信号完整性研究反射现象
信号反射研究及解决方案

信号反射研究及解决方案随着现代科技的不断发展,我们的生活日益依赖于各种信号,例如无线电波、光线、声音等等。
但是,在信号的传输过程中会遇到一些问题,其中最常见的就是信号反射。
信号反射不仅会影响信号的质量,还会导致数据传输错误,因此对于信号反射的研究及解决方案是非常重要的。
关于信号反射的研究,首先需要了解信号传输的特点。
信号传输不仅仅是单向的,而是会在传输媒介中反射或折射,这就导致信号传输路径不止一条。
反射是一种重要的传输方式,在信号反射中,信号在接触介质的表面发生反弹,并沿着入射角度进行反射。
因此,我们需要了解反射的规律,才能够有效的解决信号反射问题。
解决信号反射问题的方法有很多,其中最常见的是使用反射板或者折射棱镜。
反射板由反光材料制成,可以反射信号,并将其传输到指定的接收设备上。
折射棱镜则可以将信号从一个媒介中折射到另一个媒介中。
这些解决方案可以在一定程度上减少或消除信号反射带来的影响。
除此之外,还可以使用信号滤波技术来解决信号反射问题。
信号滤波技术可以识别和消除不需要的信号,从而提高信号传输的质量。
在信号滤波的过程中,可以选择将反射信号滤波掉,从而消除信号反射产生的影响。
另外,改变信号传输媒介也是解决信号反射问题的一个选择。
使用不同的传输媒介可以改变信号的传输路径,从而降低反射的影响。
例如,在传输光信号时,可以使用光纤来降低信号反射带来的影响。
总之,信号反射是一个广泛存在的问题,需要我们通过不同的方式和方法来解决。
对于相关研究和解决方案的探讨,可以不断拓展我们的认知,并应用到实际的场景中。
我们相信,在科技的推动下,这些问题最终将得到有效的解决。
数据分析在现代社会中扮演着非常重要的角色,它可以帮助人们更好地理解和应对日常生活中的各种问题。
以下是列出的相关数据并进行分析:1. 人口性别比例根据国家统计局的数据,中国男女性别比例为105:100。
这表明男性的数量比女性多,这可能对婚姻、就业等方面产生影响。
信号完整性(SI)分析-9~10传输线与反射

反射和失真使信号质量下降。一些情况下,它们看起来 就像是振铃。引起信号电平下降的下冲可能会超过噪声容 限,造成误触发。图 8.1 示例了短传输线末端由阻抗突变 造成的反射噪声。
Voltage, V ── 电压,V
time,nsec ──时间,ns
图 8.1 在 1 in 长、阻抗可控互连线的接收端,由于阻抗不匹配和 多次反射而产生的“振铃”噪声。
第二种特殊情况是传输线的末端与返回路径相短路, 即末端阻抗为 0。反射系数为(0 - 50) /(0 + 50) = -1。 1V 入射信号到达远端时,产生-1V 反射信号向源端传播。 短路突变处测得的电压为入射电压与反射电压之和, 即 1V + -1V=0。这是合理的,因为如果此处是严格按定义 规定的短路,短路点两侧不可能有电压差。此处电压为 0V 的原因就是它是从源端出发的正向行波和返回源端的负向 行波之和。
高速电路与系统互连设计中 信号完整性(SI)分析
(之9~10[八]:传输线与反射)
李玉山
西安电子科技大学电路CAD研究所
8.0
提示
引言
如果信号沿互连线传播时所受到的瞬态阻抗发生变化,则一部分信号将
被反射,另一部分发生失真并继续传播下去,这一原理正是单一网络中多数信号完整 性问题产生的主要原因。
―――――――――――――――――――――――――――――――――
reflected ──反射
incident── 入射
measured ──测量
图 8.4 如果区域 2 是开路,则反射系数
经常说信号到达传输线的末端时,其值翻倍。从数值上这是正确的,可实
际上发生的情况并非如此。总电压即两个行波之和虽然是入射电压的两倍,但是这样 说会引起错误的直觉。最好还是把末端电压看作入射电压与反射电压之和。
