材料弹性模量E和泊松比实验测定

合集下载

材料弹性常数Eμ的测定——电测法测定弹性模量E和泊松比μ

材料弹性常数Eμ的测定——电测法测定弹性模量E和泊松比μ

材料弹性常数Eμ的测定——电测法测定弹性模量E和泊松比μ材料的弹性常数是描述材料在受力作用下的变形性能的指标,常用的弹性常数有弹性模量E和泊松比μ。

弹性模量E是材料受力后单位应力引起的单位变形量,而泊松比μ是指材料沿一个方向的单位变形引起的另一个方向单位变形的比值。

在实际工程中,需要准确测定材料的弹性常数,以便设计和计算工程结构的变形和应力分布。

其中,弹性模量E的测定是相对简单和常用的,主要有拉伸试验、压缩试验和弯曲试验等方法。

而泊松比μ则需要通过更复杂的测试方法进行测定。

本文主要介绍电测法测定材料的弹性模量E和泊松比μ的原理和应用。

一、电测法测定弹性模量E电测法是通过测量材料受力后的电阻变化来间接计算材料的弹性模量。

根据导体的电阻与其长度、横截面积和电阻率之间的关系,当材料受到力作用后,其长度和横截面积都会发生变化,从而导致电阻发生变化。

由此可以利用电阻与长度和横截面积的关系,计算出材料的弹性模量。

电测法测定弹性模量E的步骤如下:1.制备测量样品:首先制备出符合测量要求的样品,通常为长条形状,并且长度和横截面积要容易测量。

2.安装测量装置:将样品安装在测量装置上,一般采用四点法或截面法进行测量。

在四点法中,两对电极分别用来传输电流和测量电压。

在截面法中,材料上有两组电极,用来传输电流和测量电压。

3.施加载荷:施加拉力或压力载荷到样品上,使其发生变形。

4.记录电阻变化:通过测量电阻的变化,可以得到材料受力后的长度变化。

5.计算弹性模量E:利用导线的电阻与线长、横截面积和电阻率的关系,结合样品的长度变化,可以计算出材料的弹性模量。

电测法测定弹性模量E的优点是测量简便、快速,对试样的要求相对较低,可以测量各种类型的材料。

但是该方法的准确性受到试样的尺寸和形状的限制,并且测量结果受到试样固定约束的影响。

二、电测法测定泊松比μ泊松比μ描述了材料在沿一个方向的拉伸或压缩应力下,垂直于该方向的单位变形的比值。

弹性模量e和泊松比的测定实验报告

弹性模量e和泊松比的测定实验报告

弹性模量e和泊松比的测定实验报告弹性模量e和泊松比是两个重要的物理参数,用于研究材料的力学特性。

它们的测定实验具有实际意义,可以为材料在应用中提供重要参考。

本文介绍了以《弹性模量e和泊松比的测定实验报告》为标题的实验报告,其中包括材料的选择、实验装置的组装、实验程序的进行、数据的采集、计算的验证。

一、材料的选择在实验中,需要选择测定弹性模量e和泊松比的材料,其中必须考虑材料的力学特性、用途等因素。

本报告选择了6061铝合金形式为实验材料,其性能有较高的强度和弹性,可适用于机械结构零件。

二、实验装置的组装实验装置包括机械力学实验仪、电子测量仪、玻璃垫片等。

实验装置的组装需要根据材料特性,把实验仪与上述装置连接起来,以便测量材料的受力状态。

三、实验程序的进行本报告的实验程序共分为五个步骤。

首先,将材料放置在实验装置中,并进行调节、精确定位;其次,加载试件,调节扭矩以获得稳定的变形;然后,调整电子测量仪,准确测量试件的变形、活塞的位移;最后,将所获得的数据记录到实验报告中,以供后续计算。

四、数据的采集在实验过程中,必须采集规定的实验数据,并记录在实验报告中。

本报告的数据包括材料的应力-应变曲线、变形量与负荷的关系、活塞的位移与负荷的关系等。

这些数据可以用于计算弹性模量e和泊松比。

五、计算的验证根据实验数据,可以计算得出弹性模量e和泊松比。

具体方法是,根据材料的应力-应变曲线,计算其弹性模量e;根据变形量与负荷的关系,求出其泊松比。

最后,还需要对计算出的结果进行标准化,以验证其准确性。

本报告的研究及内容的验证,说明了测定弹性模量e和泊松比的实验是可行的,并且可以得到较高的准确性。

这样,将来可以使用本报告的研究成果,为材料的运用提供依据。

综上所述,以《弹性模量e和泊松比的测定实验报告》为标题的实验报告,阐述了从材料的选择、实验装置的组装、实验程序的进行、数据的采集、计算的验证,以及研究成果的应用等方面,展示了测定弹性模量e和泊松比的实验及其可行性。

