概率 课件
合集下载
概率论课件之随机事件PPT课件

(4)德 摩根律 : A B A B, A B A B.
例1 设A,B,C 表示三个随机事件,试将下列事件 用A,B,C 表示出来.
(1) A 发生,且 B 与 C 至少有一个发生;
A( B∪C))
(2) A 与 B 发生,而 C 不发生; (3) A , B, C 中恰有一个发生;
ABC ABC ABC ABC
(4) A , B, C 中至少有两个发生;
AB BC AC
(5) A , B, C 中至多有两个发生;
ABCA不BC发生;
(6) A , B, C 中不多于一个发生.
AB BC AC
或ABC ABC ABC ABC
3. 小结
(1) 随机试验、样本空间与随机事件的关系
(4) 事件 A 与 B 积事件(交) 事件 A B { x x A 且 x B}称为事件
A 与事件 B 的积事件. A和B同时发生 A B发生 积事件也可记作 A B 或 AB.
实例 某种产品的合格与否是由该产品的长度 与直径是否合格所决定,设C=“产品合格” ,A =“长度合格”,B=“直径合格”.
AA B
B
Ω
B A
B
A AB Ω
(7) 事件 A 的对立事件
设 A 表示“事件 A 出现”, 则“事件 A 不出现”
称为事件 A 的对立事件或逆事件. 记作
A.
实例 “骰子出现1点”
“骰对子立不出现1点”
图示 A 与 B 的对立.
A
若 A 与 B对立,则有
A B 且 AB .
B A Ω
对立事件与互斥事件的区别 A、B 互斥(互不相容) A、B 对立(互逆)
(5) 事件 A 与 B 互不相容 (互斥)
例1 设A,B,C 表示三个随机事件,试将下列事件 用A,B,C 表示出来.
(1) A 发生,且 B 与 C 至少有一个发生;
A( B∪C))
(2) A 与 B 发生,而 C 不发生; (3) A , B, C 中恰有一个发生;
ABC ABC ABC ABC
(4) A , B, C 中至少有两个发生;
AB BC AC
(5) A , B, C 中至多有两个发生;
ABCA不BC发生;
(6) A , B, C 中不多于一个发生.
AB BC AC
或ABC ABC ABC ABC
3. 小结
(1) 随机试验、样本空间与随机事件的关系
(4) 事件 A 与 B 积事件(交) 事件 A B { x x A 且 x B}称为事件
A 与事件 B 的积事件. A和B同时发生 A B发生 积事件也可记作 A B 或 AB.
实例 某种产品的合格与否是由该产品的长度 与直径是否合格所决定,设C=“产品合格” ,A =“长度合格”,B=“直径合格”.
AA B
B
Ω
B A
B
A AB Ω
(7) 事件 A 的对立事件
设 A 表示“事件 A 出现”, 则“事件 A 不出现”
称为事件 A 的对立事件或逆事件. 记作
A.
实例 “骰子出现1点”
“骰对子立不出现1点”
图示 A 与 B 的对立.
A
若 A 与 B对立,则有
A B 且 AB .
B A Ω
对立事件与互斥事件的区别 A、B 互斥(互不相容) A、B 对立(互逆)
(5) 事件 A 与 B 互不相容 (互斥)
概率论与数理统计课件(共199张PPT)

P(An|A1A2…An-1).
33
例3. r只红球○ t只白球○
每次任取一只球观 察颜色后, 放回, 再 放回a只同色球
在袋中连续取球4次, 试求第一、二次取到红球且 第三、四次取到白球的概率.
34
(三) 全概率公式和贝叶斯公式:
1. 样本空间的划分
定:义 若 B 1,B 2, ,B n一组事 : 件
计算条件概率有两种方法:
1. 公式法:
先计P算(A)P, (AB然 ), 后按公式计算
P(B| A) P(AB.) P(A)
31
2. 缩减样本空间法:
在A发生的前提下, 确定B的缩减样本空间, 并在其 中计算B发生的概率, 从而得到P(B|A). 例2. 在1, 2, 3, 4, 5这5个数码中, 每次取一个数码, 取 后不放回, 连取两次, 求在第1次取到偶数的条件下, 第2
B
A S
(1) AB
8
2.和事件:
AB{x|xA或xB}称 为 A与B的 和 事 . 件
即AB,中 至 少 有 一 ,称个 为 A与 发 B的生,和 记AB.
