高中数学选择性必修二 4 3 1 1等比数列的概念和通项公式(知识梳理+例题+变式+练习)(含答案)

合集下载

高中数学选择性必修二 4 3 1第2课时等比数列的性质及应用-练习

高中数学选择性必修二 4 3 1第2课时等比数列的性质及应用-练习

第四章数列4.3等比数列4.3.1等比数列的概念第2课时等比数列的性质及应用课后篇巩固提升基础达标练1.在等比数列{a n}中,a2=27,q=-1,则a5=()3A.-3B.3C.-1D.1,{a n}中,a2=27,q=-13则a5=a2·q3=-1,故选C.2.已知等比数列{a n}中,a3=4,a7=9,则a5=()A.6B.-6C.6.5D.±6:奇数项的符号相同,∴a5=√a3a7=√4×9=6.3.已知公比不为1的等比数列{a n}满足a15a5+a14a6=20,若a m2=10,则m=()A.9B.10C.11D.12,数列{a n}是等比数列,且a15a5+a14a6=2a102=20,所以a102=10,所以m=10.故选B.4.已知等比数列{a n}的各项均为正数,且a5a6+a4a7=18,则log3a1+log3a2+…+log3a10=()A.12B.10C.1+log35D.2+log35{a n}是等比数列,所以a5a6=a4a7=9,于是log3a1+log3a2+…+log3a10=log3(a1a2…a10)=log3(a5a6)5=log395=10.5.在等比数列{a n}中,若a7=-2,则该数列的前13项的乘积等于()A.-213B.213C.26D.-26{a n}是等比数列,所以a1a13=a2a12=a3a11=a4a10=a5a9=a6a8=a72,于是该数列的前13项的乘积为a1a2…a13=a713=(-2)13=-213.6.(多选)已知数列{a n}是等比数列,且a3+a5=18,a9+a11=144,则a6+a8的值可能为()A.-36B.36C.-36√2D.36√2{a n}的公比为q,则a9+a11=q6(a3+a5),于是q6=a9+a11a3+a5=14418=8,因此q3=±2√2,所以a6+a8=q3(a3+a5)=±36√2.故选CD.7.在正项等比数列{a n}中,a1a3=9,a5=24,则公比q=.{a n}中,a1a3=9,a5=24,可得a22=9,a2=3,得q3=a5a2=8,解得q=2.8.在《九章算术》中,“衰分”是按比例递减分配的意思.今共有粮98石,甲、乙、丙按序衰分,乙分得28石,则衰分比例为.q ,则甲、乙、丙各分得28q 石,28石,28q 石,∴28q +28+28q=98,∴q=2或12.又0<q<1,∴q=12.9.等比数列{a n }同时满足下列三个条件:①a 1+a 6=11,②a 3·a 4=329,③三个数23a 2,a 32,a 4+49依次成等差数列.试求数列{a n }的通项公式.a 1a 6=a 3a 4=329,所以{a 1+a 6=11,a 1·a 6=329,解得{a 1=13,a 6=323或{a 1=323,a 6=13.当{a 1=13,a 6=323时,q=2,所以a n =13·2n-1,这时23a 2+a 4+49=329,2a 32=329,所以23a 2,a 32,a 4+49成等差数列,故a n =13·2n-1.当{a 1=323,a 6=13时,q=12,a n =13·26-n ,23a 2+a 4+49≠2a 32,不符合题意.故通项公式a n =13·2n-1. 10.设{a n }是各项均为正数的等比数列,b n =log 2a n ,b 1+b 2+b 3=3,b 1b 2b 3=-3,求a n .{a n }的首项为a 1,公比为q ,∵b 1+b 2+b 3=3,∴log 2a 1+log 2a 2+log 2a 3=3, ∴log 2(a 1a 2a 3)=3,∴a 1a 2a 3=8,∴a 2=2. ∵b 1b 2b 3=-3,∴log 2a 1·log 2a 2·log 2a 3=-3, ∴log 2a 1·log 2a 3=-3,∴log 2a2q ·log 2a 2q=-3,即(log 2a 2-log 2q )·(log 2a 2+log 2q )=-3, 即(1-log 2q )·(1+log 2q )=-3, 解得log 2q=±2.当log 2q=2时,q=4,a 1=a 2q=12,所以a n =12×4n-1=22n-3;当log 2q=-2时,q=14,a 1=a 2q=8,所以a n =8×(14)n -1=25-2n .能力提升练1.已知数列{a n }满足log 3a n +1=log 3a n+1(n ∈N *),且a 2+a 4+a 6=9,则lo g 13(a 5+a 7+a 9)的值为( )A .-5B .-15C .5D .15log 3a n +1=log 3a n+1,∴a n+1a n=3, ∴数列{a n }是等比数列,公比q=3,∴lo g 13(a 5+a 7+a 9)=lo g 13(a 2q 3+a 4q 3+a 6q 3)=lo g 13[(a 2+a 4+a 6)q 3]=lo g 13(9×33)=-5.2.某工厂去年产值为a ,计划10年内每年比上一年产值增长10%,那么从今年起第几年这个工厂的产值将超过2a ( )A.6B.7C.8D.9n 年这个工厂的产值为a n ,则a 1=1.1a ,a 2=1.12a ,…,a n =1.1n a.依题意,得1.1n a>2a ,即1.1n >2,解得n ≥8.3.在正项等比数列{a n }中,a 3=2,16a 52=a 2a 6,则数列{a n }的前n 项积T n 中最大的值是( )A.T 3B.T 4C.T 5D.T 6,数列{a n }是等比数列,所以16a 52=a 2a 6=a 42,所以q 2=116.又因为数列{a n }为正项等比数列,所以q=14,所以a n =a 3·q n-3=2·43-n =27-2n ,令a n >1,即27-2n >1,得n<72,因为n ∈N *,所以n ≤3,数列{a n }的前n 项积T n 中T 3最大,故选A .4.等比数列{a n }中,若a 12=4,a 18=8,则a 36的值为 .,a 12,a 18,a 24,a 30,a 36成等比数列,且a 18a 12=2,故a 36=4×24=64.5.在正项等比数列{a n }中,已知a 1a 2a 3=4,a 4a 5a 6=12,a n-1a n a n+1=324,则n= .{a n }的公比为q ,由a 1a 2a 3=a 23=4与a 4a 5a 6=a 53=12可得a 53a 23=(q 3)3,q 9=3.又a n-1a n a n+1=a n 3=(a 2q n-2)3=324,因此q 3n-6=81=34=q 36,所以n=14.6.在公差不为零的等差数列{a n }中,2a 3-a 72+2a 11=0,数列{b n }是等比数列,且b 7=a 7,则a 7= ,b 6b 8= .2a 3-a 72+2a 11=2(a 3+a 11)-a 72=4a 7-a 72=0,又b 7=a 7≠0,∴b 7=a 7=4.∴b 6b 8=b 72=16.167.等差数列{a n }的公差和等比数列{b n }的公比都是d (d ≠1),且a 1=b 1,a 4=b 4,a 10=b 10. (1)求实数a 1和d 的值.(2)b 16是不是{a n }中的项?如果是,是第几项?如果不是,请说明理由.设数列{a n },{b n }的通项公式分别为a n =a 1+(n-1)d ,b n =b 1q n-1=a 1d n-1.由{a 4=b 4,a 10=b 10,得{a 1+3d =a 1d 3,a 1+9d =a 1d 9. 即3d=a 1(d 3-1),9d=a 1(d 9-1). 以上两式相除,整理得d 6+d 3-2=0. 解得d 3=1或d 3=-2.∵d ≠1,∴d 3=-2. ∴d=-√23.代入原方程中,解得a 1=√23.故a 1=√23,d=-√23.(2)由(1)得,数列{a n },{b n }的通项公式分别为a n =(2-n )·√23,b n =-(-√23)n . 故b 16=-(-√23)16=-32√23. 由(2-n )√23=-32√23,解得n=34. 故b 16为a n 的第34项.素养培优练某地区发生流行性病毒感染,居住在该地区的居民必须服用一种药片预防,规定每人每天上午8时和晚上20时各服一片.现知该药片每片含药量为220毫克,若人的肾脏每12小时从体内滤出这种药的60%,该药物在人体内的残留量超过380毫克,就将产生副作用.(1)某人上午8时第一次服药,问到第二天上午8时服完药后,这种药在他体内还残留多少? (2)若人长期服用这种药,这种药会不会对人体产生副作用?说明理由.设人第n 次服药后,药在体内的残留量为a n 毫克,则a 1=220,a 2=220+a 1×(1-60%)=220×1.4=308, a 3=220+a 2×(1-60%)=343.2,即到第二天上午8时服完药后,这种药在他体内还残留343.2毫克.(2)由题意,得a n+1=220+25a n,∴a n+1-11003=25(a n-11003),∴{a n-11003}是以a1-11003=-4403为首项,25为公比的等比数列,∴a n-11003=-4403(25)n-1,∵-4403(25)n-1<0,∴a n<11003=36623,∴a n<380.故若人长期服用这种药,这种药不会对人体产生副作用.。

