可计算出由其产生的测量误差。

以下介绍几种测量指针式仪表内阻的方法。

2. 用“分流法”测量电流表的内阻如图1-1所示。

A为被测内阻(RA)的直流电流表。

测量时先断开开关S,调节电流源的输出电流I 使A表指针满偏转。

然后合上开关S,并保持I值不变,调节电阻箱RB的阻值,使电流表的指针指在1/2满偏转位置,此时有IA=IS=I/2∴ RA=RB∥R1可调电流源R1为固定电阻器之值,RB可由电阻箱的刻度盘上读得。

图 1-1 3. 用分压法测量电压表的内阻。

如图1-2所示。

V为被测内阻(RV)的电压表。

测量时先将开关S闭合,调节直流稳压电源的输出电压,使电压表V的指针为满偏转。

然后断开开关S,调节RB使电压表V的指示值减半。

此时有:RV=RB+R1电压表的灵敏度为:S=RV/U (Ω/V) 。

式中U为电压表满偏时的电压值。

4. 仪表内阻引起的测量误差(通常称之为方可调稳压源法误差,而仪表本身结构引起的误差称为仪表基图1-2 本误差)的计算。

(1)以图1-3所示电路为例,R1上的电压为R1 1 UR1=─── U,若R1=R2,则 UR1=─ U 。

R1+R2 2 现用一内阻为RV的电压表来测量UR1值,当RVR1RV与R1并联后,RAB=───,以此来替代RV+R1RVR1────RV+R1上式中的R1,则得U'R1=────── U 图 1-3RVR1 ───+R2 RV+R1RVR1────RV+R1 R1 绝对误差为△U=U'R1-UR1=U(─────—-────)RVR1 R1+R2 ───+R2 RV+R1 -R2 1R2U化简后得△U=───────────────── 2 2RV(R1+2R1R2+R2)+R1R2(R1+R2)U若 R1=R2=RV,则得△U =-─6vU'R1-UR1-U/6相对误差△U%=─────×100%=──×100%=-33.3% UR1 U/2由此可见,当电压表的内阻与被则电路的电阻相近时,测量的误差是非常大的。

基本电工仪表的使用

基本电工仪表的使用

实验一123.掌握电压表、电流表内电阻的测量方法; 45.掌握信号发生器的使用二、原理说明1.在实际电路测量中,电压表在测量某两节点电压时应与该两节点并联连接,电流表在测量某一支路电流时应串接在该支路中,因此,就必须要求电压表内阻为无穷大,电流表内阻为零,但实际使用的电工仪表一般都不能满足上述要求,它们不可能为无穷大或者为零,因此当仪表接入电路时都会使电路原来状态产生变化,使被测的读数值与电路原来实际值之间产生误差,2.a.本实验测量电流表的内阻采用“分流法”,如图1—1所示,A 为被测内阻(R A )的直流电流表,测量前先断开开关S,调节电流源的输出电流I 使A 表指针满偏转,然后合上开关S,并保持I 值不变,调节电阻箱R 的阻值,使电流表A 的指针指在1/2满偏转位置,此时 2II I S A == ∴==⋅+R R R R R R R A 1//11b.测量电压表的内阻采用分压法,如图1—2 所示。

V 为被测内阻(R V )的电压表,测量时先将开关S 闭合,调节直流稳压源的输出电压,使电压表V 的指针满偏转指示值为V 1,然后断开开关S,调节R使电压表V的指示值减半。

此时RV =R +R 1三、实验设备;a) 万用表500b) EEL —06组件上的十进制可变电阻箱; c) EEL-06组件上的电阻8.2K Ω;10K Ω; d) 下组件恒压源0~30V ; e) 下组件恒流源0~20mA f)双踪示波器g) 信号源四、实验内容1、根据“分流法”原理测定500型万用表直流电流1mA 和10mA 档量限的内阻,线路如1—1所示。

