防电击保护设计

合集下载

电击的防护措施

电击的防护措施

电击的防护措施引言在现代社会中,电力已经成为人类生产和生活中不可或缺的能源之一。

然而,在使用电力的过程中,我们也不可忽视电击事故的风险。

电击事故不仅会给我们的生活带来严重的伤害,甚至会危及生命。

为了保护我们的安全,我们需要采取一系列有效的电击防护措施。

了解电击的危害在采取电击防护措施之前,我们首先需要了解电击的危害。

电流可以对人体造成直接伤害,尤其是在电压较高的情况下,其危害更加严重。

电流通过人体时会造成心脏麻痹、呼吸困难、肌肉痉挛等症状,甚至可能导致死亡。

因此,保护自己免受电流伤害的重要性不言而喻。

安全使用电器安全使用电器是防止电击事故的基本要求。

以下是一些常见的安全使用电器的注意事项:1.购买合格的电器在购买电器时,务必选择经过认证的合格产品。

合格的电器通常符合国家安全标准,并通过了相应的测试和认证。

避免购买廉价、劣质的电器,以免出现安全问题。

2.正确接地正确接地是预防电击事故的重要措施之一。

接地可以将电器中的电流直接引到地下,减少电流通过人体的机会。

在使用电器前,务必检查其是否接好地,并确保接地线的连接牢固可靠。

3.避免使用破损的电器破损的电器可能存在漏电和短路的风险,增加了电击事故发生的可能性。

因此,在使用电器前,务必检查电器是否有裂缝、损坏的插头或线缆等问题。

如发现问题,应及时修理或更换电器。

4.用于潮湿环境的电器在潮湿的环境中使用电器可能增加发生电击事故的风险。

在必要时,选择防水或防潮的电器,以减少事故的发生。

同时,在潮湿环境中使用电器时,要保持手干燥,并避免脚踩水坑等潮湿地面。

个体防护装备除了正确使用电器外,还可以通过使用个体防护装备来增加电击防护。

以下是几种常见的个体防护装备:1.绝缘手套和鞋绝缘手套和鞋是用于防护电击的最常见的个体防护装备。

这些装备通常由橡胶等绝缘材料制成,可以有效地阻隔电流通过人体。

在需要直接接触电流的工作环境中,佩戴绝缘手套和鞋是非常必要的。

2.绝缘工具在使用电器时,可以选择使用绝缘工具来减少电流通过人体的机会。

浅谈空调电气安全的设计要求

浅谈空调电气安全的设计要求

浅谈空调电气安全的设计要求摘要:空调电气在设计时最重要的是安全性,特别是产品出现触电危险,这种情况会造成人员伤亡;还有一种情况是短路燃烧,这种情况危害性更大。

因此在设计时需要注重使用安全性,保证使用者生命财产安全。

关键词:空调电气;安全设计;触电引言随着人们生活水平的提高,使用电气设备是普遍现象,特别是空调产品的使用,基本上就是家庭生活必需品。

但是在使用电气产品时常会发生触电事故,引起人们对安全使用的关注,因此为了满足人们使用需要,必须对电气产品设计安全可靠性。

1.防触电保护1.1防触电要求在触电对人体影响主要是三个方面的因素,一个是电流量,另一个是时间,最后一个是电流经过人体的途径[1]。

在一般情况下,20mA以上的电流就会对人体的健康造成影响,如果随着电流不断增强,还会造成人体灼伤,严重情况时还会出现心室震颤甚至导致死亡。

根据GB4706.1-2005规定,带电部件主要是指两个方面的内容,一个是正常通电部件,另一个是导电性部件,这两个部分包括的内容按照惯例来讲包括了中性导电线,但是这其中不包括PEN导线。

在目前空调导电部件分析中来看,主要包括了压缩机、电加热器、步进机、风扇电机、静电除尘电机和导线。

1.2电击原因分析(1)正常情况下触及带电部件。

对于触及带电部件主要有两种情况,一种是在使用功能需要情况下,如连接端子带电,而且在使用连接端子没有防护措施;另一种是在外部设计时有开孔设计,这种设计存在设计缺陷的情况时,会造成使用人员触电情况发生。

对于出现这种情况以后,采用针对性解决措施主要有三个方面,一个方面是对使用输出端子在使用电压上降低,另一个方面是对机体外壳采用保护罩设计方案,特别是在保护罩的设计中,是防止触电最有效方法,最后一个方面是对于在带电部件需要设计合理的绝缘部件。

(2)一类设备中承载保护导体电流保护接地连接失效。

设计预防措施:产品中可能要承载故障条件下保护导体电流的保护接地连接要可靠(可靠的连接方式和端子结构)。

建筑物电气装置 第4-41部分:安全防护电击防护

建筑物电气装置 第4-41部分:安全防护电击防护
— G B 1 48 2 1.1 一 1992
GB 16895.21- 2004/IEC 60364-4-41:2001
410(400.1 )” 引言
国 家 系 列标准《建筑物电气装置》的本部分规定 了人 、畜和财产的直接接触和间接接触防护的基本 要求。410.3涉及这些要求的应用和协调,包括与各种外界影响有关的应用。
(IEC 60364-4-41:2001,IDT)
2004-05-14发 布
2005-02-01实 施
中华人民共和国国家质量监督检验检疫总局 中国 国家标 准化管理 委员会


GB 16895.21- 2004/IEC 60364-4-41:2001
ol1

GB 1 68 95的本部分全部技术内容为强制性。 本 部分 等 同采用 IEC6 0364-4-41:2001(第 4版)(建筑物电气装置 第 4-41部分:安全防护 电击 防护》(英文版)。IEC6 0364-4-41:2001(第 4版)是在 IEC6 0364-4-41:1992(第 3版)及其 1996,1999年 两次修改的基础上与 IEC 60364-4-46:1981(第 1版),IEC6 0364-4-47:1981(第 1版)及其 1993年第 1 次修改 IEC6 0364-4-481:1993第 1版)重新组合而成。该标准按 4-41部分统一编写章条号。为了反 映其变化,用括号将组合前 4-41以外部分的条号保留下来,例如 410.3. 1 .1 (470.1 )。本部分等同采用 了这一编号形式 。 本 部 分 代替 GB 14821.1 -1993《建筑物电气装置 电击防护》。 本 部 分 与 GB 14821.1 -1993相比有如下主要变化: 增 加 了 前言和引言 ; 1) 标 准 正文的结构及编号与 IEC6 0364-4-41:2001完全一致; 2) 引 用文件由 7项增至 16项(见 410.2 ); 3) 删 去了 1993年版的术语(第 3章); 4) 1 99 3年版的第4章电击防护的一般要求,被 410.3:电击防护措施的应用所代替,技术内容有