高中数学选择性必修二 4 3 1(第1课时)等比数列的概念及通项公式 教案

高中数学选择性必修二 4 3 1(第1课时)等比数列的概念及通项公式 教案

等比数列的概念及通项公式教学设计
将一张很大的薄纸对折,对折30次后有多厚?
不妨假设这张纸的厚度为0.01毫米。

1 看一看纸的厚度的变化
提示:
折1次折2次折3次折4次 (30)
厚度2 (21)4 (22)8 (23)16 (24) (230)
反之,任给指数函数
f(x)=ka x (k,a为常数,k≠0,
a>0且 a≠1)
则f(1)=ka ,f(2)=ka2,⋯,f(n)=ka n,⋯
构成一个等比数列{ka n},其首项为ka,公比为a.
等比数列的单调性
由等比数列的通项公式与指数型函数的关系可得等比数列的单调性如下:
(1)当a1>0,q>1或 a1<0,0<q<1时,等比数列{a n}为递增数列;
(2)当a1>0,0<q<1或 a1<0,q>1时,等比数列{a n}为递减数列;
(3)当q=1时,数列{a n}为常数列;
(4)当q<0时,数列{a n}为摆动数列.
下面,我们利用通项公式解决等比数列的一些问题.
例1 若等比数列{a n}的第4项和第6项分别为。

4.3.1等比数列的概念及通项公式课件-高二上学期数学人教A版选择性必修第二册

4.3.1等比数列的概念及通项公式课件-高二上学期数学人教A版选择性必修第二册

a2 a1 d a2 a1 d
a3 a2 d a3 a1 2d
a4 a3 d a4 a1 3d
a3
2
q a3 a1q
a2

不完全归纳法得
an=a1+(n-1)d
类比
a4
3
q a4 a1q
a3

不完全归纳法得an=a1qn-1
a1 a3 a9 3a1 10 d 13d 13




a2 a4 a10 3a1 13 d 16d 16
13
16 .
____
对照归纳总结
等差数列
等比数列
通项公式
推导方法
累加法
不完全归纳法
定义式
a n 1 a n d ( n N )
公差公比
通项公式
等差/比中项
累乘法
不完全归纳法
*
a n 1
*
q( n N ), q 0
an
公差d可正、可负、可为零 公比d可正、可负、不可为零
a n a1 ( n 1)d
an am ( n m) d
A是a与b的等差中项
2 A a b.
n 1
ቤተ መጻሕፍቲ ባይዱ
an a1q
an am q n m
2
a与b的等比中项G ab (ab 0).
G b

a G
注:①同号的两数才有等比中项,且等比中项有2个,它们互为相反数;
②若a,G,b组成等比数列,则必有G2=ab;
而G2=ab并不能说明a,G,b组成等比数列,如a=G=0,b=5时不成等比.

高中数学选择性必修二(人教版)《4.3.1等比数列的概念及通项公式》课件

高中数学选择性必修二(人教版)《4.3.1等比数列的概念及通项公式》课件
4.3 等比数列 4.3.1 等比数列的概念
新课程标准 1.通过生活中的实例,理解等比数列的概念和通项公式的意义. 2.掌握等比数列的性质并应用. 3.通过掌握等比数列的定义及公式的应用,培养学生数学抽象、数学运
算的核心素养;通过对等比数列性质的应用,培养学生逻辑推理的核 心素养.
第一课时 等比数列的概念及通项公式
(2)充分利用各项之间的关系,直接求出 q 后,再求 a1,最后求 an, 这种方法带有一定的技巧性,能简化运算.
[对点练清]
1则 log3a2 020
等于
()
A.2 017
B.2 018
C.2 019
D.2 020
解析:由已知可得 a1=1,q=3,则数列{an}的通项公式为 an=a1·qn
得,最佳乐观系数 x 的值等于________. [析题建模]
读懂 题意

根据乐观系数的概念 及等比中项的意义
―建―模→
建立关于 x的方程

求 解
解析:已知(c-a)是(b-c)和(b-a)的等比中项, 即(c-a)2=(b-c)(b-a), 把 c=a+x(b-a)代入上式, 得 x2(b-a)2=[b-a-x(b-a)](b-a), 即 x2(b-a)2=(1-x)·(b-a)2. 因为 b>a,所以 b-a≠0, 所以 x2=1-x,即 x2+x-1=0, 解得 x=-1+2 5或 x=-1-2 5(舍去). 答案:-1+2 5
a1=32,
又 an=1,所以 32×12n-1=1, 即 26-n=20,所以 n=6.
法二:因为 a3+a6=q(a2+a5),所以 q=12. 由 a1q+a1q4=18,知 a1=32. 由 an=a1qn-1=1,知 n=6.