材料弹性常数E、μ测定——电测法测定弹性模量E及泊松比μ

材料弹性常数E、μ测定——电测法测定弹性模量E及泊松比μ

实验名称:材料弹性常数 E、μ的测定班级: 姓名: 学号: 同组者:一、实验目的测量金属材料的弹性模量E和泊松比μ;验证单向受力胡克定律;学习电测法的根本原理和电阻应变仪的根本操作。

二、实验仪器和设备1.微机控制电子万能试验机;2.电阻应变仪;3.游标卡尺。

三、试件中碳钢矩形截面试件,名义尺寸为bt=(166)mm;2材料的屈服极限s 360MPa。

四、实验原理和方法1、实验原理:材料在比例极限内服从虎克定律,在单向受力状态下,应力与应变成正比:E〔1〕上式中的比例系数E称为材料的弹性模量。

由以上关系,可以得到:P〔2〕EA材料在比例极限内,横向应变与纵向应变之比的绝对值为一常数:〔3〕上式中的常数称为材料的横向变形系数或泊松比。

本实验采用增量法,即逐级加载,分别测量在各相同载荷增量P作用下,产生的应变增量i 于是式〔2〕和式〔3〕分别写为:P〔4〕EiA0ii〔5〕ii根据每级载荷得到的 E i和i,求平均值:n EiE i1〔6〕nnii1〔7〕n以上即为实验所得材料的弹性模量和泊松比。

上式中n为加载级数。

2、实验方法〔1〕、电测法电测法根本原理:电测法是以电阻应变片为传感器, 通过测量应变片电阻的改变量来确定构件应变,并进一步利用胡克定律或广义胡克定律确定相应的应力的实验方法。

试验时,将应变片粘贴在构件外表需测应变的部位, 并使应变片的纵向沿需测应变的方向。

当构件该处沿应变片纵向发生正应变时,应变片也产生同样的变形。

这时,敏感栅的电阻由初始值R变为R+ R。

在一定范围内,敏感栅的电阻变化率R/R与正应变ε成正比,即:RR k上式中,比例常数k为应变片的灵敏系数。

故只要测出敏感栅的电阻变化率,即可确定相应的应变。

电阻应变仪测点桥的原理:电桥B、D端的输出电压为:UBDR1R4R2R3UR2)(R3R4)(R1当每一电阻分别改变R1, R2, R3,R4时,B、D端的输出电压变为:U(R1R1)(R4R4)(R2R2)(R3R3 )U(R1R1R2R2)(R3R3R4R4)略去高阶小量,上式可写为:U BD U R1R2 2(R1R2R3R4) (R1R2)R1R2R3R4在测试时,一般四个电阻的初始值相等,那么上式变为:UBD U(R1R2R3R4) 4R1R2R3R4得到:kUUBD(1234)4电阻应变仪的根本测量电路如果将应变仪的读数按应变标定,那么应变仪的读数为:4U BD(1234)kU〔2〕、加载方法——增量法与重复加载法增量法可以验证力与变形之间的线性关系,假设各级载荷增量P 相同,相应的应变增量也应大致相等,这就验证了虎克定律,如右图所示。

弹性参数测定实验报告(3篇)

弹性参数测定实验报告(3篇)

第1篇一、实验目的1. 熟悉弹性参数测定的基本原理和方法;2. 掌握测定材料的弹性模量、泊松比等弹性参数的实验步骤;3. 培养实验操作技能和数据分析能力。

二、实验原理弹性参数是描述材料在受力后发生形变与应力之间关系的物理量。

本实验采用拉伸试验方法测定材料的弹性模量和泊松比。

1. 弹性模量(E):在弹性范围内,应力(σ)与应变成正比,比值称为材料的弹性模量。

其计算公式为:E = σ / ε其中,σ为应力,ε为应变成分。

2. 泊松比(μ):在弹性范围内,横向应变(εt)与纵向应变(εl)之比称为泊松比。

其计算公式为:μ = εt / εl三、实验仪器与材料1. 仪器:材料试验机、游标卡尺、引伸计、应变仪、万能试验机、数据采集器等;2. 材料:低碳钢拉伸试件、标准试样、引伸计、应变仪等。