防电击教案:安全用电从我做起,保障家庭电气设施安全

防电击教案:安全用电从我做起,保障家庭电气设施安全

为了保障家庭电气设施的安全,我们需要从自身做起,了解电气安全知识并采取预防措施。

我们将为大家介绍一份防电击教案,以便大家更好地了解如何安全使用电气设施。

一、电气安全知识点1.电流大小和电压大小是引起电伤的两个重要因素。

一般来说,电流越大,危险越大。

同时,电压为220V时会产生致命伤害,在接触电气设施时应保持警惕。

2.接地系统构成了家庭电气设施的主要防护措施。

当电器内部发生漏电或者接触人体时,接地系统能够将电流导向地面,从而避免对人体产生伤害。

3.频繁插拔插头容易造成插座损坏,导致漏电等危险。

应该避免频繁插拔插头,而是应使用插座内置的开关控制电器的开关。

4.长时间使用过载电器会导致电线加热,容易引起火灾等意外。

在家中应该使用低功率、高效率的电器以保证安全使用。

二、电气安全预防措施1.使用有认证的电器产品。

在购买电器时,应该选择具有认证标志的产品,并在使用时按照说明书注意使用方法。

2.避免将电线接触到水或湿气。

在洗手间、浴室等潮湿的地方应使用符合防水标准的插座和开关。

同时,在使用电器时不能将电器置于外露的场所,如门廊等。

3.保持电器与地面的良好接触。

避免电器接触到金属等导电材料,并确保电器内部电路的接地良好。

4.定期检查电气设施。

定期检查电器插头、电线等部件,并及时更换修复不良的电器设施以保证安全使用。

5.电器使用时,不应轻易拔掉插头。

拔掉插头时,应该先将电器开关打到关闭状态,等待一段时间再拔掉插头,避免电气设施损坏。

三、家庭电气设施安全检查1.检查电源插座。

电源插座是否有破损等现象,是否能够稳定插拔。

2.检查电线。

电线是否接触良好,是否有局部损坏现象。

3.检查插头。

插头是否良好使用,是否有松动等现象。

4.检查开关。

开关是否使用正常,是否接触良好。

5.清洁电气设施。

定期清理电器插头、插座等部件,避免积灰、结垢等影响使用。

防电击是我们每个人都应该了解的基本知识。

不管是家庭、学校还是工作场所,我们都需要时刻提高自身的意识,保障自己与他人的安全。

电气装置的电击防护

电气装置的电击防护

电气装置的电击防护5电气装置的电击防护5.1直接接触防护措施(Ⅰ)将带电部分绝缘5.1.1带电部分应全部用绝缘层覆盖,其绝缘层应能长期承受在运行中遇到的机械、化学、电气及热的各种不利影响。

(Ⅱ)采用遮栏或外护物5.1.2标称电压超过交流方均根值25V容易被触及的裸带电体,应设置遮栏或防护物。

其防护等级不应低于现行国家标准《外壳防护等级(IP代码)》GB4208规定的IP××B级或IP2×级。

为更换灯头、插座或熔断器之类部件,或为实现设备的正常功能所需的开孔,在采取了下列两项措施后可除外:1设置防止人、畜意外触及带电部分的防护设施;2在可能触及带电部分的开孔处,设置“禁止触及”的标志。

5.1.3可触及的遮栏或外护物的顶面,其防护等级不应低于现行国家标准《外壳防护等级(IP代码)》GB4208规定的IP××D级或IP4×级。

5.1.4遮栏或外护物应稳定、耐久、可靠地固定。

5.1.5需要移动的遮栏以及需要打开或拆下部件的外护物,应采用下列防护措施之一:1只有使用钥匙或其他工具才能移动、打开、拆下遮栏或外护物;2将遮栏或外护物所保护的带电部分的电源切断后,只有在重新放回或重新关闭遮栏或外护物后才能恢复供电;3设置防护等级不低于现行国家标准《外壳防护等级(IP代码)》GB4208规定的IP××B级或IP2×级的中间遮栏,并应能防止触及带电部分且只有使用钥匙或工具才能移开。

5.1.6按本规范第5.1.2条设置的遮栏或外护物与裸带电体之间的净距,应符合下列规定:1采用网状遮栏或外护物时,不应小于100mm;2采用板状遮栏或外护物时,不应小于50mm。