高中数学选择性必修二 4 3 1第一课时等比数列的概念及通项公式(含答案)

高中数学选择性必修二 4 3 1第一课时等比数列的概念及通项公式(含答案)

4.3.1 第一课时 等比数列的概念及通项公式[A 级 基础巩固]1.已知等比数列{a n }的公比为正数,且a 3a 9=2a 25,a 2=1,则a 1=( )A.12 B .2 C. 2 D .22 解析:选D 设数列{a n }的公比为q ,则q >0.由已知,得a 1q 2·a 1q 8=2(a 1q 4)2,即q 2=2.又q >0,所以q =2,所以a 1=a 2q =12=22,故选D. 2.已知等比数列{a n }的各项均为正数,公比q ≠1,k a 1a 2…a k =a 11,则k =( )A .12B .15C .18D .21 解析:选Dk a 1a 2…a k =a 1q 1231k k ++++(-)=a 1q 12k -=a 1q 10,∵a 1>0,q ≠1,∴k -12=10,∴k =21,故选D. 3.已知数列{a n }满足a 1=2,a n +1=3a n +2,则a 2 019=( )A .32 019+1B .32 019-1C .32 019-2D .32 019+2解析:选B ∵a n +1=3a n +2,∴a n +1+1=3(a n +1).∵a 1+1=3,∴数列{a n +1}是首项,公比均为3的等比数列,∴a n +1=3n ,即a n =3n -1,∴a 2 019=32 019-1.故选B.4.各项都是正数的等比数列{a n }中,a 2,12a 3,a 1成等差数列,则a 3+a 4a 4+a 5的值为( ) A.5+12 D .5-12C.1-52 D .5+12或1-52解析:选B 设{a n }的公比为q (q >0,q ≠1),根据题意可知a 3=a 2+a 1,∴q 2-q -1=0,解得q =5+12或q =1-52(舍去),则a 3+a 4a 4+a 5=1q =5-12.故选B. 5.等比数列{a n }的公比为q ,且|q |≠1,a 1=-1,若a m =a 1·a 2·a 3·a 4·a 5,则m 等于( )A .9B .10C .11D .12解析:选C ∵a 1·a 2·a 3·a 4·a 5=a 1·a 1q ·a 1q 2·a 1q 3·a 1q 4=a 51·q 10=-q 10,a m =a 1qm -1=-q m -1, ∴-q 10=-q m -1,∴10=m -1,∴m =11.6.若数列{a n }的前n 项和为S n ,且a n =2S n -3,则{a n }的通项公式是________.解析:由a n =2S n -3得a n -1=2S n -1-3(n ≥2),两式相减得a n -a n -1=2a n (n ≥2),∴a n =-a n -1(n ≥2),a n a n -1=-1(n ≥2). 故{a n }是公比为-1的等比数列,令n =1得a 1=2a 1-3,∴a 1=3,故a n =3·(-1)n -1.答案:a n =3·(-1)n -17.已知等比数列{a n }中,a 3=3,a 10=384,则a 4=________.解析:设公比为q ,则a 1q 2=3,a 1q 9=384,所以q 7=128,q =2,故a 4=a 3q =3×2=6.答案:68.设等差数列{a n }的公差d 不为0,a 1=9d ,若a k 是a 1与a 2k 的等比中项,则k =________.解析:∵a n =(n +8)d ,又∵a 2k =a 1·a 2k ,∴[(k +8)d ]2=9d ·(2k +8)d ,解得k =-2(舍去)或k =4. 答案:49.已知递增的等比数列{a n }满足a 2+a 3+a 4=28,且a 3+2是a 2和a 4的等差中项,求a n .解:设等比数列{a n }的公比为q .依题意,知2(a 3+2)=a 2+a 4,∴a 2+a 3+a 4=3a 3+4=28,∴a 3=8,a 2+a 4=20,∴8q +8q =20,解得q =2或q =12(舍去). 又a 1=a 3q 2=2,∴a n =2n . 10.已知数列{a n }的前n 项和S n =2-a n ,求证:数列{a n }是等比数列.证明:∵S n =2-a n ,∴S n +1=2-a n +1.∴a n +1=S n +1-S n =(2-a n +1)-(2-a n )=a n -a n +1.∴a n +1=12a n . 又∵S 1=2-a 1,∴a 1=1≠0.又由a n +1=12a n 知a n ≠0, ∴a n +1a n=12. ∴数列{a n }是等比数列.[B 级 综合运用]11.(多选)已知公差为d 的等差数列a 1,a 2,a 3,…,则对重新组成的数列a 1+a 4,a 2+a 5,a 3+a 6,…描述正确的是( )A .一定是等差数列B .公差为2d 的等差数列C .可能是等比数列D .可能既非等差数列又非等比数列解析:选ABC 由题意得a 1+a 4=2a 1+3d ,a 2+a 5=2a 1+5d ,a 3+a 6=2a 1+7d ,…,令b n =a n +a n +3,则b n +1-b n =[2a 1+(2n +3)d ]-[2a 1+(2n +1)d ]=2d ,因此数列a 1+a 4,a 2+a 5,a 3+a 6,…一定是公差为2d 的等差数列,即A 、B 正确,D 错误;当a 1≠0,d =0时b n =2a 1,此时数列a 1+a 4,a 2+a 5,a 3+a 6,…可以是等比数列,即C 正确;故选A 、B 、C.12.如图给出了一个“三角形数阵”.已知每一列数成等差数列,从第三行起,每一行数成等比数列,而且每一行的公比都相等,1412,1434,38,316…记第i 行第j 列的数为a ij (i ,j ∈N *),则a 53的值为( )A.116D .18 C.516 D .54解析:选C 第一列构成首项为14,公差为14的等差数列,所以a 51=14+(5-1)×14=54.又因为从第三行起每一行数成等比数列,而且每一行的公比都相等,所以第5行构成首项为54,公比为12的等比数列,所以a 53=54×⎝⎛⎭⎫122=516. 13.已知等差数列{a n }的首项为a ,公差为b ,等比数列{b n }的首项为b ,公比为a ,其中a ,b 都是大于1的正整数,且a 1<b 1,b 2<a 3,对于任意的n ∈N *,总存在m ∈N *,使得a m +3=b n 成立,则a =________,a n =________.解析:∵a 1<b 1,b 2<a 3,∴⎩⎪⎨⎪⎧a <b ,ab <a +2b ,∴b (a -2)<a <b ,∴a <3, 又∵a >1,且a ∈N *,∴a =2.∵对于任意的n ∈N *,总存在m ∈N *,使得a m +3=b n 成立, ∴令n =1,得2+(m -1)b +3=b ,∴b (2-m )=5,又∵2-m <2,且2-m ∈N *,∴⎩⎪⎨⎪⎧ 2-m =1,b =5,∴a n =a +(n -1)b =5n -3.答案:2 5n -314.已知数列{a n }满足a 1=73,a n +1=3a n -4n +2(n ∈N *). (1)求a 2,a 3的值;(2)证明数列{a n -2n }是等比数列,并求出数列{a n }的通项公式.解:(1)由已知得a 2=3a 1-4+2=3×73-4+2=5, a 3=3a 2-4×2+2=3×5-8+2=9.(2)∵a n +1=3a n -4n +2,∴a n +1-2n -2=3a n -6n ,即a n +1-2(n +1)=3(a n -2n ).由(1)知a 1-2=73-2=13, ∴a n -2n ≠0,n ∈N *.∴a n +1-2(n +1)a n -2n=3, ∴数列{a n -2n }是首项为13,公比为3的等比数列.∴a n -2n =13×3n -1,∴a n =3n -2+2n . [C 级 拓展探究]15.已知数列{a n }满足a 1=1,na n +1=2(n +1)a n .设b n =a n n .(1)求b 1,b 2,b 3;(2)判断数列{b n }是不是为等比数列,并说明理由;(3)求{a n }的通项公式. 解:(1)由条件可得a n +1=2(n +1)n a n .将n =1代入得,a 2=4a 1, 而a 1=1,所以a 2=4. 将n =2代入得,a 3=3a 2, 所以a 3=12.从而b 1=1,b 2=2,b 3=4.(2){b n }是首项为1,公比为2的等比数列.由条件可得a n +1n +1=2a n n,即b n +1=2b n , 又b 1=1,所以{b n }是首项为1,公比为2的等比数列.(3)由(2)可得a n n =2n -1,所以a n =n ·2n -1.。