可 列 个A1事 , A2,件 的 和 事 件 记 Ak. 为
k1
3.积事件: 事件A B={x|x A 且 x B}称A与B的积,
即事件A与B同时发A生. A B 可简记为AB.
i1
1i jn
P(A i A j Ak )
1i jkn
(1)n1 P(A1 A 2 A n ).
27
例4. 设P(A)=p, P(B)=q, P(AB)=r, 用p, q, r表示下列事 件的概率:
( 1 ) P ( A B ) (; P ( 2 A B ) ( ) ; P ( 3 A B ) ) (; ( 4 A B )
33
例3. r只红球○ t只白球○
每次任取一只球观 察颜色后, 放回, 再 放回a只同色球
在袋中连续取球4次, 试求第一、二次取到红球且 第三、四次取到白球的概率.
34
(三) 全概率公式和贝叶斯公式:
1. 样本空间的划分
定:义 若 B 1,B 2, ,B n一组事 : 件
计算条件概率有两种方法:
1. 公式法:
先计P算(A)P, (AB然 ), 后按公式计算
P(B| A) P(AB.) P(A)
31
2. 缩减样本空间法:
在A发生的前提下, 确定B的缩减样本空间, 并在其 中计算B发生的概率, 从而得到P(B|A). 例2. 在1, 2, 3, 4, 5这5个数码中, 每次取一个数码, 取 后不放回, 连取两次, 求在第1次取到偶数的条件下, 第2
B
A S
(1) AB
8
2.和事件:
AB{x|xA或xB}称 为 A与B的 和 事 . 件
即AB,中 至 少 有 一 ,称个 为 A与 发 B的生,和 记AB.
可 列 个A1事 , A2,件 的 和 事 件 记 Ak. 为
k1
3.积事件: 事件A B={x|x A 且 x B}称A与B的积,
即事件A与B同时发A生. A B 可简记为AB.
i1
1i jn
P(A i A j Ak )
1i jkn
(1)n1 P(A1 A 2 A n ).
27
例4. 设P(A)=p, P(B)=q, P(AB)=r, 用p, q, r表示下列事 件的概率:
( 1 ) P ( A B ) (; P ( 2 A B ) ( ) ; P ( 3 A B ) ) (; ( 4 A B )
概率论高等院校概率论课件

应用场景
强大数定律在统计学中用于 估计极端事件发生的概率和 风险,在决策理论中用于评 估最优策略和期望收益,在 可靠性工程中用于分析系统 的可靠性和寿命。
注意事项
强大数定律的应用有一定的 限制条件,例如随机序列必 须是独立同分布的。此外, 强大数定律并不能保证每个 随机事件的绝对正确性,而 只是给出了最大值分布的稳 定性。
连续随机过程
如布朗运动,每一步都是连续 的,每一步的状态都是连续的
。
随机游走与布朗运动
随机游走
一个随机过程,其中每一步都是随机的,通 常用来描述粒子的无规则运动。
布朗运动
一种连续随机过程,由大量微小粒子在流体 中无规则运动产生,通常用来描述微观粒子 的运动。
马尔科夫链与马尔科夫过程
马尔科夫链
一个随机过程,其中下一个状态只依赖于当前状态,与过去状态 无关。
注意事项
大数定律的前提是试验次数必须足够多,并且随 机事件之间必须是独立的。此外,大数定律并不 能保证每个随机事件的绝对正确性,而只是给出 了频率趋于概率的稳定性。
强大数定律
总结词
强大数定律是概率论中的重 要定理之一,它描述了随机 序列中最大值的分布性质。
详细描述
强大数定律指出,对于任意 给定的正整数序列$a_n$和 $b_n$,有$lim_{n to infty} frac{a_n}{b_n} = 1$的概率 为1。这个定理说明了随机 序列中最大值的分布具有很 强的稳定性。
随机变量的性质
随机变量具有可测性、可加性和有限 可加性。
离散型随机变量及其分布
离散型随机变量的定义
离散型随机变量是在样本空间中取有 限个或可数个值的随机变量。
离散型随机变量的分布
《概率》概率初步PPT免费课件

为红、绿、黄三种.指针的位置固定,转动转盘后任
其自由停止,其中的某个扇形会恰好停在指针所指
的位置(指针指向两个图形的交线时,当作指向其右
边的图形).求下列事件的概率:
(1)指针指向红色;
1 4
(2)指针指向黄色或绿色.