信号完整性之初识信号反射

信号完整性之初识信号反射版本号更改描述更改人日期1.0 第一次撰稿 eco2013-10-19 E-mial:zhongweidianzikeji@ QQ:2970904654反射产生的原因在《和信号完整性有关的几个概念》中我们已经简单的介绍了“反射”这厮。
在下认为“信号反射”在电路中是不可避免的,不论是高速电路还是低速电路。
而我们只能用一些办法去优化电路,去优化PCB的布局布线,从而降低反射的大小或者在信号反射时避免对电路的操作。
为什么信号反射无法完全消除,在高速和低速电路中都会存在,在下鄙见如下:V = 3x10^8 / sqrξ 式1其中:V是带状线中信号传播的速度(m/s),3x10^8是光速(m/s),ξ是介电常数。
由式1可知,信号的传播速度只与物质的介电常数有关,在基材相同的情况下,不论在高速电路中还是在低速电路中信号都会以相同的速度传播。
在基材为FR4的电路板中,介电常数ξ一般为4左右,由式1我们可以计算出信号的传播速度V = 3x10^8 / sqr(4) =1.5x10^8 m/s,转换单位后约为6in/ns,这就是为什么很多资料上喊信号在FR4材料中的传播速度为6in/ns(注:1mil = 0.0254mm; 1inch = 25.4mm。
对于这个单位转化,感兴趣的人一定要自己计算计算,享受过程可以让你更快乐更智慧哦)。
1.5x10^8 m/s(6in/ns)速度极快了吧,设想山间小溪,小溪中的水流以1.5x10^8 m/s流动,流动中突遇一石头便会荡起无数涟漪,迸射无数水花。
溪中这块石头意味着阻抗失配。
综上所述,我们姑且把这水流现象近似看作电路中的信号反射。
为了给大家一个直观的感受,在下从网上找了两张图片,见图1、图2。
很多时候有些东西是说不清道不明的,关键看大家如何去想,如何去悟。
我建议大家应该看着这个水流冥想一下。
图1 这就是电流图2 请想象成电流I’m sorry,说的太远。
信号完整性-反射

假设传输线的末端是开路,1ns 后在线末端,测得开 路两端的总电压为两个波之和,即 0.84V +0.84V=1.68V。
再经过 1ns 后,0.84V 反射波到达源端,又一次遇到 阻抗突变。源端的反射系数是(10 - 50)/(10+50)=- 0.67, 这时将有 0.84V×(-0.67)=-0.56V 反射回线远端。当然, 这个新产生的波又会从远端反射回源端,即-0.56V 电压将 被反射回来。线远端开路处将同时测得四个波:从一次行 波中得到 2×0.84 V=1.68 V,从二次反射中得到的 2× (-0.56)=-1.12 V,故总电压为 0.56 V。
8.1 阻抗变化处的反射
无论什么原因使瞬态阻抗发生了改变,部分信号将沿 着与原传播方向相反的方向反射,而另一部分将继续传播, 但幅度有所改变。将瞬态阻抗发生改变的地方称为阻抗突 变,或简称突变。
反射信号的量值由瞬态阻抗的变化量决定,如图 8.2 所 示。如果第一个区域瞬态阻抗是 Z1,第二个区域是 Z2,则 反射信号与入射信号幅值之比为(后面的 8.10 式给出证明):
(8.9)
最终可得:
(8.10)
这就是反射系数的定义(即(8.1)式)。用同样的方法可 以很容易推导出传输系数 t。将根据(8.2)式得出的 V , refl 代入(8.7)式可得:
Vinc Vtrans Vinc Vtrans
Z1
Z1
Z2
对上式通分、化简后可得:
(8.11)
没有人知道到底是什么产生了反射电压?只是知道当 产生之后,只有这样交界面两侧的电压才可以相等,交界 面处的电压才是连续的。同样,在交界面两侧也存在电流 回路,电流也是连续的。这样,整个系统也才是平衡的(有 点唯心主义的解释)。