人教A版选择性必修第二册4.3.1等比数列的概念及通项公式课件

人教A版选择性必修第二册4.3.1等比数列的概念及通项公式课件
1
又三个数为正数,故 q 3 或 q
3
当 q 3 时,a 1 ,这三个数依次为1,3,9;
1
当 q 时,a 3 ,这三个数依次为9,3,1.
3
9
由①得d 56
80
代入②中得:
q
80 160

60 0
q2
q
即3q 2 8q 4 0
1、有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一
∴数列{an}是以-1为首项,公比为2的等比数列.
反思感悟 巧设等差数列、等比数列的方法
(1)若三个数成等差数列,则常设成a-d,a,a+d.若三个数成等比数列,则常设
成 ,a,aq或a,aq,aq2.


(2)若四个数成等比数列,则可设为 ,a,aq,aq2.若四个正数成等比数列,则可


(2)若a1+a2+a3=7,a1a2a3=8,求数列{an}的通项公式.
解析:(1)由等比数列的性质,有 a 2a 10 a 62 ,
所以 a 2a 6a 10 a 63 27,得 a 6 3 ,
则 a 3a 9 a 62 9 .
பைடு நூலகம்
(2)由等比数列的性质,有 a 1a 3 a 22 ,
思考:0 , 0, 0 ,…是等比数列? 不是等比数列
思考:2 , 0, 2,0,…是等比数列?
不是等比数列
结论:1、常数列一定是等差数列
2、 任意项不为零的常数列是等比数列
课堂探究
类比等差数列,在如下的两个数之间,插入一个
什么数后这三个数就会成为一个等比数列:
(1) 2,( 4或-4 ),8

数学人教A版 选择性必修第二册第四章(数列) 4.3.1(等比数列) 第2课时 等比数列的判定与性质

数学人教A版 选择性必修第二册第四章(数列) 4.3.1(等比数列) 第2课时 等比数列的判定与性质

跟踪训练3 设{an}是各项为正数的无穷数列,Ai是边长为ai,ai+1的矩形 面积(i=1,2,…),则{An}为等比数列的充要条件为 A.{an}是等比数列 B.a1,a3,…,a2n-1,…或a2,a4,…,a2n,…是等比数列 C.a1,a3,…,a2n-1,…和a2,a4,…,a2n,…均是等比数列
a q
,a,aq;
当四个正数(负数)成等比数列时,可设为 qa3,aq,aq,aq3.
跟踪训练2 则a7等于 A.4
(1)已知等比数列{an}满足a1+a5+a9=21,a4+a8+a12=42 2,
√B.8
C.16
D.32
设数列{an}的公比为q, 则a4+a8+a12=(a1+a5+a9)q3, 即 21q3=42 2,解得 q= 2. 因为a1+a5+a9=a1(1+q4+q8)=21a1=21, 所以a1=1,则a7=a1q6=8.
问题3 结合上面的类比,你能把等差数列里面的am+an=ak+al(m+n= k+l,m,n,k,l∈N*),类比出等比数列中相似的性质吗?
提示 类比可得aman=akal,其中m+n=k+l,m,n,k,l∈N*. 推导过程:am=a1qm-1,an=a1qn-1,ak=a1qk-1,al=a1ql-1, 所以aman=a1qm-1·a1qn-1=a21 qm+n-2,akal=a1qk-1·a1ql-1=a21 qk+l-2, 因为m+n=k+l,所以有aman=akal.
n+2 由 a1=1,an+1= n Sn,得 an>0,Sn>0.
n+2 由 an+1= n Sn,an+1=Sn+1-Sn,
得(n+2)Sn=n(Sn+1-Sn),
整理,得nSn+1=2(n+1)Sn,