3 4
探究新知
素养考点 4 利用概率解决实际问题
例4 如图是计算机中“扫雷”游戏的画面.在一个有9×9
字被抽取的可能性大小相等,所以我们可以用
1 5
表示每一个数
字被抽到的可能性大小.
探究新知
活动2 : 掷骰子 掷一枚骰子,向上一面的点数有6种可能,即1、2、
3、4、5、6.
因为骰子形状规则、质地均匀,又是随机掷出,所以每
种点数出现的可能性大小相等.我们用
1 6
表示每一种点数出现
的可能性大小.
探究新知
3
巩固练习
袋子里有1个红球,3个白球和5个黄球,每一个 球除颜色外都相同,从中任意摸出一个球,则
1
P(摸到红球)= 9 ;
1
P(摸到白球)= 3 ;
5
P(摸到黄球)= 9 .
探究新知
素养考点 3 简单转盘的概率计算
例3 如图所示是一个转盘,转盘分成7个相同的扇形, 颜色分为红黄绿三种,指针固定,转动转盘后任其自 由停止,某个扇形会停在指针所指的位置,(指针指 向交线时当作指向其右边的扇形)求下列事件的概率. (1)指向红色; (2)指向红色或黄色; (3)不指向红色.
巩固练习
掷一个骰子,观察向上的一面的点数,求下列事 件的概率: (1)点数为2; (2)点数为奇数; (3) 点数大于2小于5.
(1)点数为2有1种可能,因此P(点数为2)= 1 ; 6
7.1.2全概率公式课件(人教版)

(1)从中任取一件,求此产品为正品的概率;
(2)现取到一件产品为正品,问它是由甲、乙、丙三个厂中哪个厂生产
的可能性大?
学习目标
新课讲授
课堂总结
解:设事件A表示“取到的产品为正品”,B1,B2,B3分别表示“产品由
甲、乙、丙厂生产”,由已知P(B1)=0.2,P(B2)=0.3,P(B3)=0.5,
P(A|B1)=0.95,P(A|B2)=0.9,P(A|B3)=0.8,
(1)由全概率公式得:
3
P ( A) P Bi P A∣ Bi
i 1
=0.2×0.95+0.3×0.9+0.5×0.8=0.86,
学习目标
新课讲授
课堂总结
(2)由贝叶斯公式得
P B1 P A∣ B1 0.2 0.95
贝叶斯公式:设A1,A2,...,An是一组两两互斥的事件,A1∪A2∪...∪An=Ω,
且P(Ai)>0,i=1,2,...,n,则对任意的事件B⊆Ω,P(B)>0,有
P Ai P( B | Ai )
P Ai P( B | Ai )
P( Ai | B)
nቤተ መጻሕፍቲ ባይዱ
, i 1, 2,, n.
设A1,A2,...,An是一组两两互斥的事件,A1∪A2∪...∪An=Ω,且P(Ai)>0,
i=1,2,...,n,则对任意的事件 ⊆ ,求事件B的概率P(B).
学习目标
课堂总结
新课讲授
概念生成
一般地,设A1,A2,...,An是一组两两互斥的事件,A1∪A2∪...∪An=Ω,
且P(Ai)>0,i=1,2,...,n,则对任意的事件 ⊆ ,有
(2)现取到一件产品为正品,问它是由甲、乙、丙三个厂中哪个厂生产
的可能性大?