其中R 为EEL-06十进制可变电阻箱,R 为EEL-06上10K Ω/8W电阻。

2、根据“分压法”原理按图1—2 接线测定万用表直流电压25V和100V档量限的内阻。

其中R为EEL—06 组件上十进制可变电阻箱,R为该组件上的10kΩ/83、示波器的使用用示波器观察信号源输出的波形,并记录。

基本电工仪表的使用及测量误差的计算实验报告

基本电工仪表的使用及测量误差的计算实验报告

基本电工仪表的使用及测量误差的计算实验报告一、实验目的1.了解基本电工仪表的种类、使用方法和特点;2.掌握测量仪表电压、电流、电阻的方法和技巧;3.熟练掌握测量误差的计算方法。

二、仪器和材料1.万用表、电表、电阻箱、标准电池;2.电源、导线、电阻器。

三、实验原理1.万用表的使用(1)万用表测量电压安装测量电压的插头,选择直流或交流电压档位,将插头分别接在测量的电路两点上,读出示数。

(2)万用表测量电流将测量电流的插头从电压/电阻插座转移到电流插座上,用导线将电路分别串接,读出示数。

(3)万用表测量电阻选择测量电阻挡位,将电阻器两端接在测量的电路两点上,读出示数即为电路的电阻值。

2.电表的使用电表一般用于测量电流和电压,使用时需注意测量的电量是否符合电表的量程。

3.电阻箱的使用电阻箱一般用于校正和调节电路中的电阻,可以通过调整电阻箱的电阻值来控制电路的电阻值。

4.测量误差的计算方法测量误差是指测量结果与真实值之间的偏差,通常用相对误差和绝对误差来表示。

相对误差:e_r =\dfrac{\left V_1 -V_2 \right }{V_1}\times 100\%绝对误差:e_a =\left V_1 -V_2 \rightV1为实际测量值,V2为标准值。

四、实验过程1.万用表的测量(1)用万用表测量直流电压连接直流电源和标准电阻,选择万用表直流电压档位,将红表笔接在正极,黑表笔接在负极,读出示数。

(2)用万用表测量交流电压连接交流电源和标准电阻,选择万用表交流电压档位,将红表笔接在电源阳极,黑表笔接在电源阴极,读出示数。

(3)用万用表测量电流连接直流电源、标准电阻和电流表,选择万用表直流电流档位,将红表笔接在电源正极,黑表笔接在电流表的接纳处,读出示数。

2.电表的使用用电表测量交流电压和直流电流,读出示数。

3.电阻箱的使用连接电源、电阻箱和万用表,选择万用表电阻挡位,通过调节电阻箱电阻值,将电路中的电阻值控制在一定范围内。

电工仪表的使用与测量误差实验报告

电工仪表的使用与测量误差实验报告

电工仪表的使用与测量误差实验报告示例文章篇一:《电工仪表的使用与测量误差实验报告》嘿,亲爱的小伙伴们!今天我要跟你们讲讲我做的这个超有趣的电工仪表使用与测量误差实验,那可真是让我大开眼界呀!实验开始前,老师就像个指挥官一样,站在讲台上给我们仔细地讲解各种电工仪表的用途和使用方法。