信号反射实验报告总结

一、实验背景信号反射是信号传输过程中常见的现象,它对信号的传输质量有着重要的影响。
为了研究信号反射现象,我们进行了信号反射实验,通过实验验证了信号反射的基本规律,并分析了影响信号反射的因素。
二、实验目的1. 了解信号反射的基本原理和规律;2. 掌握信号反射实验的步骤和方法;3. 分析影响信号反射的因素;4. 培养学生独立思考和实验操作的能力。
三、实验原理当信号从一种介质传播到另一种介质时,由于两种介质的电磁特性不同,部分信号会被反射回来。
信号反射的程度与两种介质的介电常数、传播速度、入射角度等因素有关。
四、实验设备与材料1. 信号发生器;2. 信号分析仪;3. 同轴电缆;4. 射频衰减器;5. 射频隔离器;6. 实验台;7. 计算机及实验软件。
五、实验步骤1. 将信号发生器输出信号连接到同轴电缆的一端,另一端连接到信号分析仪;2. 调整信号发生器的输出频率,记录信号分析仪的输入功率;3. 在同轴电缆的连接处引入一个反射点,如将电缆折返;4. 再次调整信号发生器的输出频率,记录信号分析仪的输入功率;5. 改变反射点的位置,重复步骤4;6. 记录不同位置、不同频率下的信号反射情况;7. 分析实验数据,总结信号反射的基本规律。
六、实验结果与分析1. 实验结果表明,信号反射程度与反射点的位置、信号频率有关。
当反射点靠近信号分析仪时,反射程度较大;随着反射点距离信号分析仪的增大,反射程度逐渐减小;2. 在相同频率下,信号反射程度随反射点位置的移动而变化。
当反射点与信号分析仪的距离为0.5米时,反射程度最大;3. 实验结果与理论分析基本一致,说明信号反射现象符合电磁学原理。
七、实验结论1. 信号反射是信号传输过程中常见的现象,对信号的传输质量有重要影响;2. 信号反射程度与反射点的位置、信号频率有关;3. 通过调整反射点的位置,可以减小信号反射程度,提高信号传输质量。
八、实验体会1. 通过本次实验,我们了解了信号反射的基本原理和规律,掌握了信号反射实验的步骤和方法;2. 实验过程中,我们学会了如何调整实验参数,分析实验数据,总结实验结论;3. 本次实验培养了我们的独立思考和实验操作能力,提高了我们的实践技能。
电路板级的信号完整性问题和仿真分析

电路板级的信号完整性问题和仿真分析摘要:今天随着电子技术的发展,电路板设计中的信号完整性问题已成为PCB设计者必须面对的问题。
信号完整性指的是什么?信号在电路中传输的质量。
由于电子产品向高速、微型化的发展,导致集成电路开关速度的加快,产生了信号完整性问题。
常见的问题有反弹、振铃、地弹和串扰等等。
这些问题将会对电路板设计产生怎样的影响?通过理论分析探讨,找到解决它们的一些途径。
传统的PCB设计是在样机中去测试问题,极大的降低了产品设计的效率。
使用EDA工具分析,可以将问题在计算机中进行暴露处理,降低问题的出现,提高产品的设计效率。
这里以Altium Designer 6.0工具为例,介绍分析解决部分信号完整性问题的方法。
关键词:信号完整性 Altium Designer 6.0 仿真分析[中图分类号] O59 [文献标识码] A [文章编号] 1000-7326(2012)04-0125-0320世纪初叶,科学家先后发明了真空二极管和三极管,它代表人类进入了电子技术时代。
随后半导体晶体管和集成电路的出现,将电子技术推向了一个新的时期。
特别是IC芯片的发展,使电子产品越来越趋向于小型化、高速化、数字化。
但同时却给电子设计带来一个新的问题:体积减小导致电路的布局布线密度变大,而同时信号的频率也在迅速提高,如何处理越来越快的信号。
这就是我们硬件设计中遇到的最核心问题:信号完整性。
