通信原理参数设置
串口读写程序

串口读写程序一、概述串口是一种广泛应用于嵌入式系统中的通信方式,其具有简单、可靠、稳定等特点。
串口读写程序是指通过编程实现对串口进行数据的读写操作,从而实现与外部设备的通信。
二、串口基础知识1. 串口通信原理串口通信是通过将数据转换成电信号在串行线路上传输,接收方再将电信号转换为原始数据进行处理。
在传输过程中,需要设置一些参数来确保数据传输的正确性和稳定性。
2. 串口参数设置常见的串口参数设置包括波特率、数据位、停止位和校验位等。
波特率指每秒钟传输的比特数,数据位指每个字符所占用的比特数,停止位指每个字符结束时发送一个停止位以示结束,校验位则用于检测传输过程中出现的错误。
3. 串口读写操作在进行串口读写操作时,需要先打开对应的串口,并设置好相应的参数。
然后可以通过调用相应的函数实现数据的读取和发送。
三、Windows平台下C++实现串口读写程序1. 准备工作首先需要安装一个支持串口编程的库文件,在Windows平台下常用的库文件有WinAPI和MFC等。
这里以WinAPI为例进行说明。
2. 打开串口在WinAPI中,可以通过CreateFile函数打开串口。
具体实现代码如下:HANDLE hComm;hComm = CreateFile("COM1", GENERIC_READ|GENERIC_WRITE, 0, NULL, OPEN_EXISTING, 0, NULL);if(hComm == INVALID_HANDLE_VALUE){// 打开串口失败}其中,"COM1"表示要打开的串口号,GENERIC_READ和GENERIC_WRITE分别表示读和写的权限。
3. 配置串口参数在打开串口后,需要设置相应的参数。
可以通过DCB结构体来设置波特率、数据位、停止位和校验位等参数。
具体实现代码如下:DCB dcb;memset(&dcb, 0, sizeof(dcb));dcb.DCBlength = sizeof(dcb);GetCommState(hComm, &dcb);dcb.BaudRate = CBR_9600; // 设置波特率为9600dcb.ByteSize = 8; // 设置数据位为8dcb.StopBits = ONESTOPBIT; // 设置停止位为1个dcb.Parity = NOPARITY; // 不使用校验位SetCommState(hComm, &dcb);4. 读取数据在配置好相应的参数后,就可以开始进行数据的读取了。
通信原理数字信号最佳接收课题设计

通信原理的数字信号最佳接收课题设计专业:班级:姓名:学号:目录摘要:在数字通信系统中,接收端收到的是发送信号和信道噪声之和。
噪声对数字信号的影响表现在使接收码元时发生错误。
一个通信系统的优劣性在很大程序上取决于接收系统的性能。
这是因为影响信息可靠传输的不利因素将直接作用到接收端,对信号的接收产生影响。
从接收角度上看,什么情况下接收系统是最好?这就需要我们讨论最佳接收问题。
本次课程设计,我的课题是先验等概的2ASK 最佳接收机的设计,就是对通信系统的最佳接收这一问题,进行分析与设计。
关键字:2ASK;误码率;解调引言第一章设计要求设计的题目:先验等概的2ASK最佳接收机设计。
设计的要求:1、输入数字信号序列并进行接收判决。
2、通过多次输入输出对所设计的系统性能进行分析。
3、对解调原理进行分析。
第二章最佳接收机的原理2.1数字信号的最佳接收假设:通信系统中的噪声是均值为0的带限高斯白噪声,其单边功率谱密度为n0;并设发送的二进制码元的信号为“0”和“1”,发送概率分别为P(0)和P(1),P(0) + P(1) = 1。