“同学们,这万用表啊,就像是个神奇的魔法棒,能测出电路中的各种数据!”老师一边说,一边拿起万用表给我们演示。

我心里直犯嘀咕:“真有这么神奇?”终于轮到我们自己动手啦!我和同桌小明兴奋得不行。

我拿起万用表,小心翼翼地摆弄着,感觉自己就像个小电工。

“哎呀,我这怎么测不出来啊?”小明着急地叫了起来。

我看了看他,笑着说:“你是不是没调对挡位啊?”小明挠挠头:“可能是吧,这也太难搞啦!”我赶紧帮他检查,还真被我发现了问题。

我们接着测量电阻,我眼睛紧紧盯着万用表的显示屏,心里紧张得要命,生怕出错。

“哇,测出来啦!”我高兴地喊了起来。

再看看旁边的小组,小红和小刚也在为测量电压的问题争论不休。

小红说:“我觉得应该是这样读数!”小刚却反驳道:“不对不对,你看清楚啦!”这实验过程中啊,真是状况百出,可把我们忙坏啦。

经过一番努力,我们终于完成了所有的测量任务。

但是,当我们对比测量结果的时候,却发现了一个大问题——测量误差!这可把我们愁坏了。

“为啥会有误差呢?”我自言自语道。

小明想了想说:“是不是我们操作不熟练呀?”我摇摇头:“也许是仪表本身就有一定的误差呢?”这时候老师走了过来,听到我们的讨论,笑着说:“孩子们,测量误差的产生有很多原因哦。

比如仪表的精度、环境的影响,还有你们的测量方法等等。

”经过老师这么一解释,我们恍然大悟。

通过这次实验,我深深地感受到,电工仪表的使用可不是一件简单的事情。

它需要我们认真仔细,还得掌握好多知识和技巧。

就像盖房子一样,每一块砖都要放对地方,才能建成牢固的大厦。

我们在使用电工仪表的时候,每一个操作步骤都不能马虎,不然就会得到不准确的结果。

实验一基本电工仪表使用及测量误差分析

实验一基本电工仪表使用及测量误差分析

实验一 基本电工仪表使用及测量误差分析一、实验目的1. 掌握电压表、电流表等使用方法。

2. 会测定电压表、电流表准确度。

3. 学会减少电表对测量结果的影响及测量误差的计祘。

二、实验原理用电工测量仪表测量一个电量时,仪表的指示值Ax 与被测量的实际值Ao 之间,不可避免地存在一定的误差,它可用两种形式表示:绝对误差:△=Ax -Ao 相对误差:ν=oA ∆×100% 用仪表测量会影响测量误差的因素很多(可参阅“附录一”或相关书籍),下面仅讨论其中的两个主要因素及处理方法。

1. 仪表准确度对测量误差的影响:仪表准确度关系到测量误差的大小。

目前,我国直读式电工测量仪表准确度分为0.1,0.2,0.5,1.0,1.5,2.5和5.0七个等级。

这些数字表示仪表在正常工作条件下进行测量时产生的最大相对误差的百分数。

仪表准确度等级通常标在仪表面板上。

仪表使用过程中应定期进行校验,最简单的校验方法是比较法。

按仪表校验规定,必须选取比被校表的准确度等级至少高2级的仪表作为标准表,校验可用图1-1所示电路。

图1-1 比较法校验电路在仪表的整个刻度范围内,逐点比较被校表与标准表的差值△,根据△最大值的绝对值m ∆与被校表量程Am 之比的百分数%100mm m A ∆=ν,可以确定被校表的准确度等级。

如测得结果%1.2=νm,则被校表的准确度等级νn 为2.5级。

例:有一准确度为2.5级的电压表,其量程为100V ,在正常工作条件下,可产生的最大绝对误差(即:由于仪表本身结构的不精确所产生的基本误差)为:m n U U ⨯=∆ν=±2.5%×100=±2.5(V )对于量程相同的仪表,νn越小,所产生的U ∆就越小。

恒压源被测表恒压源被测表(a)校验电压表(b)校验电流表另外,用上述电压表分别测量实际值U 为5V 和100V 的电压时,测量结果的相对误差分别为:%5.2%1001005.2%50%10055.2%1008020±=⨯±=±=⨯±=⨯∆=ννU U可见,在选用仪表量程时,被测量程值愈接近仪表满量程值,相对测量误差越小。

实验一基本电工仪表的使用与测量误差的计算

实验一基本电工仪表的使用与测量误差的计算

实验一基本电工仪表的使用与测量误差的计算一、实验目的1. 熟悉实验台上仪表的使用和布局;2. 熟悉恒圧源与恒流源的使用和布局;3. 拿握电压表、电流表内电阻的测量方法:1.掌握电工仪表测量误差的计算方法。