四、实验步骤1. 准备工作:将试样安装到材料试验机上,调整好试验机夹具,检查实验设备是否正常;2. 预拉伸:对试样进行预拉伸,以消除试样在安装过程中产生的残余应力;3. 拉伸试验:按照规定的拉伸速率对试样进行拉伸,记录拉伸过程中的应力、应变等数据;4. 数据处理:根据实验数据,计算弹性模量和泊松比;5. 结果分析:对比实验结果与理论值,分析误差产生的原因。

五、实验结果与分析1. 弹性模量(E)的计算结果:E1 = 2.05×105 MPaE2 = 2.00×105 MPaE3 = 2.03×105 MPa平均弹性模量E = (E1 + E2 + E3) / 3 = 2.01×105 MPa2. 泊松比(μ)的计算结果:μ1 = 0.296μ2 = 0.293μ3 = 0.295平均泊松比μ = (μ1 +μ2 + μ3) / 3 = 0.2943. 结果分析:实验结果与理论值较为接近,说明本实验方法能够有效测定材料的弹性参数。

实验过程中,由于试样安装、试验机夹具等因素的影响,导致实验结果存在一定的误差。

材料弹性常数E、μ的测定——电测法测定弹性模量E和泊松比μ

材料弹性常数E、μ的测定——电测法测定弹性模量E和泊松比μ

北京航空航天大学、材料力学、实验报告实验名称:材料弹性常数E 、μ的测定——电测法测定弹性模量E 和泊松比μ学号姓名实验时间:2010年11月17日 试件编号试验机编号 计算机编号 应变仪编号百分表编号成绩实验地点:主楼南翼116室12 11 11 11 11教师年 月 日一、实验目的1. 测量金属材料的弹性模量E 和泊松比μ;2. 验证单向受力虎克定律;3. 学习电测法的基本原理和电阻应变仪的基本操作。

二、实验仪器和设备1. 微机控制电子万能试验机;2. 电阻应变仪;3. 游标卡尺。

三、试件中碳钢矩形截面试件,名义尺寸为b ⨯t = (30⨯7.5)mm 2。

材料的屈服极限MPa s 360=σ。

四、实验原理和方法1、实验原理材料在比例极限内服从虎克定律,在单向受力状态下,应力与应变成正比:εσE = (1)上式中的比例系数E 称为材料的弹性模量。

由以上关系,可以得到:PE A σεε== (2)材料在比例极限内,横向应变ε'与纵向应变ε之比的绝对值为一常数:εεμ'=(3) 上式中的常数μ称为材料的横向变形系数或泊松比。

本实验采用增量法,即逐级加载,分别测量在各相同载荷增量∆P 作用下,产生的应变增量∆εi 。

于是式(2)和式(3)分别写为:ii A PE ε∆∆=0 (4) ii i εεμ∆'∆= (5)根据每级载荷得到的E i 和μi ,求平均值:n E E ni i∑==1(6)nni i∑==1μμ (7)以上即为实验所得材料的弹性模量和泊松比。

上式中n 为加载级数。

2、实验方法2.1电测法电测法基本原理:电测法是以电阻应变片为传感器,通过测量应变片电阻的改变量来确定构件应变,并进一步利用胡克定律或广义胡克定律确定相应的应力的实验方法。

试验时,将应变片粘贴在构件表面需测应变的部位,并使应变片的纵向沿需测应变的方向。

当构件该处沿应变片纵向发生正应变时,应变片也产生同样的变形。

实验指导-弹性模量e和泊松比μ的测定

实验指导-弹性模量e和泊松比μ的测定

实验指导-弹性模量e和泊松比μ的测定实验目的:1.了解测定材料弹性模量e和泊松比μ的基本原理和方法。

2.学会使用试验仪器仪表和科学实验的基本操作技能。

3.掌握数据处理和分析方法,能够写出实验报告和分析结果。

实验原理:弹性模量e和泊松比μ是描述物体材料弹性特性的两个基本参数。

提供了材料受应力变形的能力以及有关材料刚度的信息。

在此实验中,我们将测量黄铜材料的弹性模量e和泊松比μ。

弹性模量e的定义为:$$e=\frac {F}{A}\frac {l}{\Delta l}$$其中,F为施加在实验材料上的力,A为材料的横截面积,l为原始长度,$ \Delta l$为材料变形的长度。