人教版高中数学选择性必修第二册4.3.1等比数列的概念(1课时)

人教版高中数学选择性必修第二册4.3.1等比数列的概念(1课时)

课时学案
题型一 等比数列的概念
例 1 观察下面几个数列:
①1,2,4,8,16,…;
②1,12,14,18,116,…;
③1,-1,1,-1,1,…;
④12,-1,2,-4,8,….
从第2项起,每一项与它前一项
上面的几组数列的共同点是:_____________________________
__的_比__都__等__于_同__一__个__非_零__的__常__数_____.像这样的数列,就叫做等比数列,这
个非零常数叫做等比数列的__公__比____.
探究 1 如果一个数列{an}的各项符合关系式aan+n1=q(非零常 数)或aan-n 1=q(n≥2),即该数列是等比数列.反之,该数列不是等 比数列.
思考题 1 下列所给数列中,等比数列的序号是___①_③____. ①1,1,1,1,1,…;②0,1,2,4,8,…; ③2- 3,-1,2+ 3,…;④12,2,4,8,16,….
4.已知等差数列{an}中,公差 d≠0,且 a1,a3,a9 成等比数 列,则aa21++aa43++aa190的值为____11_36___.
解析 由题意知 a3 是 a1 和 a9 的等比中项, ∴a32=a1a9. ∴(a1+2d)2=a1(a1+8d), 解得 a1=d, ∴aa21++aa43++aa190=1136dd=1136.
【答案】 (3)不能,不能
题型三 通项公式
例 3 在等比数列{an}中. (1)已知 a1=3,q=-2,求 a6; (2)已知 a3=20,a6=160,求 an; (3)若 a1+a2+a3=7,a1a2a3=8,求 an.
【解析】 (1)由等比数列的通项公式,得 a6=3×(-2)6-1=-96. (2)设等比数列的公比为 q, 那么aa11qq25==2106,0,解得qa1==25,. ∴an=a1qn-1=5×2n-1.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.3.1.1等比数列的概念和通项公式知识点一 等比数列的概念(1)文字语言:一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q(q ≠0)表示. (2)符号语言:a n +1a n =q (q 为常数,n ∈N *)【重点总结】(1)由等比数列的定义知,数列除末项外的每一项都可能作分母,故每一项均不为0,因此公比也不为0,由此可知,若数列中有“0”项存在,则该数列不可能是等比数列.(2)“从第2项起”是因为首项没有“前一项”,同时注意公比是每一项与其前一项之比,前后次序不能颠倒.(3)定义中的“同一个常数”是定义的核心之一,一定不能把“同”字省略.要点二 等比中项如果在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项. 【重点总结】(1)若G 是a 与b 的等比中项,则G a =bG,所以G 2=ab ,G =±ab.(2)与“任意两个实数a ,b 都有唯一的等差中项A =a +b2”不同,只有当a 、b 同号时a 、b 才有等比中项,并且有两个等比中项,分别是ab 与-ab ;当a ,b 异号时没有等比中项.(3)在一个等比数列中,从第2项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等比中项. 要点三 等比数列的通项公式设等比数列{a n }的公比为q ,则这个等比数列的通项公式是a n =11n a q (a 1,q ≠0且n ∈N *). 【重点总结】(1)已知首项a 1和公比q ,可以确定一个等比数列. (2)在公式a n =a 1q n -1中,有a n ,a 1,q ,n 四个量,已知其中任意三个量,可以求得第四个量,其中a 1,q 为两个基本量.(3)对于等比数列{a n },若q<0,则{a n }中正负项间隔出现,如数列1,-2,4,-8,16,…;若q>0,则数列{a n }各项同号.从而等比数列奇数项必同号;偶数项也同号.【基础自测】1.判断正误(正确的画“√”,错误的画“×”)(1)若一个数列为{a n },且满足a na n -1=q (n ≥2,q 为不等于0的常数),则这个数列是等比数列.( )(2)在等比数列{a n }中,若已知任意两项的值,则可以求出首项、公比和数列任一项的值.( ) (3)G 为a ,b 的等比中项⇔G 2=ab .( )(4)若一个数列从第二项开始,每一项都是它前后两项的等比中项,则这个数列是等比数列.( ) 【答案】(1)√(2)√(3)×(4)× 2.(多选题)下列数列不是等比数列的是( )A .2,22,3×22,… B.1a ,1a 2,1a3,…C .s -1,(s -1)2,(s -1)3,…D .0,0,0,… 【答案】ACD【解析】A 中,222≠3×2222,A 不是等比数列;B 中,1a 21a =1a 31a 2=…,B 是等比数列;C 中,当s =1时,不是等比数列;当s ≠1时,是等比数列,所以C 不是等比数列;D 显然不是等比数列.故选ACD. 3.已知{a n }是等比数列,a 1=1,a 4=22,则a 3=( ) A .±2 B .2 C .-2 D .4 【答案】B【解析】设等比数列{a n }的公比为q ,则有1×q 3=22=(2)3,∴q =2,∴a 3=a 4q=2,故选B.4.已知等比数列{a n }中,a 1=-2,a 3=-8,则a n =________. 【答案】-2n 或(-2)n【解析】∵a 1=-2,a 3=-8,∴a 3a 1=q 2=-8-2=4,∴q =±2,∴a n =(-2)·2n -1或a n =(-2)·(-2)n -1,即a n=-2n 或a n =(-2)n .题型一 等比数列通项公式的求法及应用 探究1 基本量的计算 【例1】在等比数列{a n }中 (1)a 4=2,a 7=8,求a n ;(2)a 2+a 5=18,a 3+a 6=9,a n =1,求n .【解析】(1)因为⎩⎪⎨⎪⎧ a 4=a 1q 3,a 7=a 1q 6,所以⎩⎪⎨⎪⎧a 1q 3=2, ①a 1q 6=8, ② 由②①得q 3=4,从而q =34,而a 1q 3=2, 于是a 1=2q 3=12,所以a n =a 1q n -1=22-53n .(2)方法一:由已知可得⎩⎪⎨⎪⎧a 2+a 5=a 1q +a 1q 4=18, ①a 3+a 6=a 1q 2+a 1q 5=9, ② 由②①得q =12,从而a 1=32.又a n =1,所以32×⎝⎛⎭⎫12n -1=1,即26-n =20,所以n =6. 方法二:因为a 3+a 6=q (a 2+a 5),所以q =12.由a 1q +a 1q 4=18,得a 1=32.由a n =a 1q n -1=1,得n =6. 【重点小结】 (1)由a 7a 4=q 3便可求出q ,再求出a 1,则a n =a 1·q n -1.