二、实验原理通常,用电斥表和电流表测最电路中的电压和电流,而电圧表和电流表都具有一定的内阻,分别用Rv和R A表示。

如图1-1所示,测量电阻R?两端电压U?时,电压表与R2 并联,只有电压表内阻Rv无穷人,才不会改变电路原*的状态。

如果测最电路的电流I,电流表串入电路,要想不改变电路原來的状态,电流表的内阻P A必须等于零。

但实际使用的电压表和电流表-•般都不能满足上述要求,即它们的内阴不町能为无穷人或者为零,因此肖仪表接入电路时都会使原来的状态发生变化,使被测的读数值与电路原来的实际值之间产生误差,这种由于仪表内阻引入的测最误差,称之为方法谋差。

显然,方法误差值的人小与仪表本身内阻值的人小密切相关,我们总是希望电压表的内阻越接近无穷人越好,而电流表的内阻越接近冬越好。

町见,仪表的内阻是一个十分关键的参数。

通常用以卜•方法测最仪表的内阻。

1•用“分流法”测量电流表的内阻设被测电流表的内阻为R A,满量程电流为G,测试电路如图1-2所示,首先断开开关S,调节恒流源的输出电流I,使电流表指针达到满偏转,即I =I A =Imo然后和上开关S,并保持I值不变,调节电阻箱R的阻值,使电流表的指针在1/2满量程位置,即I A =I S= Im/2则电流表的内阻R A M? O2.用“分压法”测量电压表的内阻设被测电压表的内阻为Rv,满量程电压为U m,测试电路如图1-3所示,首先闭合开关S, 调节恒圧源的输出电压U,使电压表指针达到满偏转,^U=Uv=U m。

然后断开开关S,并保持U 值不变,调节电阻箱R的阻值,使电压表的指针在1/2满量程位置,即U V=U m=U m /2-O O --------------------可调恒流源图1-2 Rv U m-u +-o o ----------可调恒压源图1-3则电压表的内阻Rv=R o图1-1电路中,由于电压表的内阻Rv 不为无穷大,在测最电斥时引入的方法误差计算 如下:R?上的电压为: R + % ,若R ]二R"则U 2=U/2现用一内阻Rv 的电压表来测5值,当Rv 与出并联后,° 珂+匕,以此来代替上式的若 R 1=R 2=R V ,则得4U 二U/6相对误差- /2本试验使用的电压表和电流表采用表头(1mA 、160Q )及其制作的电压表(IV 、10V ) 和电流表(1mA 、10mA )。

电工实验

电工实验

实验一,常用电工仪表的测量与误差分析一.实验目的1.掌握系统误差和随机误差的概念2.学会分析系统误差和随机误差的方法二.实验原理与说明(一)测量方法根据获得测量结果的方法不同,测量可以分为两大类:直接测量和间接测量。

1.直接测量法直接测量法是指被测量与其单位量作比较,被测量的大小可以直接从测量的结果得出。

例如:用电压表测量电压,读数即为被测电压值,这就是直接测量法。

直接测量法又分直接读数法和比较法两种。

上述用电压表测量电压,就是直接读数法,被测量可直接从指针指示的表面刻度读出。

这种测量方法的设备简单,操作方便,但其准确度较低,测量误差主要来源于仪表本身的误差,误差最小约可达±0.05%。

比较法是指测量时将被测量与标准量进行比较,通过比较确定被测量的值。

例如用电位差计测量电压源的电压,就是将被测电压源的电压与已知标准电压源的电压相比较,并从指零仪表确定其作用互相抵消后,即可以刻度盘读得被测电压源的电压值。

比较法的优点是准确度和灵敏度都比较高,测量误差主要决定于标准量的精度和指零仪表的灵敏度,误差最小约可达±0.001%,比较法的缺点是设备复杂,价格昂贵,操作麻烦,仅适用于较精密的测量。