弹性模量e与材料的质量、密度、成分等几何关系息息相关,并且通常用于比较材料的刚度。

例如,弹性模量较小的材料称为柔软的(如橡胶和橡皮),而弹性模量较大的材料称为硬的(如铁和钢)。

在此实验中,我们将使用悬挂杆装置轻轻拉伸黄铜材料并测量其伸长量,然后计算出弹性模量。

我们可以通过将某些材料压缩一段距离以使其横向膨胀,并根据样品横向压缩与纵向变形的比例来测量材料的泊松比。

例如,将铝制块放在压力机的支架上,对其施加一定的负载,观察其压缩和拉伸。

实验步骤:实验器材:悬挂杆、黄铜杆、叉子、刻度尺、磅秤、微量计等。

实验流程:1、将悬挂杆固定在支架上并通过一段细线与黄铜杆相连。

2、将黄铜杆悬挂在钩子上,使其垂直悬挂。

3、用微量计最初设置黄铜杆的长度,然后开始测量实验前后黄铜杆的长度变化量。

4、对黄铜杆施加很小的拉力,用磅秤测量小的施力。

5、根据测得的数据计算出弹性模量。

6、用叉子夹住黄铜杆的一端,将杆水平固定在磁铁的底部。

7、在另一端施加压力,引起样品长度变化和横向压缩,然后记录此变化,并测量棒子长和宽,在分析数据以获得材料的泊松比。

1、计算弹性模量:弹性模量e=(F/A)(l/Δl)N/μ2、计算黄铜杆的泊松比:μ=-(Δw/w)/(Δl/l)实验报告:1、简述实验的目的和原理。

弹性模量E与泊松比测定试验

弹性模量E与泊松比测定试验

实验八 弹性模量E 与泊松比μ测定试验一、实验目的1.测定金属材料的E 和μ并验证虎克定律。

2.学习掌握电测法的原理和电阻应变仪的操作。

二、实验原理板试样的布片方案如图8-1所示。

在试样中部截面上,沿正反两侧分别对称地布有一对轴向片R 和一对横向片R ˊ。

试样受拉时轴向片R 的电阻变化为∆R ,相应的轴向应变为εp 与此同时横向片因试样收缩而产生横向应变为εˊ。

E 与μ的测试方法如下:1.E 的测试在线弹性范围内E=εσ代表σ-ε曲线直线部分的斜率。

由于试验装置和安装初始状态的不稳定性。

拉伸曲线的初始阶段往往是非线性的。

为了减少测量误差,试验宜从初载P 0开始, P 0≠0,与P 0对应的应变仪读数εp 可预调到零,也可设定一个初读数,而E 可通过下式测定( 图8-2),即)(000εεεσ--=∆∆=n n A P P E P 0为试验的末载荷,为保证模型试验的安全,试验的最大载荷P max 应在试验前按同类材料的弹性极限σc 进行估算, P max 应使σmax < 80%σ c . 图8-1 板试件布片方案 图8-2 E 的测定图8-3 几种不同的组桥方式为验证虎克定律,载荷由P 0到P n 可进行分级加载,nP P P n 0-=∆,其中P n <P max .每增加一个ΔP,即记录一个相应的应变读数,检验ε的增长是否符合线性规律.用上述板试样测E,合理地选择组桥方式可有效ˊ εσR ˊR(a )单臂(b )串联 (c )半桥 (d )全桥工作片补偿片内接电阻地提高测试灵敏度和试验效率.下面讨论几种常见的组桥方式。

(1)单臂测量(图8-3a )试验时,在一定载荷条件下,分别对前、后两枚轴向应变片进行单片测量,并取其平均值2后前εεε+=。

显然(0εε-n )即代表载荷在(P n -P 0)作用下试样的实际应变量。

而且ε消除了偏心弯曲引起的测量误差。

(2) 轴向片串联后的单臂测量(图8-3b )为消除偏心弯曲的影响,可将前后轴向片串联后接在同一桥臂(AB )上,而相邻臂(BC )接相同阻值的补偿片。

弹性模量E及泊松比的测定

弹性模量E及泊松比的测定

实验三 弹性模量E 及泊松比υ的测定一、实验目的1.在比例极限内,测定钢材的弹性模量E 和泊松比υ,并验证虎克定律。

2.了解电测法的基本原理和方法,初步熟悉电阻应变仪的使用方法。

二、实验设备1.1—5—2型拉力试验机 2.静态数字应变仪 三、实验概述金属杆件在承受拉伸时,应力在比例极限以内,它与应变的关系遵循虎克定律: σ=E ε (1)式中,P 为拉伸载荷,A 0为试件的原始横截面积,ε为沿拉力方向的线应变或称纵向线应变,E 为材料的弹性模量。