为什么我们以前在学校学习和电子制作中没有遇到呢?那是因为在模拟电路中,采用的是单频或窄频带信号,我们关心的只是电路的信噪比,没有去考虑信号波形和波形畸变;而在数字电路中,电平跳变的信号上升时间比较长,一般为几个纳秒。
元件间的布线不会影响电路的信号,所以都没有去考虑信号完整性问题。
但是今天,随着GHz时代的到来,很多IC的开关速度都在皮秒级别,同时由于对低功耗的追求,芯片内核电压越来越低,电子系统所能容忍的噪声余量越来越小,那么电路设计中的信号完整性问题就突现出来了。
信号反射及阻抗匹配

信号完整性分析---信号反射及阻抗匹配信号反射产生的原因,当信号从阻抗为Z0 进入阻抗为ZL 的线路时,由于阻抗不匹配的原因,有部分信号会被反射回来,也可以用“传输线上的回波来概括”。
如果源端、负载端和传输线具有相同的阻抗,反射就不会发生了。
反射的影响:如果负载阻抗小于传输线阻抗,反射电压为负,反之,如果负载阻抗大于传输线阻抗,反射电压为正。
实际问题中,PCB上传输线不规则的几何形状,不正确的信号匹配,经过连接器的传输及电源平面不连续等因素均会导致反射情况发生,而表现出诸如过冲/下冲以及振荡等信号失真的现象。
过冲,当信号的第一个波峰超过原来设定的最大值,信号的第一个波谷超过原来设定的最大值时,为过冲,也就是冲过头了。
下冲,当信号的第二个波峰波谷超过设定值时,称为下冲。
过大的过冲会导致元件保护二极管损坏,而下冲严重时会产生假时钟,导致系统误读写操作。
如果过冲过大我们可以采用阻抗匹配的方式消除过冲,方法很简单如下所示:效果如下:震荡:信号的反射也会引起信号震荡,而震荡的本质跟过冲/下冲是一样的,在一个周期内,信号反复的过冲下冲我们称之为信号震荡。
震荡是消除电路多余能量的一种方式。
通过震荡的信号,可以将反射而产生的多余能量给消耗掉。
欠阻尼(振铃)是指终端的阻尼小,过阻尼(环绕)是指终端的阻尼大了。
(PS:不只是分布式电路才会产生振荡,集总电路由于LC振荡也会产生振荡,其振荡的大小和电路的品质因素Q有关,Q值代表了电路中信号的衰减速度,Q值越高衰减越慢。
可以通过单位时间电路储存的能量与丢失的能量比值来衡量)Q<1/2的时候就不存在过冲或者振荡。
Q值的计算方法为: L是导线的平均电感,C是接收端的负载电容,Rs 是驱动端的输出电阻。
阻抗匹配,由于源端与负载端的阻抗不匹配才引起信号的反射,因此要进行阻抗匹配,从而降低反射系数,可以在源端串接阻抗,或者负载端并行接阻抗。
反射系数公式:P=(Z1-Z0)/(Z1+Z0)阻抗匹配端接技术汇总单电阻端接经总结:串联电阻匹配一般适用于单个负载的情况。
信号完整性-9~10反射117页PPT

36、自己的鞋子,自己知道紧在哪里。——西班牙
37、我们唯一不会改正的缺点是软弱。——拉罗什福科
Hale Waihona Puke xiexie! 38、我这个人走得很慢,但是我从不后退。——亚伯拉罕·林肯
39、勿问成功的秘诀为何,且尽全力做你应该做的事吧。——美华纳
40、学而不思则罔,思而不学则殆。——孔子
信号完整性-9~10反射
11、战争满足了,或曾经满足过人的 好斗的 本能, 但它同 时还满 足了人 对掠夺 ,破坏 以及残 酷的纪 律和专 制力的 欲望。 ——查·埃利奥 特 12、不应把纪律仅仅看成教育的手段 。纪律 是教育 过程的 结果, 首先是 学生集 体表现 在一切 生活领 域—— 生产、 日常生 活、学 校、文 化等领 域中努 力的结 果。— —马卡 连柯(名 言网)
13、遵守纪律的风气的培养,只有领 导者本 身在这 方面以 身作则 才能收 到成效 。—— 马卡连 柯 14、劳动者的组织性、纪律性、坚毅 精神以 及同全 世界劳 动者的 团结一 致,是 取得最 后胜利 的保证 。—— 列宁 摘自名言网
15、机会是不守纪律的。——雨果
谢谢!