(Ⅲ)采用阻挡物5.1.7当裸带电体采用遮栏或外护物防护有困难时,在电气专用房间或区域宜采用栏杆或网状屏障等阻挡物进行防护。

阻挡物应能防止人体无意识地接近裸带电体和在操作设备过程中人体无意识地触及裸带电体。

低压配电线路的保护与电击防护

低压配电线路的保护与电击防护

额定电流
Ic≤ Ir ≤Ial
约定动作电流 I2≤1.45Ial
对熔断器,一般 I2=1.6Ir 对断路器,一般 I2=1.3Ir
突然断电比过负荷而造成的损失更大的线路(如消 防水泵、消防电梯等线路),其过负荷保护应作用于信 号而不应作用于切断电路。 配电线路宜采用同一保护电器作短路保护与过负荷保护。
对于TT系统和TN系 统,当电气装置中存在 大量谐波电流时,会引 起相导体及中性导体的 过负荷,而中性导体的 过负荷是最常见的。
此时,中性导体应根 据其载流量检测过电流, 当检测到过电流时可动作 于切断相导体,但不必切 断中性导体。
二、接地故障电气火灾防护
接地故障——指带电导体和大地之间意外出现导电通路。 包括相导体与大地、PE导体、PEN导体、电气装置的外露可 导电部分、装置外可导电部分等之间意外出现的导电通路。导 电路径可能通过有瑕疵的绝缘,通过结构物或通过植物,并具 有显著的阻抗。
对三相四线制电路 对三相三线制电路 对单相两线制电路
iR iA iB iC iN iR iA iB iC iR iL iN
剩余电流(动作)保护器(RCD)是一种在规定条件下 当剩余电流达到或超过整定值时能自动分断电路的机械开关 电器或组合电器。剩余电流保护电器也可以由用来检测和判 别剩余电流以及接通和分断电流的各种独立元件组成。
人与带电部分的电接触称为直接接触。 人与故障情况下带电的外露可导电部 分的电接触称为间接接触。
电击防护——减小电击危险的防护措施,包括:直接接触 防护、间接接触防护和直接接触及间接接触两者兼有的防护。
一、电流通过人体的效应
(一)人体对电流的生理反应 GB/T13870.1-2008 电流通过人体和家畜的效应 第一部分: 常用部分 感知电流阈值——人体能感知的流过其身体的最小电流值,通 用值为0.5mA,此值与电流通过的时间长短无关; 摆脱电流阈值——人体能自主摆脱的通过人体的最大电流值, 此值因人而异,平均值为10mA; 心室纤维性颤动电流阈值——引起心室纤维性颤动的最小电流 值,而心室纤维性颤动是电击引起死亡的主要原因。此电流阈值 与通电时间长短有关,也与人体条件、心脏功能状况、电流在人 体内通过的路径有关。

电击防护的基本措施

电击防护的基本措施

电击防护的基本措施电击防护是指为了防止人员接触到电流而产生的危险,采取一系列防护措施的措施。

电击防护的基本措施可以包括以下几个方面:1.维护设备安全:确保电气设备的正常运行和维护,如定期检查设备是否有绝缘损坏或电线外露等问题,及时处理,确保设备工作正常,减少电击事故的可能性。

2.限制非专业人员接近:普通人员对电气设备进行维修或操作往往存在安全隐患,因此需要限制非专业人员的接近,尽量通过合格的电工人员进行维修和操作。

3.使用安全工具:在进行电气维修和操作时,应使用合适的工具和设备,如带绝缘手柄的工具、带绝缘套的手套等,以确保人员在操作过程中不会接触到电流。

4.配备个人防护装备:给工作人员配备适当的个人防护装备,如绝缘手套、绝缘鞋、绝缘胶衣等,以在接触电流时提供保护。

5.建立安全操作规程:制定和执行严格的安全操作规程,让工作人员熟悉和掌握相关规定,包括操作流程、个人防护要求、紧急救援程序等。

6.提供培训和教育:对从事电气维修和操作工作的人员进行相关培训和教育,提高他们的安全意识和技能水平,减少电击事故的发生。

7.定期检查和维护:对电气设备进行定期检查和维护,包括检查设备的接地和绝缘情况、定期检修电线电缆等,确保设备的安全运行。

8.组织应急演练:定期组织应急演练,让工作人员了解应对电击事故的紧急处理和救援程序,提高应急处理的效率和准确性。

9.建立合理的警示标识:在电气设备附近设置明显的警示标识,警示人员注意电击风险,提醒人员保持安全距离。

10.加强监控和管理:通过安装监控设备,对电气设备进行远程监控和实时管理,及时发现异常情况,并采取相应的措施进行处理。

总之,电击防护的基本措施是从设备维护、限制无关人员接近、使用安全工具、配备个人防护装备、建立安全操作规程、培训和教育工作人员,定期检查和维护设备,组织应急演练,建立合理的警示标识以及加强监控和管理等多个方面综合实施的。