(2)两个条件列出关于a 1,q 的方程组,求出a 1,q 后再由a n =1求n ;也可以直接先由q =a 3+a 6a 2+a 5入手.【方法归纳】等比数列通项公式的求法(1)根据已知条件,建立关于a 1,q 的方程组,求出a 1,q 后再求a n ,这是常规方法.(2)充分利用各项之间的关系,直接求出q 后,再求a 1,最后求a n ,这种方法带有一定的技巧性,能简化运算.探究2 等比数列的实际应用【例2】计算机的价格不断降低,若每台计算机的价格每年降低13,现在价格为8 100元的计算机3年后的价格可降低为( )A .300元B .900元C .2 400元D .3 600元 【答案】C【解析】降低后的价格构成以23为公比的等比数列,则现在价格为8 100元的计算机3年后的价格可降低为8 100×⎝⎛⎭⎫233=2 400(元). 【方法技巧】关于等比数列模型的实际应用题,先构造等比数列模型,确定a 1和q ,然后用等比数列的知识求解. 【跟踪训练1】(1)在等比数列{a n }中,a 3+a 4=4,a 2=2,则公比q 等于( ) A .-2 B .1或-2 C .1 D .1或2 【答案】B【解析】a 3+a 4=a 2q +a 2q 2=2q +2q 2=4, 即q 2+q -2=0,解得q =1或q =-2,故选B.(2)在等比数列{a n }中,a n >0,已知a 1=6,a 1+a 2+a 3=78,则a 2等于( ) A .12 B .18 C .24 D .36 【答案】B【解析】设公比为q ,由已知得6+6q +6q 2=78, 即q 2+q -12=0解得q =3或q =-4(舍去). ∴a 2=6q =6×3=18.故选B.(3)某林场的树木每年以25%的增长率增长,则第10年末的树木总量是今年的________倍. 【答案】1.259【解析】设这个林场今年的树木总量是m ,第n 年末的树木总量为a n ,则a n +1=a n +a n ×25%=1.25a n . 则a n +1a n=1.25,则数列{a n }是公比q =1.25的等比数列. 则a 10=a 1q 9=1.259 m.所以a 10a 1=1.259.题型二 等比中项【例3】已知等比数列的前三项和为168,a 2-a 5=42,求a 5,a 7的等比中项.【解析】设该等比数列的公比为q ,首项为a 1, 因为a 2-a 5=42,所以q ≠1,由已知,得⎩⎪⎨⎪⎧a 1+a 1q +a 1q 2=168a 1q -a 1q 4=42, 所以⎩⎪⎨⎪⎧ a 1(1+q +q 2)=168a 1q (1-q 3)=42①②因为1-q 3=(1-q )(1+q +q 2),所以由②除以①,得q (1-q )=14.所以q =12.所以a 1=4212-⎝⎛⎭⎫124=96.若G 是a 5,a 7的等比中项,则应有G 2=a 5a 7=a 1q 4·a 1q 6=a 21q 10=962×⎝⎛⎭⎫1210=9. 所以a 5,a 7的等比中项是±3. 【方法归纳】(1)首项a 1和q 是构成等比数列的基本量,从基本量入手解决相关问题是研究等比数列的基本方法. (2)解题时应注意同号的两个数的等比中项有两个,它们互为相反数,而异号的两个数没有等比中项. 【跟踪训练2】如果-1,a ,b ,c ,-9成等比数列,那么( ) A .b =3,ac =9 B .b =-3,ac =9 C .b =3,ac =-9 D .b =-3,ac =-9【答案】B【解析】∵-1,a ,b ,c ,-9成等比数列, ∴a 2=(-1)×b ,b 2=(-1)×(-9)=9 ∴b <0,∴b =-3.又b 2=ac ,∴ac =9.故选B.题型三 等比数列的判定与证明【例4】已知数列{a n }的前n 项和为S n ,S n =13(a n -1)(n ∈N *)(1)求a 1,a 2;(2)求证:数列{a n }是等比数列.【解析】(1)当n =1时,S 1=13(a 1-1)=a 1,解得:a 1=-12,当n =2时,S 2=13(a 2-1)=a 1+a 2,解得a 2=14.(2)证明:当n ≥2时,a n =S n -S n -1=13(a n -1)-13(a n -1-1),得a n a n -1=-12.又a 1=-12,所以{a n }是首项为-12,公比为-12的等比数列.【变式探究1】将本例中条件换为“数列{a n }满足a 1=1,a n +1=2a n +1”,求证:{a n +1}成等比数列,并求a n .【解析】由a n +1=2a n +1,∴a n +1+1=2(a n +1),∴a n +1+1a n +1=2,∴{a n +1}是以2为首项,2为公比的等比数列,∴a n +1=2×2n -1=2n , ∴a n =2n -1.【变式探究2】将本例中的条件换为“数列{a n }中,a 1=56,a n +1=13a n +⎝⎛⎭⎫12n +1”,求a n . 【解析】令a n +1-A ·⎝⎛⎭⎫12n +1=13⎣⎡⎦⎤a n -A ·⎝⎛⎭⎫12n ,则a n +1=13a n +A 3·⎝⎛⎭⎫12n +1. 由已知条件知A3=1,得A =3,所以a n +1-3×⎝⎛⎭⎫12n +1=13⎣⎡⎦⎤a n -3×⎝⎛⎭⎫12n . 又a 1-3×⎝⎛⎭⎫121=-23≠0, 所以⎩⎨⎧⎭⎬⎫a n -3×⎝⎛⎭⎫12n 是首项为-23,公比为13的等比数列. 于是a n -3×⎝⎛⎭⎫12n =-23×⎝⎛⎭⎫13n -1,故a n =3×⎝⎛⎭⎫12n -2×⎝⎛⎭⎫13n . 【方法归纳】判定数列是等比数列的常用方法(1)定义法:a n +1a n =q (q 是常数)或a na n -1=q (q 是常数,n ≥2)⇔{a n }为等比数列.(2)等比中项法:a 2n +1=a n ·a n +2(a n ≠0,n ∈N *)⇔{a n }为等比数列.(3)通项公式法:a n =a 1q n -1(其中a 1,q 为非零常数,n ∈N *)⇔{a n }为等比数列. 【易错辨析】忽略等比数列各项的符号规律致错【例5】在等比数列{a n }中,a 5=1,a 9=81,则a 7=( ) A .9或-9 B .9 C .27或-27 D .-27 【答案】B【解析】由等比中项的性质得a 27=a 5a 9=81,∴a 7=±9,由于等比数列中的奇数项的符号相同,所以a 7=9,故选B. 【易错警示】 1. 出错原因没有弄清等比数列各项的符号规律,直接由等比中项得a 7=±9,错选A. 2. 纠错心得在等比数列中,奇数项的符号相同,偶数项的符号相同.解此类题时要小心谨慎,以防上当.一、单选题1.已知等比数列{}n a 中,3a 是1a ,2a 的等差中项,则数列{}n a 的公比为( ) A .12-或1B .12-C .12D .1【答案】A【分析】首先根据题意得到3122a a a =+,从而得到2210q q --=,再解方程即可. 