2.间接测量法间接测量法是指测量时测出与被测量有关的量,然后通过被测量与这些量的关系式,计算得出被测量。

例如用伏安法测量电阻,首先测得被测电阻上的电压和电流,再利用欧姆定律求得被测电阻值。

间接测量法的测量误差较大,它是各个测量仪表和各次测量中误差的综合。

(二)测量误差测量中,无论采用什么样的仪表,仪器和测量方法,都会使测量结果与被测量的真实值(即实际值或简称真值)之间存在着差异,这就是测量误差。

测量误差可分为三类,即系统误差,偶然误差和疏忽误差。

1.系统误差系统误差的特点是测量结果总是向某一方向偏离,相对于真实值总是偏大或偏小,具有一定的规律性,根据其产生的原因可分为:仪表误差,理论或方法误差,个人误差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电工电子实验指导理工组:张延鹏实验一 基本电工仪表的使用与测量误差的计算一、实验目的1.熟悉实验台上仪表的使用和布局; 2.熟悉恒压源与恒流源的使用和布局; 3.掌握电压表、电流表内电阻的测量方法; 4.掌握电工仪表测量误差的计算方法。

二、实验原理通常,用电压表和电流表测量电路中的电压和电流,而电压表和电流表都具有一定的内阻,分别用R V 和R A 表示。

如图1-1所示,测量电阻R 2两端电压U 2时,电压表与R 2并联,只有电压表内阻R V 无穷大,才不会改变电路原来的状态。

如果测量电路的电流I ,电流表串入电路,要想不改变电路原来的状态,电流表的内阻R A 必须等于零。

但实际使用的电压表和电流表一般都不能满足上述要求,即它们的内阻不可能为无穷大或者为零,因此,当仪表接入电路时都会使原来的状态发生变化,使被测的读数值与电路原来的实际值之间产生误差,这种由于仪表内阻引入的测量误差,称之为方法误差。

显然,方法误差值的大小与仪表本身内阻值的大小密切相关,我们总是希望电压表的内阻越接近无穷大越好,而电流表的内阻越接近零越好。

可见,仪表的内阻是一个十分关键的参数。

通常用以下方法测量仪表的内阻。

1.用“分流法”测量电流表的内阻设被测电流表的内阻为R A ,满量程电流为I m ,测试电路如图1-2所示,首先断开开关S ,调节恒流源的输出电流I ,使电流表指针达到满偏转,即I =I A =I m 。

然后和上开关S ,并保持I 值不变,调节电阻箱R 的阻值,使电流表的指针在1/2满量程位置,即I A = I S = I m / 2则电流表的内阻R A =R 。

2.用“分压法”测量电压表的内阻设被测电压表的内阻为R V ,满量程电压为U m ,测试电路如图1-3所示,首先闭合开关S ,调节恒压源的输出电压U ,使电压表指针达到满偏转,即U =U V =U m 。

然后断开开关S ,并保持U 值不变,调节电阻箱R 的阻值,使电压表的指针在1/2满量程位置,即U V = U m = U m / 2可调恒压源 R V U m图1-3图1-2可调恒流源R 1则电压表的内阻R V = R 。

图1-1电路中,由于电压表的内阻R V 不为无穷大,在测量电压时引入的方法误差计算如下:R 2上的电压为:2212R U UR R =+,若R 1=R 2,则U 2=U /2现用一内阻R V 的电压表来测U 2值,当R V 与R 2并联后,/222V V R R R R R =+,以此来代替上式的R 2,则得222212V V V V R R R R U UR R R R R +'=++绝对误差为2222122221212122112()()()V V V V V V R R R R R R R U U U U UR R R R R R R R R R R R R R R +'∆=-=-⋅=⋅++++++若R 1=R 2= R V ,则得△U =U /6相对误差 22000000002610010033.32U U U U U U '-∆=⨯=⨯=本试验使用的电压表和电流表采用表头(1mA 、160Ω)及其制作的电压表(1V 、10V )和电流表(1mA 、10mA )。