学习目标
新课讲授
课堂总结
解:设事件A表示“取到的产品为正品”,B1,B2,B3分别表示“产品由
甲、乙、丙厂生产”,由已知P(B1)=0.2,P(B2)=0.3,P(B3)=0.5,
P(A|B1)=0.95,P(A|B2)=0.9,P(A|B3)=0.8,
(1)由全概率公式得:
3
P ( A) P Bi P A∣ Bi
i 1
=0.2×0.95+0.3×0.9+0.5×0.8=0.86,
学习目标
新课讲授
课堂总结
(2)由贝叶斯公式得
P B1 P A∣ B1 0.2 0.95
贝叶斯公式:设A1,A2,...,An是一组两两互斥的事件,A1∪A2∪...∪An=Ω,
且P(Ai)>0,i=1,2,...,n,则对任意的事件B⊆Ω,P(B)>0,有
P Ai P( B | Ai )
P Ai P( B | Ai )
P( Ai | B)
nቤተ መጻሕፍቲ ባይዱ
, i 1, 2,, n.
设A1,A2,...,An是一组两两互斥的事件,A1∪A2∪...∪An=Ω,且P(Ai)>0,
i=1,2,...,n,则对任意的事件 ⊆ ,求事件B的概率P(B).
学习目标
课堂总结
新课讲授
概念生成
一般地,设A1,A2,...,An是一组两两互斥的事件,A1∪A2∪...∪An=Ω,
且P(Ai)>0,i=1,2,...,n,则对任意的事件 ⊆ ,有
25-1 随机事件与概率 课件(共45张PPT)

7个扇形大小相同,转动的转盘又是自由停
止,所以指针指向每个扇形的可能性相等。
概率
小练手
按颜色把7个扇形分别记为:红1,红2,红3,绿1,绿2,黄1,黄2。所
有可能结果的总数为7,并且它们出现的可能性相等。
(1)指针指向红色(记为事件A)的结果有3种,即红1,红2,红3,因
3
此P(A)= 。
7
(2)指针指向红色或黄色(记为事件B)的结果有5种,即红1,红2,
小军先抽,他任意(随机)从盒中抽取一个纸团。请思考以下问题:
(1)抽到的数字有几种可能的结果?
(2)抽到的数字小于6吗?
(3)抽到的数字会是0吗?
(4)抽到的数字会是1吗?
随机事件
通过简单的推理或试验,可以发现:
(1)数字1,2,3,4,5都有可能抽到,共有5种
可能的结果,但是事先无法预料一次抽取会出现哪
机事件发生的频率去估计它的概率。
概率
在问题一中,从分别写有数字1,2,3,4,5
的五个纸团中随机抽取一个,这个纸团里的数
字有5种可能,即1,2,3,4,5。因为纸团
看上去完全一样,又是随机抽取,所以每个数
1
字被抽到的可能性大小相等。我们用 表示每
5
一个数字被抽到的可能性大小。
概率
在问题二中,掷一枚骰子,向上一面的
点数有6种可能,即1,2,3,4,5,6。
因为骰子形状规则、质地均匀,又是随
机掷出,所以每种点数出现的可能性大
1
小相等。我们用 表示每一种点数出现的
6
可能性大小。
概率
1 1
数值 和 刻画了试验中相应随机事件发
5 6
生的可能性大小、一般地,对于一个随
止,所以指针指向每个扇形的可能性相等。
概率
小练手
按颜色把7个扇形分别记为:红1,红2,红3,绿1,绿2,黄1,黄2。所
有可能结果的总数为7,并且它们出现的可能性相等。
(1)指针指向红色(记为事件A)的结果有3种,即红1,红2,红3,因
3
此P(A)= 。
7
(2)指针指向红色或黄色(记为事件B)的结果有5种,即红1,红2,
小军先抽,他任意(随机)从盒中抽取一个纸团。请思考以下问题:
(1)抽到的数字有几种可能的结果?
(2)抽到的数字小于6吗?
(3)抽到的数字会是0吗?
(4)抽到的数字会是1吗?