【解析】由题知:3122a a a =+,所以221q q =+,即2210q q --=,解得12q =-或1q =.故选:A2.已知等比数列{}n a 满足2512,4a a ==,则公比q =( ) A .12-B .12C .2-D .2【答案】B 【分析】由352a a q =即可求出.【解析】 352a a q =,即3124q =,解得12q =. 故选:B .3.已知{}n a 为等比数列,n S 是它的前n 项和.若2312a a a ⋅=,且4a 与72a 的等差中项为54,则5S =( ) A .29 B .31 C .33 D .35【答案】B 【分析】设等比数列{}n a 的公比为q ,由已知可得q 和1a ,代入等比数列的求和公式即可 【解析】因为 2312a a a =23114a q a a ==,42a ∴=,3474452224a a a a q +=⨯=+, 所以11,162q a ==,551161231112S ⎛⎫- ⎪⎝⎭==-,故选:B.4.《莱茵德纸草书》(RhindPapyrus )是世界上最古老的数学著作之一.书中有这样一道题目:把93个面包分给5个人,使每个人所得面包个数成等比数列,且使较小的两份之和等于中间一份的四分之三,则最大的一份是( )个. A .12 B .24 C .36 D .48【答案】D 【分析】设等比数列{}n a 的首项为10a >,公比1q >,根据题意,由()()211513141931a q a q a q q ⎧+=⎪⎪⎨-⎪=⎪-⎩求解. 【解析】设等比数列{}n a 的首项为10a >,公比1q >,由题意得:123123453493a a a a a a a a ⎧+=⎪⎨⎪++++=⎩,即()()211513141931a q a q a q q ⎧+=⎪⎪⎨-⎪=⎪-⎩, 解得132a q =⎧⎨=⎩,所以45148a a q ==,故选:D5.在等比数列{}n a 中,若1614a a a ⋅⋅为定值,n T 为数列{}n a 的前n 项积,则下列各数为定值的是( ) A .11T B .12TC .13TD .14T【答案】C 【分析】根据等比数列的通项公式用1,a q 表示出1614a a a ,然后再分别表示出各选项中的积进行判断. 【解析】设公比为q ,则()35133186161411111a a a a a q a q a q a q =⋅==为定值,即61a q 为定值,(1)112(1)211111n n n n n n n T a a q a qa qa q--+++-=⋅==,11555111111()T a q a q ==,不是定值,1211126621211T a q a q ⎛⎫== ⎪⎝⎭,不是定值,13786131311()T a q a q ==,是定值,1413131414221411()T a q a q ⨯==,不是定值.故选:C .6.在各项都为正数的数列{}n a 中,首项12,n a S =为数列{}n a 的前n 项和,且()2121(42)0n n n S S a n ----=≥,则10S =( ) A .1022 B .1024C .2046D .2048【答案】C 【分析】当2n ≥时,1n n n a S S -=-,故可以得到()()11220n n n n a a a a --+-=,因为120n n a a -+>,进而得到120n n a a --=,所以{}n a 是等比数列,进而求出102046S = 【解析】由()2121(42)0n n n S S a n ----=≥,得22140nn a a --=,得()()11220n n n n a a a a --+-=, 又数列{}n a 各项均为正数,且12a =, ∴120n n a a -+>,∴120n n a a --=,即12nn a a -= ∴数列{}n a 是首项12a =,公比2q 的等比数列,其前n 项和()12122212n n nS +-==--,得102046S =,故选:C.7.已知数列{}n a 的前n 项和为n S ,若21n n S a =-,则202120221S a +=( )A .2B .1C .12D .13【答案】B 【分析】由21n n S a =-,根据n a 与n S 的关系,得出{}n a 是首项为1,公比为2的等比数列,结合等比数列的求和公式,即可求解. 【解析】由数列{}n a 的前n 项和21n n S a =-,当1n =时,可得11121a S a ==-,所以11a =;当2n ≥时,()112121n n n n n a S S a a --=-=---,所以12n n a a -=, 所以{}n a 是首项为1,公比为2的等比数列,所以202120212021122112S -==--,202120222a =,所以2021202211S a +=. 故选:B.8.在等比数列{}n a 中,()23122a a a a +=+,则数列{}n a 的公比q =( ) A .2 B .1 C .1-或1 D .1-或2【答案】D 【分析】用1,a q 表示出已知等式后可得结论. 【解析】由题意知()()211210a q q a q +-+=,所以()()120q q +-=,所以1q =-或2q.故选:D .二、多选题9.(多选题)已知等比数列{}n a 的前n 项和是n S ,则下列说法一定成立的是( ) A .若30a >,则20210a > B .若40a >,则20200a > C .若30a >,则20210S > D .若30a >,则20210S <【答案】ABC【分析】根据等比数列通项式,前n 项和n S 代入即可得出答案. 【解析】设数列{}n a 的公比为q ,当30a >,则2018202130a a q=>,A 正确; 当40a >,则2016202040a a q=>,B 正确. 又当1q ≠时,()20211202111a q qS -=-,当1q <时,2021202110,10,0q qS ->->∴>,当01q <<时,2021202110,10,0q q S ->->∴>,当1q >时,2021202110,10,0q qS -<-<∴>当1q =时,2021120210S a =>,故C 正确,D 不正确. 故选:ABC10.(多选题)若数列{a n }是等比数列,则下面四个数列中也是等比数列的有( ) A .{ca n }(c 为常数) B .{a n +a n +1}C .{a n ·a n +1)D .{}3n a【答案】CD 【分析】A. 由c =0判断;B.q =-1时判断;CD.由等比数列的定义判断. 【解析】当c =0时,{ca n }不是等比数列,故A 错误;当数列{a n }的公比q =-1时,a n +a n +1=0,{a n +a n +1}不是等比数列,故B 错误; 由等比数列的定义,选项CD 中的数列是等比数列,故CD 正确. 故选:CD11.