三、实验设备1.直流数字电压表、直流数字电流表(EEL-06组件或EEL 系列主控制屏)2.恒压源(EEL-Ⅰ、Ⅱ、Ⅲ、Ⅳ均含在主控制屏上,根据用户的要求,可能有两种配置:(1)+6V(+5V),+12V,0-30V 可调或(2)双路0-30V 可调。

) 3.恒流源(0-500mA 可调)4.EEL-23组件(含电阻箱、固定电阻、电位器)或EEL-51组件5.EEL-30组件(含磁电式表头1mA 、160Ω,倍压电阻和分流电阻,电位器) 四、 实验内容1.据“分流法”原理测定直流电流表1mA 和10mA 量程的内阻实验电路如图1-2所示,其中R 为电阻箱,用×100Ω、×10Ω、×1Ω三组串联,1mA 电流表用表头和电位器RP2串联组成,10mA 电流表由1mA 于分流电阻并联而成,两个电流表都需要与直流数字电流表串联(采用20mA 量程档),由可调恒流源供电,调节电位器RP2校准满量程。

实验电路中的电源用可调恒流源,测试内容见表1-1,并将实验数据记入表中。

表2-1 电流表内阻测量数据2. 根据“分压法”原理测定直流电压表1V和10V量程的内阻实验电路如图1-3所示,其中R为电阻箱,用×1000Ω、×100Ω、×10Ω、×1Ω四组串联,1V、10V电压表分别用表头、电位器RP1和倍压电阻串联组成,两个电压表都需要与直流数字电压表并联,由可调恒压源供电,调节电位器RP1校准满量程。

实验电路中的电源用可调恒压源,测试内容见表1-2,并将实验数据记入表中。

表1-2 电压表内阻测量数据3.方法误差的测量和计算实验电路如图1-1所示,其中R1=300Ω,R2=200Ω,电源电压U=10V(可调恒压源),用直流电压表10V档量程测量R2上的电压U2之值,并计算测量的绝对误差和相对误差,试验和计算数据记入表1-3中。

表1-3 方法误差的测量与计算五、实验注意事项1.台上的恒压源、恒流源均可通过粗调(分段调)波动开关和细调(连续调)旋钮调节其输出量,并由该组件上的数字电压表、数字毫安表显示其输出量的大小。

在启动这两个电源时,应显示其输出电压或电流调节旋钮置零位,待实验时慢慢增大。

2.恒压源输出不允许短路,恒流源输出不允许开路。

3.电压表并联测量,电流表串入测量,并且要注意极性与量程的合理选择。

六、预习与思考题1.根据已知表头的参数(1mA、160Ω),计算出组成1V、10V电压表的倍压电阻和1mA、10mA的分流电阻。

2.若根据图1-2和图1-3已测量出电流表1mA档和电压表1V档的内阻,可否直接计算出10mA 档和10V 档的内阻?3.用量程为10A 的电流表测实际值为8A 电流时,仪表读数为8.1A ,求测量的绝对误差和相对误差。

4.如图1-4a 、b 为伏安法测量电阻的两种电路,被测电阻的实际值为R ,电压表的内阻为R V ,电流表的内阻为R A ,求两种电路测电阻R 的相对误差。

(a)图1-4(b)七、 实验报告要求1.据表1-1和表1-2数据,计算个被测仪表的内阻值,并与实际的内阻值相比较; 2.根据表1-3数据,计算测量的绝对误差和相对误差;实验二 直流电路中电位、电压的关系研究一、实验目的1、验证电路中电位与电压的关系。