只有做好这些基本措施的落实,才能最大程度地减少电击事故的发生,保障人员的生命安全和工作安全。

电气安全第三章电击防护

电气安全第三章电击防护

第三章:电击防护供配电系统是电力系统的重要组成部分,该系统的安全、稳定运行直接影响着电能的输送、使用,该系统电击的防护主要指人身安全、设备安全,建筑物及其他相关设施的安全;本章就供配电系统的电击防护做一定的讨论,为正确使用、维护电气系统安全奠定基础;第一节电流通过人体产生的效应人身安全是电气安全的首要问题,作为一种常识,相关知识应被人们认识掌握,作为一门技术知识也应被人们尤其是电气工程技术人员掌握理清这些问题,正确认识它对制定防护措施,建立有效防护方法,最大限度地保障人身安全有着极其重要的意义;一、电击及分类:电流对人体的伤害分电击和电伤,以电击为最严重“电击”就是我们通常所说的“触电”,指人体因接触带电部分而受到生理伤害的事件;电击实质就是电流对人体器官的伤害;接触及带电部分的途径,电击又分为直接电击和间接电击两种类别;1、直接电击:因接触到正常工作时带电的系统而产生的电击,如单相触电2、间接电击:正常工作时不带电的部位,因某些因素的影响带上危险电压后被人们触及而产生的电击;二、电流的人体效应与相关的标准电流通过人体时其热效应,化学效应及电刺激产生的生物效应会对人体造成伤害,其危害程度与通过的电流大小,作用时间,电压高低、频率及通过人体的途径以及人体体电阻和健康状况等诸多因素有着密切的联系;1、生理效应:电流是危机人体生命安全的直接因素,其严重程度与电流的大小呈正相关性,为研究这种相关性,我们把人受电击时产生的生理效应划分为几种典型状态,这几种状态的临界点称为生理“阀”;注:电伤是指触电时的热效应,化学效应以及电刺激引起的生物效应对人体造成的伤害;常见电伤有:电灼伤,电烙伤等(1)感知阈:使人体产生触电感觉的最小电流值称为感知阀,感知阈有个体差异,按50%概率计,成年男性为,女性为,感知阈与电流接触时间长短无关,但与频率有关;(2)摆脱阈:人体触电后能自主摆脱电源的最大电流;摆脱阈也有个体差异,按50%概率计,成年男性为16mA,女性为通常取10mA,其值与时间无关,在20-150hz频率范围内与f无关;(3)室颤阈:通过人体能引起心室纤维性颤动的最小电流值,称为心室纤维性颤动阈,该值与作用时间及心脏搏动周期密切相关,当电流持续时间小于一个心搏周期时,很大的电流500mA才能引起心室颤动,当大于一个心搏周期时,很小的电流50mA即可;(4)反应阈:通过人体能引起肌肉不自觉收缩的最小电流值;该电流不会产生有害生理效应,但会引起二次伤害,该值通常为.2、工程标准:115-100Hz正弦交流电通过人体效应:P52图3-3及P52表3-11室颤电流与时间的关系a、达尔基尔研究结果:I2t=K D有效范围δ数Kd按%最大不引起室颤电流曲线为116²mA²·S结论:若电击发生时I²t<116²mA²·S则发生室颤的可能性在%以下;b、柯宾研究结果:It=Kk 式中δ数Kk取为50mA·St<1s2、室颤电流与电流途径的关系:室颤电流δ“左手到双脚”通道流通是最不利的一种情况,若从别的通道流过,则室颤电流值不同;不同电流通路的心脏电流系数见表P53 3-2.2直流电流通过人体的效应直流电的电流—时间效应区域的划分见P54图3-4;三、人体阻抗与安全电压1、人体阻抗的构成:人体阻抗由皮肤阻抗与人体内阻抗构成,其总阻抗呈阻容性;(1)皮肤阻抗Zp:该阻抗与电流大小、频率、接触面积、温度、是否受伤等因素有关;(2)人体内阻抗Zi:人体内阻抗基本上是阻性的,其数值由电流通路决定;按接触面积所占成分较小;2、人体总阻抗极其特性:人体总阻抗由电流通路,接触电压,通电时间、频率,皮肤温度,接触面积,施加压力和温度等因素共同确定;人体总阻抗呈阻容性,活人体阻抗与接触电压关系见P55图3-6,当接触电压为220V时,5%的人Zt小于1000欧姆,90%的人Zt在1000-2125欧姆之间,综上所述:正常环境下,人体总阻抗典型值可取为1000欧姆,而且接触电压瞬间典型值可取为500欧姆;3、安全电压:安全电压是低压,但低压不一定是安全电压,正常环境条件下的安全电压为25V,我国规定的安全电压是指36V,24V,12V,如机床照明一般采用36V及以下的安全电压,路灯的电压不应超过36V,特别是潮湿场所应为12V;补充:触电急救人体触电后,往往会出现神经麻痹,呼吸中断,心脏停止跳动等症状,呈昏迷不醒的状态,但实际上是出于假死状态;触电死亡者一般具有以下特性:1心跳呼吸停止2瞳孔放大3血管硬化4身上出现尸斑5尸僵;若以上特性中有一个尚未出现,都应作为假死,应立即进行现场救护;有触电者经过四小时现场急救脱离危险的案例,因此,每个电气工作人员和其他有关人员必须熟练掌握触电急救的方法;一、解脱电源触电急救首先要使触电者迅速脱离电源,方法介绍如下:1、脱离低压电源:1切断电源2用绝缘工具设法解脱触电者3拉开电源4垫绝缘板5分相剪短电源2、脱离高压电源:因电压高、电源远,不易切断电源,措施如下:1立即通知有关部门停电2穿戴绝缘防护工具,用绝缘工具拉开电路或熔断器或高压断路器等方式切断电源,注意安全距离3、在抢救触电者脱离电源中应注意一下事项:(1)不采用金属式受潮的物品作为救护工具(2)为采取任何绝缘措施,救护人员不得直接接触触电者的皮肤和触碰衣服(3)在使脱离电