由材料力学还可知,在比例极限内,试件的横向线应变与纵向线应变之间存在着一定的关系。

即有:ε横=-υε纵 (2) 式中的υ称为横向变形系数或泊松比。

弹性模量E 与泊松比υ是材料的两个重要力学性能数据。

在杆件的变形计算、稳定计算以及用实验方法测定构件的应力时,都是重要的计算依据。

因此,测定E 和υ是具有实际意义的。

本实验用板状拉伸试件进行。

在试件的正、反面各贴上纵向电阻应变片R x 和横向电阻应变片R y 各一个,如图3所示,令纵向为x 轴,横向为y 轴。

其上每个电阻应变片都是工作片,分别与温度补偿片按半桥测量法接入桥路进行测量。

由(1)、(2)式,若在载荷P 时测得各片的应变值,根据(3)、(4)式计算E υ。

为了检验实验进行是否正常,验证虎克定律,并减少测试中的误差,一般采取“增量法”进行实验。

所谓增量法,就是把欲加的最大载荷分为若干等份,逐级加载来测量试件的变形或应变。

若各级载荷增量相同并等于△P ,各片应变增量分别为△εx ,△εy ,则有:实验正常,在各级载荷增量P ∆相等时,各片相应的应变增量也基本相等,这就验证了虎克定律。

-13-A P=σX A PE ε⋅=0x yεευ−=)4()3(x A PE ε∆⋅∆=0)5()6(xy x y εεεευ∆∆=∆∆−=为了消除试验机机构之间的空隙与加载机构的间隙,在实验开始时,必须加一定量的初载荷。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验三 材料弹性模量E 和泊松比μ的测定实验
一、实验目的
1、测定常用金属材料的弹性模量E 和泊松比μ。

2、验证胡克(Hooke )定律。

二、实验仪器设备和工具
1、组合实验台中拉伸装置
2、XL2118系列力&应变综合参数测试仪
三、实验原理和方法
试件采用矩形截面试件,电阻应变片布片方式如图3-1。

在试件中央截面上,沿前后两面的轴线方向分别对称的贴一对轴向应变片R1、R1ˊ和一对横向应变片R2、R2ˊ,以测量轴向应变ε和横向应变εˊ。

补偿块
图 3-1 拉伸试件及布片图
1、
弹性模量
E 的测定
由于实验装置和安装初始状态的不稳定性,拉伸曲线的初始阶段往往是非线性的。

为了尽可能减小测量误差,实验宜从一初载荷00(0)P P ≠开始,采用增量法,分级加载,分别测量在各相同载荷增量P ∆作用下,产生的应变增量ε∆,并求出ε∆的平均值。

设试件初始横截面面积为0A ,又因L L ε=∆,则有
A E P ε∆∆=0
上式即为增量法测E 的计算公式。

式中 0A — 试件截面面积 ε∆ — 轴向应变增量的平均值
组桥方式采用1/4桥单臂测量方式,应变片连接见图3-2。

R 1 R
工作片 Uab
A C
补偿片
R 3 R 4
机内电阻 D
E
图3-2 1/4桥连接方式 实验时,在一定载荷条件下,分别对前、后两枚轴向应变片进行单片测量,并取其平均值
'11()2
εεε+=。

显然ε代表载荷P 作用下试件的实际应变量。

而且前后两片应变片可以相互抵消偏心弯曲引起的测量误差。

2、 泊松比μ的测定
利用试件上的横向应变片和纵向应变片合理组桥,为了尽可能减小测量误差,实验宜从一初载荷00(0)P P ≠开始,采用增量法,分级加载,分别测量在各相同载荷增量△P 作用下,横向应变增量ε'∆和纵向应变增量ε∆。

求出平均值,按定义 'εμε
∆=∆ 便可求得泊松比μ。

四、实验步骤
1、明确试件尺寸的基本尺寸,宽30mm ,厚5mm 。

2、调整好实验加载装置。

3、按实验要求接好线,调整好仪器,检查整个测试系统是否处于正常工作状态。

4、均匀缓慢加载至初载荷P 0,记下各点应变的初始读数;然后分级等增量加载,每增加一级
载荷,依次记录各点电阻应变片的应变值,直到最终载荷。

将实验记录填入实验报告
5、 作完实验后,卸掉载荷,关闭电源,整理好所用仪器设备,清理实验现场,将所用仪器设备复原,实验资料交指导教师检查签字。

相关文档
最新文档