2、掌握电路电位图的绘制方法。

二、实验原理在一个闭合电路中,各点电位的高低视所选的电位参考点的不同而改变,但任意两点间的电位差(即电压)则是绝对的,它不因参考点的变动而改变。

据此性质,我们可用一只电压表来测量出电路中各点的电位及任意两点间的电压。

电位图是一种平面坐标一、四象限内的折线图,其纵坐标为电位值,横坐标为各被测点。

要制作某一电路的电位图,应先以一定的顺序对电路中各被测点编号。

以图3-1的电路为例,如图中A ~F ,并在坐标轴上按顺序、均匀间隔标上A 、B 、C 、D 、E 、F 、A 。

再根据测得的各点电位值,在各点所在的垂直线上描点。

用直线依次连接相邻两个电位点,即得该电路的电位图。

在电位图中,任意两个被测点的纵坐标值之差即为两点之间的电压值。

在电路中电位参考点可任意选定。

对于不同的参考点,所绘出的电位图形是不同的,但其各点电位变化的规律却是一样的。

在作电位图或实验测量时必须正确区分电位和电压的高低,按照惯例,是以电流方向上的电压降为正,所以,在用电压表测时,若仪表指针正向偏转,则说明电表正极的电位高于负极的电位。

三、实验设备序号名称型号与规格数量备注1可调直流稳压电源0~30V 或0~12V12直流稳压电源6V 、 12V3万用表MF500B或其他14直流数字毫安表15直流数字电压表1四、实验内容图3-1按图3-1接线。

1、分别将两路直流稳压电源接入电路,令U1 = 6V,U2 = 12V。

(先调整输出电压值,再接入实验线路中。

电压应该用万用表测)。

2、以图3-1中的A点作为电位的参考点,分别测量B、C、D、E、F各点的电位值φ及相邻两点之间的电压值UAB、UBC、UCD、UDE、UEF及UFA,数据列于表中。

电位参考点Φ与UΦAΦBΦCΦDΦEΦFUABUBCUCDUDEUEFUFA A计算值测量值相对误差D计算值测量值相对误差五、实验注意事项1、本实验电路单元可设计多个实验,在做本实验时根据给出的电路图选择开关位置,连成本实验电路。

2、测量电位时,用万用表的直流电压档或用数字直流电压表测量时,用负表棒(黑色)接参考电位点,用正表棒(红色)接被测点,若指针正向偏转或显示正值,则表明该点电位为正(即高于参考点电位);若指针反向偏转或显示负值,此时应调换万用表的表棒,然后读出数值,此时在电位值之前应加一负号(表明该点电位低于参考点电位)。

六、思考题若以F点为参考电位点,实验测得各点的电位值,现令E点作为参考电位点,试问此时各点的电位值应有何变化?七、实验报告1、根据实验数据,绘制两个电位图形,并对照观察各对应两点间的电压情况。

两个电位图的参考点不同,但各点的相对顺序应一致,以便对照。

2、完成数据表格中的计算,对误差作必要的分析。

3、总结电位相对性和电压绝对性的结论。

实验三基尔霍夫定律一、实验目的1、加深对基尔霍夫定律的理解,用实验数据验证基尔霍夫定律。

2、学会用电流表测量各支路电流。

二、实验原理1、基尔霍夫电流定律(KCL):基尔霍夫电流定律是电流的基本定律。

即对电路中的任一个节点而言,流入到电路的任一节点的电流总和等于从该节点流出的电流总和,即应有∑I=0。

2、基尔霍夫电压定律(KVL):对任何一个闭合回路而言,沿闭合回路电压降的代数总和等于零,即应有∑U=0。

这一定律实质上是电压与路径无关性质的反映。

基尔霍夫定律的形式对各种不同的元件所组成的电路都适用,对线性和非线性都适用。

运用上述定律时必须注意各支路或闭合回路中电流的正方向,此方向可预先任意设定。

三、实验设备2直流稳压电源6V 、 12V3万用表MF500B或其他14直流数字毫安表15直流数字电压表1四、实验内容实验线路如图4-1。

把开关K1接通U1,K2接通U2,K3接通R4。

就可以连接出基尔霍夫定律的验证单元电路,如图4-2。

图4-1图4-21、实验前先任意设定三条支路和三个闭合回路的电流正方向。

图4-2中的I1、I2、I3的方向已设定。

三个闭合回路的电流正方向可设为ADEFA、BADCB、FBCEF。

2、分别将两路直流稳压源接入电路,令U1 = 8V,U2 = 12V。

相关文档
最新文档