源过程中,救护人员最好用一只手操作,以防自身触电;(4)若触电者站立式处于方位时,防止脱离电源后摔跤;(5)夜晚发生触电时,应考虑切断电源后的照明,以利救护二、迅速诊断电源脱离后,若症状较轻,触电者只需要安静休息,并严密观察即可,若触电者触电时间较长,通过电流较大,出现“假死”症状,必须迅速判断并进行紧急救护;三、心肺复苏心肺骤停是各种原因所致的循环和呼吸的突然停止和意识丧失,是医院临床上最紧迫的急诊;心肺复苏就是针对这一急诊所采用的一系列措施,现介绍几种徒手操作方法,心肺复苏法支持生命的三项基本措施如下:1、通畅气道:抢救呼吸停止人员重要环节2、口对口鼻人工呼吸:方法:救护人员用手指捏住伤员鼻翼,先连续大口呼气两次,每次秒,若两次吹气后试测颈动脉仍无搏动,要立即同时进行胸外按压;3、胸外按压:其原理是用人工机械方法按压心脏,或替心脏跳动,以达到血液循环的目的,凡心脏停止跳动或不规则的颤动可立即用此方法;步骤:1朝天仰卧,后背着实着地2救护者两手交叠,手掌根部放在心窝口稍高,两乳头间稍低;3两臂伸直,带冲击的用力垂直下压,压陷深度3-5厘米;4压到位后立即全部放松,但掌根不得离开胸壁;5按压要以均匀速度进行,每分钟80次左右,按压、放松时间相等6胸外按压与口对口人工呼吸同时进行,节奏:单人抢救时每按压15次以后吹气2次15:2,反复进行,双人抢救时,每按压5次后,由另一人吹气1次5:1反复进行;四、抢救过程中的再判定:1、胸外按压和口对口呼吸1秒后应再用看、听、试方法在5-7秒内完成判定;2、若已有脉动但无呼吸,则暂停胸外按压,再进行2次口对口呼吸,接着5秒吹气1次,若2项全无则继续坚持心肺复苏法抢救;3、在抢救过程中,要每隔数分钟判定一次,每次判定不超过5-7秒,在医护人员未接替抢救前,不得放弃现场抢救五、抢救过程中触电伤员的移动与转院1、现场急救不得为方便而随意一到那个伤员,确需要移动,抢救中断不应超过30秒2、移动伤员或送医院时应平躺在担架上,并应继续抢救;3、应创造条件,用塑料袋装入碎冰屑作成帽状包在伤员头部,露出眼睛,使胸外温度降低,争取心、肺、脑安全复苏六、触电伤员好转后处理:若经抢救均已恢复则可暂停心肺复苏法操作,但恢复早期有可能再次骤停,应严密监护,不能麻痹,要随时准备再次抢救,注意安静; 补充题:人体触电后死亡的特征是什么何为假死如何进行触电急救第二节电气设备及装置的电击防护措施电气设备及装置的电击防护措施主要有绝缘、屏护和间距;其中绝缘是电气设备的主要电击防护措施,屏护和间距则主要针对电气装置而言的;这些措施均为力图消除接触到带电体的可能性,属于直接电击防护措施,是预防而非补救措施;一、用电设备电击防护方式分类1、类别划分低压电气设备按其电击防护方式可分为四类,分别为:O、Ⅰ、Ⅱ、Ⅲ类;1O类设备:1、特征:基本绝缘、无保护连接手段;2、安全措施:仅依靠基本绝缘,只能用于非导电场所;2、Ⅰ类设备:1、特征:基本绝缘,有保护连接手段;2、安全措施:与保护接地相连接;3、适用场合:IT、TT、TN等系统,设备端的保护线连接方式都是针对Ⅰ类设备而言;在我国日常使用的电器中,Ⅰ类设备占大多数,因此,作好对Ⅰ类设备的电击防护意义重大3、Ⅱ类设备:1、特征:基本绝缘和附加绝缘组成的双重绝缘或相当于双重绝缘的加强绝缘,没有保护接地手段;2、安全措施:不需要3、适用场合:Ⅱ类设备的电击防护全靠设备本身的技术措施,电击防护完全不依赖于供配电系统,也不依赖于使用场所的环境条件,是一种安全性能很好的设备类别;4、Ⅲ类设备:1、特征:由安全特低电压供电,设备不会产生高于安全特低电压的电压;2、安全措施:接于安全特低电压;3、适用场合:具备并能提供安全特低电压环境;注:分类只表示电击防护的不同方式,并不代表设备的安全水平等级;2、类别划分与电击防护的关系以上设备均有直接电击防护措施,但间接电击防护性能和途径各有不同;1 O类设备:仅依靠基本绝缘作电击防护,属于电击防护条件较差的一种,只能用于非导电场所;2Ⅰ类设备:基本绝缘和附加安全措施,日常使用电器中Ⅰ类设备占绝大多数,做好对Ⅰ类设备的电击防护意义重大3Ⅱ类设备:具有双重绝缘或加强绝缘,设有附加安全措施;4Ⅲ类设备:使用安全特低电压;二、电气设备外壳防护等级1、外壳与外壳防护的概念:1、外壳及外壳防护:电气设备的“外壳”是指与电气设备直接相关联的界定设备空间范围的壳体;外壳防护是电气安全的一项重要措施,它既是保护人身安全的措施,又是保护设备自身安全的措施;2、外壳防护的两种形式:1第一种防护形式:防止人体触及或接近壳内带电部分和触及壳内的运动部件,防止固体异物进入外壳内部的防护形式;2第二种防护形式:防止水进入外壳内部而引起有害的影响;2、等级的代号及划分1、代号:表示外壳防护等级的代号由素引正字母“IP”和附加左后位的两个素引数字组成;写作:IP××,其中第一位数字表示第一种防护形式的各个等级;第二位数字则表示第二种防护形式的各个等级,素引数字的含义见P58表3-4、3-5;例如:IP30、IPⅹ、IP2ⅹ等;2、试验:电气设备外壳防护等级是通过相关的试验来确定的; 