设此通信系统的基带截止频率小于f H,则根据低通信号抽样定理,接收噪声电压(先仅讨论噪声电压,噪声主要是低频信号)可以用其抽样值表示,抽样的速率要求不小于奈奎斯特的速率2f H。
设在一个码元持续时间T s内以2f H的速率抽样,共得到k个抽样值,则有k =2f H T s。
由于每个噪声电压抽样值都是正态分布的随机变量,故其一维概率密度可以写为式中,σn - 噪声的标准偏差; σn2 - 噪声的方差,即噪声平均功率; i =1,2,…,k 。
噪声的均值为0。
设接收噪声电压n(t)的k 个抽样值的k 维联合概率密度函数为由噪声为加性高斯白噪声的性质可知,高斯噪声的概率分布通过带限线性系统后仍为高斯分布。
所以,带限高斯白噪声按奈奎斯特速率抽样得到的抽样值之间是互不相关、互相独立的。
因而在(0,Ts)观察时间的k 个噪声样值均为正态分布中,则n(t)的统计特性可用多维联合概率密度函数表示为当k 很大时,在一个码元持续时间Ts 内接收的噪声平均功率可以表示为:或者将上式左端的求和式写成积分式,则上式变成利用上式关系,并注意到 :式中 n 0 - 噪声单边功率谱密度故联合概率密度: 式中⎪⎪⎭⎫⎝⎛-=222exp 21)(n i n i n n f σσπ),,,(21k k n n n f ()⎪⎪⎭⎫ ⎝⎛-==∑=ki i n knk k k n n f n f n f n n n f 122212121exp 21)()()(),,,(σσπ 2211112k ki ii i H sn nk f T ===∑∑∑⎰==ki isH T s nT f dt t n T s 120221)(120()n H n f σ=噪声功率等于功率谱密度乘以信号带宽()⎥⎦⎤⎢⎣⎡-=⎰sT kndt t n n f 020)(1exp 21)(σπn )()()(),,,()(2121k k k n f n f n f n n n f f ==nn=(n 1,n 2,…,n k )为一个k 维矢量,表示一个码元内噪声的k 个抽样值,可以看作是k 维空间中的一个点。
通信原理(虚拟仿真实验)

实验五双极性不归零码一、实验目的1.掌握双极性不归零码的基本特征2.掌握双极性不归零码的波形及功率谱的测量方法3.学会用示波器和功率谱分析仪对信号进行分析二、实验仪器1.序列码产生器2.单极性不归零码编码器3.双极性不归零码编码器4.示波器5.功率谱分析仪三、实验原理双极性不归零码是用正电平和负电平分别表示二进制码1和0的码型,它与双极性归零码类似,但双极性非归零码的波形在整个码元持续期间电平保持不变.双极性非归零码的特点是:从统计平均来看,该码型信号在1和0的数目各占一半时无直流分量,并且接收时判决电平为0,容易设置并且稳定,因此抗干扰能力强.此外,可以在电缆等无接地的传输线上传输,因此双极性非归零码应用极广.双极性非归零码常用于低速数字通信.双极性码的主要缺点是:与单极性非归零码一样,不能直接从双极性非归零码中提取同步信号,并且1码和0码不等概时,仍有直流成分。
四、实验步骤1.按照图3.5-1 所示实验框图搭建实验环境。
2.设置参数:设置序列码产生器序列数N=128;观察其波形及功率谱。
3.调节序列数N 分别等于64.256,重复步骤2.图3.5-1 双极性不归零码实验框图实验五步骤2图N=128实验五步骤3图N=64N=256六、实验报告(1)分析双极性不归零码波形及功率谱。
(2)总结双极性不归零码的波形及功率谱的测量方法。