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信号完整性研究:反射现象
前面讲过,对于数字信号的方波而言,含有丰富的高频谐波分量,边沿越陡峭,高频成分越多。
而pcb上的走线对于高频信号而言相当于传输线,信号在传输线中传播时,如果遇到特性阻抗不连续,就会发生反射。
反射可能发生在传输线的末端,拐角,过孔,元件引脚,线宽变化,T型引线等处。
总之,无论什么原因引起了传输线的阻抗发生突变,就会有部分信号沿传输线反射回源端。
反射形成机理很复杂,这包含了很多电磁领域的复杂的知识,本文不准备深入讨论,如果你真的很想知道,可以给我留言,我专门讲解。
工程中重要的是反射量的大小。
表征这一现象的最好的量化方法就是使用反射系数。
反射系数是指反射信号与入射信号幅值之比,其大小为:(Z2-Z1)/ (Z2+Z1)。
Z1是第一个区域的特性阻抗,Z2是第二个区域的特性阻抗。
当信号从第一个区域传输到第二个区域时,交界处发生阻抗突变,因而形成反射。
举个例子看看反射能有多大,假设Z1=50欧姆,Z2=75欧姆,根据公式得到反射系数为:(75-50)/(75+50)=20%。
如果入射信号幅度是3.3v,反射电压达到了
3.3*20%=0.66v。
对于数字信号而言,这是一个很大的值。
你必须非常注意他的影响。
实际电路板上的反射可能非常复杂,反射回来的信号还会再次反射回去,方向与发射信号相同,到达阻抗突变处又再次反射回源端,从而形成多次反射,一般的资料上都用反弹图来表示。
多次的反弹是导致信号振铃的根本原因,相当于在信号上叠加了一个噪声。
为了电路板能正确工作,你必须想办法控制这个噪声的大小,噪声预算是设计高性能电路板的一个非常重要的步骤。
信号完整性:信号反射
时间:2009-04-17 21:12来源:未知作者:于博士点击: 3212次
信号沿传输线向前传播时,每时每刻都会感受到一个瞬态阻抗,这个阻抗可能是传输线本身的,也可能是中途或末端其他元件的。
对于信号来说,它不会区分到底是什么,信号所感受到的只有阻抗。
如果信号感受到的阻抗是恒定的,那么他就会正常向前传播,只要感受到的阻抗发生变化,不论是
什么引起的(可能是中途遇到的电阻,电容,电感,过孔,PCB转角,接插件),信号都会发生反射。
那么有多少被反射回传输线的起点?衡量信号反射量的重
要指标是反射系数,表示反射电压和原传输信号电压的比值。
反射系数定义为:。
其中:为变化前的阻抗,为变化后
的阻抗。
假设PCB线条的特性阻抗为50欧姆,传输过程中遇到一个100欧姆的贴片电阻,暂时不考虑寄生电容电感的影响,把电阻看成理想的纯电阻,那么反射系数为:,信
号有1/3被反射回源端。
如果传输信号的电压是3.3V电压,反射电压就是1.1V。
纯电阻性负载的反射是研究反射现象的基础,阻性负载的变化无非是以下四种情况:阻抗增加有限值、减小有限值、开路(阻抗变为无穷大)、短路(阻抗突然变为0)。
阻抗增加有限值:
反射电压上面的例子已经计算过了。
这时,信号反射点处就会有两个电压成分,一部分是从源端传来的3.3V电压,另
一部分是在反射电压1.1V,那么反射点处的电压为二者之和,即4.4V。
阻抗减小有限值:
仍按上面的例子,PCB线条的特性阻抗为50欧姆,如果遇到的电阻是30欧姆,则反射系数为,反射系数为负值,说明反射电压为负电压,值为。
此时反射点电压为3.3V+
(-0.825V)=2.475V。
开路:
开路相当于阻抗无穷大,反射系数按公式计算为1。
即反射电压3.3V。
反射点处电压为6.6V。
可见,在这种极端情况下,反射点处电压翻倍了。
短路:
短路时阻抗为0,电压一定为0。
按公式计算反射系数为-1,说明反射电压为-3.3V,因此反射点电压为0。
计算非常简单,重要的是必须知道,由于反射现象的存在,信号传播路径中阻抗发生变化的点,其电压不再是原来传输的电压。
这种反射电压会改变信号的波形,从而可能会引起信号完整性问题。
这种感性的认识对研究信号完整性及设计电路板非常重要,必须在头脑中建立起这个概念。