注:电气设备电击防护方式分类只是表示电击防护的不同方式,而并不表明设备的安全水平等级,而设备外壳的防护等级是以“级”来划分的,不同级别的安全防护性能有高低之分;3、外壳防护与电击防护的关系1保护设备免受外界危害2使人免受设备伤害三、屏护除通过绝缘实现直接电击防护外,屏护与间距也是常用的直接电击防护措施;屏护:是一种对直接接触带电导体的可能性进行机械隔离手段;主要用于不便于绝缘如开关电器的可能部分或绝缘不足以保证安全如高压设备的场合1、阻隔屏蔽:罩盖式外壳2、障碍:障碍只提供局部的直接接触防护,不具备防止故意接触带电体行为的功能;四、间距间距是通过保持带不同电位导体间的空间距离,使人不能同时触及二者以避免电击事故的技术措施;人的伸臂范围规定为,因此带电体距地面应在以上;小结:绝缘,屏护与间距都是防止直接电击的基础保护手段,是直接在设备或装置上采取的直接电击防护措施;作为补充,剩余电流保护具有直接电击防护功能,是在直接电击防护失效后的补充,后面将讨论补充:安全距离:电压等级: 10kv 35kv 110kv 220kv 330kv 500kv距离m: 1第三节低压系统自身的电击防护性能分析除雷击或静电等少数情况外,电击发生时流过人体的电流绝大多数情况是由供配电系统提供,因此系统电击防护措施就是通过实施在供配电系统上的技术手段,在电击或电击可能性发生的时候,切断这个电流供应的通道,或降低这个电流的大小,从而保障人身安全;本节主要讨论不同接地形式的低压配电系统中间接电击防护问题,因讨论的各种措施都涉及设备外壳与大地的电气连接,故都仅针对Ⅰ类设备;若讨论中无特别说明,均按正常环境条件下安全电压V L=50V,人体阻抗为纯电阻,且电阻值R M为1000欧姆进行分析计算;一、低电压系统接地故障1.接地故障定义相导体与大地或与大地有联系的导体之间的非正常电气连接,称为接地故障;如:相线与接地的PE线、PEN线、建筑物金属构件的电气连接,相线跌落大地等;2、接地故障与电击事故的关系对电击防护Ⅰ类用电设备而言,在TT,TN,IT系统中,设备外壳都通过PE线与大地相连,设备相导体碰壳漏电故障即相导体与PE线电气连接,因此均为接地故障;换句话说,在以上接地系统中,间接电击危险性都是由接地故障产生的;站立在地面的人发生直接电击,也是接地故障;3、接地故障与单相短路故障的区别与联系在工频交流系统中,接地与单相短路的共同特征是故障点处与另一导体发生了非正常电气连接,形成故障回路;若故障回路阻抗只包含电网阻抗,则是单相短路故障;若另一导体与大地有电气联系,则为接地故障;这两种故障是按不同标准命名的,两者之间可能有交叉的情况;具体就TT,TN,IT系统而言,有以下几种情况:1TT,TN,IT系统中,相线与中性线如果有的话间的金属性连接均为单相短路故障,但只有TT、TN系统中同时又是接地故障;2TT,TN,IT系统中,相线与PE线间的金属性连接均为接地故障,但只有TN系统中同时又是单相短路故障;若接地故障同时又是单相短路故障,则故障电流很大,但非短路性质的接地故障电流一般很小,很多时候甚至小于计算电流;二、TT系统间接电击防护性能分析TT系统即系统电源和用电设备外露导电部分各自独立接地的低压配电系统,由于设备接地装置就在设备附近,因此连接设备外壳和接地装置的PE线断线的几率小,一旦断线也容易被发现,安全措施可靠性高;另外,TT系统正常运行时用电设备外壳不带电,漏电接地故障时外壳高电位不会沿着PE线传导至其它设备处,使其在爆炸与火灾危险性场所、低压公共电网和户外电气装置等处有技术优势,其应用范围渐趋广泛;1、原理分析:1降低预期接触电压的作用:Vt= R E Vφ/R N + R EVt-人体预期接触电压 R N-系统接地电阻 R E-设备接地电阻Vφ-故障相电压当人体接触外漏可导电部分时,则安全条件:Vφ= 220V ,R M=4欧姆,则R E≤欧姆-不容易实现也不经济可见:设备外壳接地能有效降低接触电压,但要低于安全限值以下难度较大2过电流保护电器切断电源动作分析:假设R N=R E=4欧姆,接地电流Id=,如此小电流不易让保护装置动作;如对于固定设备,电击防护要求过流保护电器在5s内切断电流,若用熔断器保护,则要求故障电流Id不小于熔断器熔体额定电流的5倍,而为防误动,要求熔体额定电流为计算电流的倍,则计算电流不大于,即只有计算电流在5A以下设备,单相碰壳用熔断器保护才能有效,若为手握式电器,要求内动作,则允许计算电流更小,可见保护有很大局限性2、相关问题:1中性点的对地电位偏移:正常运行:中性点人与保护接地E电位相同,两点重合;故障时N点不变,E点发生偏移:若R E=R N则中心点上将带110v对地电压若降低R E使Vve=50v则R E≤欧姆-不容易实现也不经济2非故障相对地电压升高3TT系统与TN系统不得混用原因可上课提问3、TT系统电击防护性能小结1 TT系统通过降低接触电压进行电击防护很难达到要求,从工程角度看可认为是不可行的;2 TT系统通过接地故障电流驱动过电流保护电器切断电源进行电击防护很难达到要求,从工程角度看大多数情况下可认为是不可行的;3 TT系统在电击防护性能上的最大优点在于可防止故障设备外壳危险电压向其他设备外壳传导;4 剩余电流保护是TT系统一项重要的安全措施,没有此措施,绝大多数保护是安全性不合格的三、TN系统的间接电击防护性能分析:虽然TN系统在单相碰壳故障发生时有降低接触电压的作用,但TN系统电击防护更多地立足于过电流保护器切断电源来实施;单相短路电流大或过电流保护电器动作电流值小,对电流电击防护是有利的;TN系统是我国目前应用最普遍的系统;1、原理分析:以TN-S系统为例,分析TN系统的间接电击防护原理1降低预期接触电压的作用:TN系统发生单相碰壳时单相接地电流为:Id=Vφ/|Z1+Zt+Zpe|,因此时R