实验六一、实验目的1.掌握双极性归零码的基本特征2.掌握双极性归零码的波形及功率谱的测量方法3.学会用示波器和功率谱分析仪对信号进行分析二、实验仪器1.序列码产生器2.单极性不归零码编码器3.双极性归零码编码器4.示波器5.功率谱分析仪三、实验原理双极性归零码是二进制码0 和1 分别对应于正和负电平的波形的编码,在每个码之间都有间隙产生.这种码既具有双极性特性,又具有归零的特性.双极性归零码的特点是:接收端根据接收波形归于零电平就可以判决1 比特的信息已接收完毕,然后准备下一比特信息的接收,因此发送端不必按一定的周期发送信息.可以认为正负脉冲的前沿起了起动信号的作用,后沿起了终止信号的作用.因此可以经常保持正确的比特同步.即收发之间元需特别的定时,且各符号独立地构成起止方式,此方式也叫做自同步方式.由于这一特性,双极性归零码的应用十分广泛。
通信系统实验报告

通信系统实验报告一、实验目的本次通信系统实验的主要目的是深入了解通信系统的基本原理和关键技术,通过实际操作和测量,掌握通信系统中信号的传输、调制解调、编码解码等过程,并分析系统性能和影响因素。
二、实验原理1、通信系统的组成通信系统一般由信源、发送设备、信道、接收设备和信宿组成。
信源产生原始信息,发送设备对信号进行处理和变换,使其适合在信道中传输,信道是信号传输的媒介,接收设备对接收的信号进行解调、解码等处理,恢复出原始信息,信宿则是信息的接收者。
2、调制解调技术调制是将基带信号变换为适合在信道中传输的高频信号的过程,常见的调制方式有幅度调制(AM)、频率调制(FM)和相位调制(PM)。
解调则是从已调信号中恢复出原始基带信号的过程。
3、编码解码技术编码用于提高信号传输的可靠性和有效性,常见的编码方式有差错控制编码(如卷积码、Turbo 码等)和信源编码(如脉冲编码调制PCM)。
解码是编码的逆过程。
三、实验设备及材料本次实验使用的设备包括信号发生器、示波器、频谱分析仪、通信原理实验箱等。
四、实验步骤1、搭建通信系统实验平台按照实验指导书的要求,将实验设备连接好,组成一个完整的通信系统。
2、产生基带信号使用信号发生器产生一定频率和幅度的正弦波作为基带信号。
3、调制将基带信号分别进行 AM、FM 和 PM 调制,观察调制后的信号波形和频谱。
4、信道传输将调制后的信号通过信道传输,模拟信道中的噪声和衰减。
5、解调在接收端对已调信号进行解调,恢复出基带信号,并与原始基带信号进行比较。
6、编码解码对基带信号进行编码处理,然后在接收端进行解码,观察编码解码前后信号的变化。
7、性能分析测量调制解调后的信号的误码率、信噪比等性能指标,分析不同调制方式和编码方式对系统性能的影响。
五、实验结果与分析1、调制实验结果(1)AM 调制AM 调制后的信号波形呈现出包络随基带信号变化的特点,频谱中包含载频和上下边带。
在小信号调制时,调幅指数较小,解调后的信号失真较大;在大信号调制时,调幅指数较大,解调后的信号较为接近原始基带信号。
通信原理实验_实验报告

一、实验名称通信原理实验二、实验目的1. 理解通信原理的基本概念和原理;2. 掌握通信系统中的调制、解调、编码和解码等基本技术;3. 培养实际操作能力和分析问题能力。
三、实验内容1. 调制与解调实验(1)实验目的:验证调幅(AM)和调频(FM)调制与解调的基本原理;(2)实验步骤:1. 准备实验设备:调幅调制器、调频调制器、解调器、示波器、信号发生器等;2. 设置调制器参数,生成AM和FM信号;3. 将调制信号输入解调器,观察解调后的信号波形;4. 分析实验结果,比较AM和FM调制信号的特点;(3)实验结果与分析:通过实验,观察到AM和FM调制信号的特点,验证了调制与解调的基本原理。