设数列{}n a 是各项均为正数的等比数列,n T 是{}n a 的前n 项之积,227a =,369127a a a ⋅⋅=,则当n T 最大时,n 的值为( )A .4B .5C .6D .7【答案】AB【分析】 设等比数列{}n a 的公比为q ,求出q 的值,进而可求得数列{}n a 的通项公式,解不等式1n a ≥,求出n 的取值范围,即可得解.【解析】设等比数列{}n a 的公比为q ,则33696127a a a a ⋅⋅==,可得613a =,13q ∴==,所以,225212733n n n n a a q ---⎛⎫==⨯= ⎪⎝⎭, 令531n n a -=≥,解得5n ≤,故当n T 最大时,4n =或5.故选:AB.第II 卷(非选择题)请点击修改第II 卷的文字说明三、填空题12.在等比数列{}n a 中,1521,8,n a a a S ==是数列{}n a 的前n 项和,若63k S =,则k =________.【答案】6【分析】由1521,8a a a ==,解得2q求解. 【解析】在等比数列{}n a 中,设公比为q ,因为1521,8a a a ==,所以48,0q q q =≠,解得2q, 所以126312kk S -==-,解得6k =, 故答案为:613.在正项等比数列{}n a 中,若13a 、312a 、22a 成等差数列,则2021202020232022a a a a -=-________.【答案】19【分析】设正项等比数列{}n a 的公比为q ,则0q >,根据已知条件求出q 的值,再结合等比数列的基本性质可求得结果.【解析】设正项等比数列{}n a 的公比为q ,则0q >,因为13a 、312a 、22a 成等差数列,则31232a a a =+,即211132a q a a q =+, 可得2230q q --=,0q >,解得3q =, 因此,()20212020202120202202320222021202019a a a a a a q a a --==--. 故答案为:19. 14.已知正项数列{}n a 的前n 项和为n S ,若241,4n n a S b a a +==,数列{}n a 的通项公式为___________. 【答案】21()2n n a -= 【分析】当1n =时,求得102b a =>,再由n n S a b =-+,得到11(2)n n S a b n --=-+≥, 相减可得120n n a a --=,结合等比数列的通项公式,求得b ,进而求得数列的通项公式.【解析】由题意,正项数列{}n a 满足241,4n n a S b a a +==, 当1n =时,可得1111a S a a b =++=,则102b a =>, 由n n S a b =-+,则11(2,)n n S a b n n N +--=-+≥∈,两式相减可得120n n a a --=,所以1(22)1,n n n n N a a +-≥=∈, 即数列{}n a 为公比为12的等比数列, 所以2416,4b a a b ==,所以2441461a b a b =⨯=,解得4b =, 所以122b a ==,所以数列{}n a 的通项公式为1121112()()22n n n n a a q ---==⨯=.故答案为:21()2n n a -=.四、解答题15.已知n S 为数列{}n a 的前n 项和,12a =,172n n S a ++=,2211log log n n n b a a +=⋅,n T 为数列{}n b 的前n 项和.(1)求数列{}n a 的通项公式;(2)若2022n m T >对所有*n N ∈恒成立,求满足条件m 的最小整数值.【答案】(1)322n n a -= (2)674【分析】(1)利用递推公式,结合前n 项和与第n 项的关系、等比数列的定义进行求解即可; (2)根据对数的运算性质,结合裂项相消法进行求解即可.(1)由题意172n n S a ++=,当2n ≥时,172n n S a -+=,两式相减得:17n n n a a a +=-,即:()182n n a a n +=≥,所以2n ≥时,{}n a 为等比数列又因为1n =时,217272216a S =+=⨯+=, 所以218a a =, 所以,对所有*n N ∈,{}n a 是以2为首项,8为公比的等比数列,所以132282n n n a --=⨯=;(2) 由题知:32312212211log log log 2log 2n n n n n b a a -++==⋅⋅ ()()13231n n =-+11133231n n ⎛⎫=- ⎪-+⎝⎭所以12111111111134473231331n n T b b b n n n ⎛⎫⎛⎫=+++=-+-++-=- ⎪ ⎪-++⎝⎭⎝⎭所以111202220221674167433131n T n n ⎛⎫⎛⎫=⨯-=-< ⎪ ⎪++⎝⎭⎝⎭所以满足2022n m T >恒成立的最小m 值为674.16.等差数列{}n a 中,13a =,前n 项和为n S ,等比数列{}n b 各项均为正数,11b =,且2212b S +=,{}n b 的公比22S q b =. (1)求n a 与n b ;(2)求12111nS S S +++. 【答案】(1)33(1)3n a n n =+-=,13n n b -=(2)()231n n + 【分析】(1)由{}n b 的公比22S q b =及2212b S +=可解得3q =,由11b =则n b 可求,又由22S q b =可得29S =,26a =,213d a a =-=,则n a 可求;(2)由(1)可得3(1)2n n n S +=,则122113(1)31n S n n n n ⎛⎫==- ⎪++⎝⎭,故由裂项相消法可求12111nS S S +++. (1) 等差数列{}n a 中,13a =,前n 项和为n S ,等比数列{}n b 各项均为正数,11b =,且2212b S +=,{}n b 的公比22S q b =,222212S q b b S ⎧=⎪⎨⎪+=⎩,解得3q =,13n n b -=. {}n b 各项均为正数,∴3q =,13n n b -=.由23b =,得29S =,26a =,213d a a =-=,∴()3313n a n n =+-=. (2)3(1)3(1)322n n n n n S n -+=+=, 122113(1)31n S n n n n ⎛⎫==- ⎪++⎝⎭,12111211111132231n S S S n n ⎛⎫+++=-+-++- ⎪+⎝⎭ 2121313(1)n n n ⎛⎫=-= ⎪++⎝⎭. 17.已知数列{a n }中,a 1=4,a n +1=2a n -5,求证{a n -5}是等比数列.【答案】证明见解析【分析】由a n +1-5=2(a n -5)结合等比数列的定义证明即可.【解析】证明:由a n +1=2a n -5得a n +1-5=2(a n -5). 又a 1-5=-1≠0,故数列{a n -5}是首项为-1,公比为2的等比数列.。

相关文档
最新文档