N上无电流流过,系统中性点仍保持地电位,设备外壳对地电压预期接触电压为:Vt=Id|Zpe|=|Zpe|Vφ/|Z1+Zt+Zpe|可见Vt大小取决于Z1+Zt/Zpe,在TN系统中,当截面较小时线路很长时,Zt<<Z1,故人体预期接触电压通常会大于110v;结论:尽管TN系统在碰壳故障发生后有降低接触电压的作用,但一般不能将接触电压降至安全电压范围,不能有效防止电击;2过电流保护器切断电源动作分析TN系统间接电击防护主要是将碰壳转为单相接地故障,通过保护装置切断电流实现电击防护;切断电流包含两个含义:一是要能可靠地切断;二是应在规定时间内切断,但应注意以下几个方面:1故障设备距电源的距离:距离越远则回路阻抗越大,电流越小, 程度会下降,但仍要求在切断时间不变前提下可靠动作,故故障设备距电源的距离越远,对电击防护越不利2线路阻抗的影响:降低线路阻抗;对电击防护是有利的,因为Id增大不仅有利于可靠动作,降低PE线阻抗,还可以降低Ut,可见加大导线截面不仅可降低电能损耗,电压损失,还有利于提高过电流保护的灵敏性及电击防护水平3变压器计算阻抗Zt的影响:Zt与变压器零序阻抗有关,选择适当的联结组别如Dyn11可大幅降低Zt的大小,对电击防护有利2、相关问题:1TN—C系统存在的问题:1正常运行时设备外露可导电部分带电:三相 TN-C系统正常运行时三相不平衡电流、3n次谐波电流等都会流过PEN线,并在PEN线上产生压降,从中性点电位为零到沿PEN线越远则电压越高有指示最高120v,对于单相TN-C系统PEN线上电流为相线电流,在PEN线上产生电压也会导致设备外壳上,可见无论单相,还是三相TN-C系统,正常运行时设备外壳带电是不可避免的2 PEN线断线会使设备外壳带上危险电压:以单相TN-C系统为例2、TN—C系及TN—C—S系统的重复接地重复接地:重复接地是为了使保护导体在故障时尽量接近大地电位而在工作接地点以外其他点的接地;作用:显著提高TN系统的电击防护性能;地点:电缆与架定线路交接处;电缆、架定线路引入建筑物处;1 TN-C系统:a 降低正常工作时PEN线的电压见P66图3-15b 有效防止PEN线断线时的危险,降低断线点后的接触电压P67图3-162)TN-C-S系统:重复接地对TN-C部分作用仍然有效,同时使故障设备到电源中性点阻抗变小,使设备外壳部分电压减小,从而既降低了接触电压,又增大了短路电流;见P67图3-173、TN系统电击防护性能小结(1)尽管TN系统单相碰壳故障发生时有降低接触电压的作用,但不能低到安全电压的水平;(2)T N系统电击防护更多地立足于通过过电流保护电器切断电源来实施;即将单相碰壳故障变成单相短路故障并通过过电流保护电器切断电源来实现电击防护;(3)单相短路电流的大小对TN系统电击防护性能具有重要影响;四、IT系统电击防护性能分析IT系统即系统中性点不接地,设备外露可导电部分接地的配电系统;IT系统特点:供电可靠性高,供电连续性好,主要应用于容易发生单相接地故障的场所如矿井,医院手术室等;1、原理分析:1正常运行状态分析:正常运行分析见P68图3-18所示,三相对地电容电流平衡,无净电容电流流入大地,每相对地电容电流见P68式3-8;2碰壳接地故障分析:若系统设备发生单相碰壳接地故障如V相碰壳,则线路L1对地电压Uue大幅降低,忽略R E上压降,则 Uue=0V ,非故障相对地电压升至线电压,三相电压对地电压不再平衡,则相电流之和不再为零,有净电容电流流入大地,且为正常泄露电流的三倍,接地故障电流通过R E流回电源,此时若有人触及设备外漏可导电部分,形成人体电阻Rt与Re分流,流过人体电流为, ,若设备不接地,则流过人体电流为I CE,可见设备外壳将大大降低人体流过电流;假定R E=0,可见,发生单相接地故障时,流入大地的电容电流为正常运行时单相对地电容电流3倍;流过人体的电流I M=R E I CE/R E +Rt其中:I CE-系统接地电容电流,I M-流过人体电流,R E-接地电阻 ,Rt-人体接触电阻包括人体电阻R M,鞋袜及与地板电阻;结论:流过人体的电流I M一般远小于人体能够承受的电流,故IT系统自身电击防护性能非常出色;2、相关问题:1一次接地与二次接地:1 一次接地:IT系统某一相发生接地称为一次接地,若Vt=I CE R E<50V,则无电击危险,系统可继续运行;2二次接地:若发生一次接地后,系统另一设备与一次接地不同相又发生接地故障,则称为二次接地,此时类似相间短路故障,应立即断电,否则会因电流过大烧坏设备及线路;若忽略线路及变压器计算阻抗,则短路电流为:见P70式3-11,3-12;此时,保护装置应立即动作切断故障电流否则过电流可使设备损坏或引发火,对380/220v低压配电系统外壳将带190v50v电压,将威胁到人体安全;2中性线装置与相电压获取IT系统可设置中性线,但一般不推荐,IEC强烈建议不设置,原因是IT系统多用于易发生单相接地场所,中性线一旦接地则成为TT系统,针对IT系统设置的各种保护措施可能失效且连续供电能力,防护水平均受影响相电压获取:1用10kv/变压器直接以10kv电源取得。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