2. 编码与解码实验(1)实验目的:验证数字通信系统中的编码与解码技术;(2)实验步骤:1. 准备实验设备:编码器、解码器、示波器、信号发生器等;2. 设置编码器参数,生成数字信号;3. 将数字信号输入解码器,观察解码后的信号波形;4. 分析实验结果,比较编码与解码前后的信号特点;(3)实验结果与分析:通过实验,观察到编码与解码前后信号的特点,验证了数字通信系统中的编码与解码技术。
3. 信道模型实验(1)实验目的:验证信道模型对通信系统性能的影响;(2)实验步骤:1. 准备实验设备:信道模型仿真软件、信号发生器、示波器等;2. 设置信道模型参数,生成模拟信号;3. 将模拟信号输入信道模型,观察信道模型对信号的影响;4. 分析实验结果,比较不同信道模型下的信号传输性能;(3)实验结果与分析:通过实验,观察到不同信道模型对信号传输性能的影响,验证了信道模型在通信系统中的重要性。
4. 通信系统性能分析实验(1)实验目的:分析通信系统的性能指标;(2)实验步骤:1. 准备实验设备:通信系统仿真软件、信号发生器、示波器等;2. 设置通信系统参数,生成模拟信号;3. 仿真通信系统,观察系统性能指标;4. 分析实验结果,比较不同参数设置下的系统性能;(3)实验结果与分析:通过实验,观察到不同参数设置对通信系统性能的影响,验证了通信系统性能分析的重要性。
通信原理AM的调制和解调

AM调制与解调仿真一、实验目的:1.掌握AM 的调制原理和Matlab Simulink 仿真方法2.掌握AM 的解调原理和Matlab Simulink 仿真方法二、实验原理:1. AM 调制原理基带信号m(t)先与直流分量A叠加,然后与载波相乘,形成调幅信号。
2.AM 解调原理调幅信号再乘以一个与载波信号同频同相的相干载波,然后经过低通滤波器,得到解调信号。
三、实验内容:1. AM 调制方式 Matlab Simulink 仿真1.1 仿真框图图1 仿真图图中的Sine Wave1和Sine Wave2模块分别产生发送端和接收端的载波信号的角频率ωc都设为40rad/s,调幅系数为1;调制信号m(t)由Sine Wave模块产生,其为正弦信号,角频率为5rad/s,幅度为1V;直流分量A0由Constant模块产生,为2V;低通滤波器模块的截止角频率设为5rad/s。
1.2 仿真参数设置图图2 低通滤波器截止角频率参数设置图3 发送端、接收端的载波信号Sine Wave1、Sine Wave2 角频率参数设置图4 调制信号角频率参数设置1.3仿真结果图5 调制信号波形图6 AM信号波形图7 基带信号频谱2. AM 解调方式 Matlab Simulink 仿真2.1 仿真框图\图7 仿真图图中的Sine Wave1和Sine Wave2模块分别产生发送端和接收端的载波信号的角频率ωc都设为40rad/s,调幅系数为1;调制信号m(t)由Sine Wave模块产生,其为正弦信号,角频率为5rad/s,幅度为1V;直流分量A0由Constant模块产生,为2V;低通滤波器模块的截止角频率设为5rad/s。
2.2仿真结果图8 解调信号波形从示波器 Scope 可以看到 AM 信号及解调信号的波形,如图5所示。
从图中可以看出,解调前后在频域上市频谱的搬移,时域上解调后的信号延时输出,经过解调的波形与原调制信号波形基本相同。
通信原理课程设计-2psk调制与解调

基于MATLAB-Simulink的2PSK仿真摘要:Simulink是MATLAB最重要的组件之一,它提供一个动态系统建模、仿真和综合分析的集成环境。
在该环境中,无需大量书写程序,而只需要通过简单直观的鼠标操作,就可构造出复杂的系统。
Simulink 具有适应面广、结构和流程清晰及仿真精细、贴近实际、效率高、灵活等优点,并基于以上优点Simulink 已被广泛应用于控制理论和数字信号处理的复杂仿真和设计。