随机事件
通过简单的推理或试验,可以发现:
(1)数字1,2,3,4,5都有可能抽到,共有5种
可能的结果,但是事先无法预料一次抽取会出现哪
机事件发生的频率去估计它的概率。
概率
在问题一中,从分别写有数字1,2,3,4,5
的五个纸团中随机抽取一个,这个纸团里的数
字有5种可能,即1,2,3,4,5。因为纸团
看上去完全一样,又是随机抽取,所以每个数
1
字被抽到的可能性大小相等。我们用 表示每
5
一个数字被抽到的可能性大小。
概率
在问题二中,掷一枚骰子,向上一面的
点数有6种可能,即1,2,3,4,5,6。
因为骰子形状规则、质地均匀,又是随
机掷出,所以每种点数出现的可能性大
1
小相等。我们用 表示每一种点数出现的
6
可能性大小。
概率
1 1
数值 和 刻画了试验中相应随机事件发
5 6
生的可能性大小、一般地,对于一个随
《概率论》课件

物理学
描述粒子在气体或液体中的运动状态。
金融学
用于股票价格和收益率的分析。
隐马尔科夫模型
定义
隐马尔科夫模型是一种特殊的马尔科夫模型 ,其中观测状态与隐藏状态有关,而隐藏状 态之间相互独立。
应用
语音识别、手写识别、生物信息学等领域。
05
大数定律与中心极限定理
大数定律及其应用
大数定律
在独立重复试验中,当试验次数趋于无穷时,事件发 生的频率趋于该事件发生的概率。
《概率论》ppt课 件
目录
• 概率论简介 • 概率的基本性质 • 随机变量及其分布 • 随机过程与马尔科夫链 • 大数定律与中心极限定理 • 贝叶斯统计推断
01
概率论简介
概率论的定义
概率论
研究随机现象的数学学科,通过数学模型和公式 来描述随机事件、随机变量和随机过程。
随机变量
表示随机现象的数值变量,其取值具有随机性。
THANKS
感谢观看
计算机科学
概率论在计算机科学中用于算法设计和数据 挖掘等领域。
02
概率的基本性质
概率的公理化定义
概率的公理化定义是概率论的基础,它规定了概率的几个基本性质,包括非负性 、规范性、可加性和有限可加性。
非负性指的是任何事件的概率都不小于0;规范性指的是必然事件的概率为1;可 加性指的是两个独立事件的概率等于它们各自概率的和;有限可加性指的是任意 有限个两两独立的事件的概率等于这些事件概率的和。
应用
在统计学中,大数定律用于估计样本的统计量和参数 ,如平均值、方差等。
中心极限定理及其应用
中心极限定理
无论随机变量的分布是什么,当样本量足够大时,样 本均值的分布近似正态分布。
等可能性事件的概率课件

不可能事件的概率不是
总结词
不可能事件的概率是0,而不是接近0或一部分。
详细描述
不可能事件是指在一定条件下绝对不会发生的事件,例如在骰子游戏中,出现7 点的结果是绝对不可能的。因此,不可能事件的概率是0,表示为P(不可能事件 )=0。
独立事件的概率不符合乘法公式
总结词
独立事件的概率符合乘法公式,而不是加法或除法公式。
的变化,从而帮助中央银行制定合适的货币政策。
03
概率在政治学中的应用
在政治学中,概率模型可以用来预测选举结果和政治事件的发生。例如
,在民意调查中,概率模型可以用来估计不同候选人的支持率和选举结
果。
05
概率中的常见错误认识
必然事件的概率不是
总结词
必然事件的概率是1,而不是一部分或全部。
详细描述
必然事件是指在一定条件下一定会发生的事件,例如在骰子游戏中,出现1-6点 的结果是必然的。因此,必然事件的概率是1,表示为P(必然事件)=1。
详细描述
在赌博游戏中,玩家通常会面临一系列可能的结果,每个结果的发生概率是相等的。例如,在掷骰子 游戏中,每个数字出现的概率是1/6。通过概率计算,玩家可以了解游戏中各种可能性的大小,从而 制定更加明智的决策。
天气预报中的概率描述
总结词
天气预报中的概率描述是概率论在气象 学领域的重要应用。
VS
详细描述
如果有n个独立事件A1, A2, ..., An,那么 P(A1∩A2∩...∩An)=P(A1)×P(A2)×...×P(An)。
3
一般事件的概率乘法公式
对于任意两个事件A和B,有 P(A∩B)=P(A)×P(B|A)。
条件概率与独立性
条件概率的定义