本文主要是以simulink为基础平台,对2PSK信号的仿真。
首先有关通信的绪论,然后文章第一章是课程设计的要求。
第二章是对2PSK信号调制及解调原理的详细说明;第三章是本文的主体也是这个课题所要表现的主要内容2PSK信号的仿真部分,调制和解调都是simulink建模的的方法及参数设置。
本文的主要目的是对simulink的熟悉和对数字通信理论的更加深化和理解。
关键词:2PSK;调制与解调;simulink;目录第一章绪论 (1)1.1通信技术背景 (1)1.2 课程设计的目的 (1)1.3 课程设计的基本任务和要求 (1)1.4 MATLAB/Simulink的简介 (2)第二章 2psk信号的调制与解调原理 (3)2.1数字调制的基本原理 (3)2.2二进制相移键控 (3)第三章实验仿真与结果分析 (7)3.1调制部分 (7)3.1.1 Simulink中2PSK调制的模块框图 (7)3.1.2 各模块参数的设置 (7)3.1.3 调制系统中各模块的波形 (8)3.1.4结果分析 (8)3.2解调部分 (9)3.2.1解调模块框图 (9)3.2.2 各模块参数设置 (9)3.2.3 各模块的波形 (10)3.2.4结果分析 (11)3.3加入高斯白噪声的调制与解调 (11)3.3.1系统框图3-3-1 (11)3.3.2 各模块参数的设置 (11)3.3.3 示波器得到的波形 (13)3.3.4结果分析 (14)第四章结束语 (15)参考文献 (16)第一章绪论1.1通信技术背景通信就是克服距离上的障碍,从一地向另一地传递和交换消息。
通信原理实验实验报告

1. 理解并掌握通信系统基本组成及工作原理。
2. 掌握通信系统中信号的传输与调制、解调方法。
3. 学习通信系统性能评估方法及分析方法。
二、实验器材1. 通信原理实验平台2. 双踪示波器3. 信号发生器4. 信号分析仪5. 计算机及实验软件三、实验内容1. 通信系统基本组成及工作原理(1)观察通信原理实验平台,了解通信系统的基本组成,包括发送端、信道、接收端等。
(2)分析实验平台中各模块的功能,如调制器、解调器、滤波器等。
(3)通过实验验证通信系统的工作原理。
2. 信号的传输与调制、解调方法(1)学习并掌握模拟信号的调制、解调方法,如AM、FM、PM等。
(2)学习并掌握数字信号的调制、解调方法,如2ASK、2FSK、2PSK等。
(3)通过实验验证调制、解调方法的有效性。
3. 通信系统性能评估方法及分析方法(1)学习并掌握通信系统性能评估方法,如误码率、信噪比、调制指数等。
(2)通过实验测量通信系统性能参数,如误码率、信噪比等。
(3)分析实验数据,总结通信系统性能。
1. 观察通信原理实验平台,了解通信系统的基本组成。
2. 设置实验参数,如调制方式、载波频率、调制指数等。
3. 观察并记录实验过程中各模块的输出信号。
4. 利用示波器、信号分析仪等仪器分析实验数据。
5. 计算通信系统性能参数,如误码率、信噪比等。
6. 分析实验结果,总结实验结论。
五、实验结果与分析1. 通过实验验证了通信系统的基本组成及工作原理。
2. 实验结果表明,调制、解调方法对通信系统性能有显著影响。
例如,在相同条件下,2PSK调制比2ASK调制具有更好的误码率性能。
3. 通过实验测量了通信系统性能参数,如误码率、信噪比等。
实验数据表明,在合适的调制方式、载波频率等参数下,通信系统可以达到较好的性能。
4. 分析实验数据,总结实验结论。
实验结果表明,在通信系统中,合理选择调制方式、载波频率等参数,可以提高通信系统性能。
六、实验总结本次实验通过观察、实验、分析等方法,对通信原理进行了深入学习。