设计预防措施: I类产品中可能要承载故障条件下保护 导体电流的保护接地连接要可靠。 注意: 接地端子材料,结构,接地端子与其 他金属件接触时的防电化学腐蚀,接地端 子的连接线,接地线的截面积,安全接地 线颜色,接地电阻,等等都有相应要求。
2.4.4 电击原因之四 储能电容放电。 当接在电网电源电路的电容器容量有 一定大小,产品通电时此电容充有较多电 能而又未能及时释放,当拔出电源插头而 又接触到插头上的零/部件时,就有可能 产生电击危险。 设计预防措施:降低电容器容量(比 如降到小于0.1uF)或者设置时间常数足够 小的放电回路。
对绝缘系统有结构上的相应要求: 1、有足够的绝缘穿透距离,以防止透过 绝缘材料内部击穿; 2、有足够的空气间隙,以防止沿着两电 极间最短的空气间隙发生放电; 3、足够的爬电距离,以防止在相应的污 染环境条件下沿着支撑两电极的绝缘材料 表面发生爬电。
2.4.3 电击原因之三
I类设备中承载保护导体电流的保护接地 连接失效。
试验电压施加在带电部件和易触 及部件用金属箔覆盖的非金属部件 之间。 对在带电部件和易触及部件之间 有中间金属件的II类结构,要分别跨 越基本绝缘和附加绝缘来施加电压。 (分别考察基本绝缘和附加绝缘的 耐电压能力)
试验电压值:
对在正常使用中承受安全特低电压 的基本绝缘为 500V 对其它基本绝缘为
2.测量条件 a.测量绝缘电阻时,被试样品应处于冷态, 不连接电源。
b.试验前将拆开的部件重新安装好。
c.若有电热元件应将其断开。 d.保持被试样品表面干净,以保证测量结果 准确性。
e.选用准确度为1级或1.5级的兆欧表。
3.测量步骤
a.测量时把兆欧表平衡放置好后将 “L”接线柱与被试样品的带电部件连接 ,“E”接地柱与金属壳体连接。 b.测量完,须待兆欧表停止转动和被 测物放电后方可拆线,以免触电。 c.某些I类器具上有II类部件时,要将该 部件按II类器具的测量方法进行测量。
对附加绝缘为 对加强绝缘为
1000V
1750V 3000V
d.潮态试验时,样品处于冷态,不 连接电源以及做完泄漏电流(对电 热电器)或绝缘电阻(对电动电器) 测量后立即在潮湿箱内进行。
2.测试部位 按GB 4706系列标准的要求,测试 部位通常有以下几部分: a.带电部件和仅用基本绝缘隔离的 易触及部件之间,例如I类器具电源线 插头的电源极(相线与中线短接)与 接地极之间。
b.带电部件和用加强绝缘隔离的易触 及部件之间,例如II类器具电源线插 头的电源极(相线与中线短接)与 易触及金属外壳之间。
c.对于双重绝缘的部件,仅用基 本绝缘与带电部件隔开的金属部件 和带电部件之间,例如:RVV电源线 的铜导线与基本绝缘外皮之间。 d.对于双重绝缘的部件,仅用基 本绝缘与带电部件隔开的金属部件 和易触及部件之间,例如:RVV电源 线的基本绝缘外皮与附加绝缘外皮 之间
5.1.1测试目的 绝缘电阻反映了绝缘结构对电的绝 缘能力。 如果常态绝缘电阻值低,说明绝缘 结构中可能存在某些隐患或受损。 所以测量绝缘电阻,主要是为了测 定家用电器产品的带电部件对易触及金 属外壳的绝缘电阻,判别家电产品的绝 缘是否存在严重缺陷。
5.1 绝缘电阻测量
5.1.2测量方法
绝缘电阻的测量仪表有兆欧表 等,在家用电器产品的绝缘电阻 测量中,一般采用500V兆欧表直 接测量,直接在检流计上显示电 阻值,
第2章 防电击保护设计
掌握电击保护的基本名词术语
掌握防触电保护分类器具的区别
掌握防电击保护设计的原则 •防触电最主要的是与带电部件保 持足够的距离,可以是空间距离 或实体相隔。
2.3 防电击保护设计的原则
设计师应使产品在正常工作条件下 或在单一故障条件下,不会引起触电危 险。 通常工程师应设置两道防触电防线: 基本绝缘加附加保护措施。 万一当基本绝缘失效时,附加保护措 施将起到防电击的作用。
绝缘电阻测量试验 一、试验对象: 1、洗衣机 a.测火线、零线与地之间 b.测II类结构 2、电吹风 二、标准要求>0.5MΩ
1.写出试验报告 2.预习IEC60335第13章 洗衣机的泄漏电流是多 少
作业:
5.2电气强度测量
5.2.1试验目的
电气强度测试是为了检验绝缘材料 承受电压的能力。如果在电压的作用 下,绝缘材料发生闪络或击穿,则表 明绝缘材料被破坏,起不到防触电保 护作用。
e.如果带电部件和带有绝缘衬层的金 属外壳或金属盖之间穿过衬层测得的距 离,少于GB 4706系列中规定的相应间 隙,则带绝缘衬层的金属外壳或金属盖 与衬层内表层接触的金属箔之间。 f.如果万一绝缘失效,若手柄、旋钮 等零件的轴带电,则与手柄、旋钮、抓 手及类似零件接触的金属箔和它们的轴 之间。
3.测试步骤 a.正式开始试验前,先检查耐压试 验机的高压端短接情况下过流继电器 是否动作,有整定电流调节装置的设 备还要检查整定电流是否符合要求 b.将测试夹子接在测试部位上。
ф50mm球形物体试 具不得完全进入壳 内 ф12.5mm球形物体 试具不得完全进入 壳内 ф2.5mm球形物体 试具不得完全进入 壳内 ф1.0mm球形物体 试具不得完全进入 壳内 不能完全防止灰尘 进入,但进入的灰 尘量不得影响设备 的正常运行及安全 无灰尘进入
2
3
防止工具接近 ф2.5mm的试具不得 危险部件 进入壳内 防止金属线接 ф1.0mm的试具不得 近危险部件 进入壳内 防止金属线接 ф1.0mm的试具不得 近危险部件 进入壳内
仪器操作
5.3.3测试中容易出现的问题 a. 将样品放在绝缘垫上,否则测 量值就偏小。因为部分泄漏电流直接 经地而不经表头,影响测量准确度。 b.要测量开关在“接通”与“断开 ”两个位置。
5.3.4测试中应注意事项 a.在断开电源前,不得触摸样品 b.注意选择表头的量程,不要让 测量值超过表头量程限值 c.潮态下试验时,应将样品按要 求放置好,测量引线的绝缘性能。 d.严格按照测试规程的要求进行 测试。
III类设备的措施: 采用安全特低电压(SELV)供电, 并且SELV电路采用适当的办法与其他电 路隔离: A)用双重绝缘或加强绝缘将SELV 电路与带危险电压零/部件隔离; B)用接地的导电屏蔽层将SELV电 路与其他电路隔离; C)将SELV电路接地。
作业: 简述四种电击原因及防范措试
绝缘测量 掌握绝缘电阻测量的方法和原 理 掌握电气强度测量的方法和原 理
5.2.2试验方法 1. 测试条件 a. 测试时,试验电源的电压应是 50 Hz的正弦波。
b. 一般以过电流继电器的动作与否来 判定试样的击穿与否,即高压侧过电 流继电器的整定电流与击穿的判定直 接有关。通常电流整定在100mA。
c.电气强度试验分为工作状态下电 气强度测试和潮态下电气强度测试 两种,在工作状态下,被试样品处 于热态,电动机和三相器具在切断 器具的电源后,立即试验。绝缘承 受1min频率为50Hz基本为正弦波的 电压。
泄漏电流测量试验
按IEC60335-1第13章要求测量洗 衣机的泄漏电流(自己看操作说明) 测火线、零线与地之间 问题: 实验电压是多少? 预置电流为多少?
测量时应注意: 1测量部位 a.当被试样品为I类器具时,测量部位是电源 线插头的电源线极(相线极与中线极短接)与 接地极之间。
b.当被试样品为II类器具时,测量部位为电源 线的电源线极(相线与中线短接)与加强绝缘 隔离的外壳(易触及金属表面)之间。
c.当被试样品为电缆线时,测量部位为电缆芯 导体与电缆外壳之间。
降 压
加 盖
另一种是外壳上的开孔(如:散热孔,预 调孔等等)设计不周,使用人员有可能触及机 内带电零/部件。
针对这种电击危险的设计预防措施可以是:
A).降低输出到端子上的电压(但这不是所有产品都 能做到);
B).设置保护盖,使得在正常工作条件下的带电端子 不可触及。保护盖可以是带电件的罩,也可以是整机 产品的外壳(此时外壳须符合电气防护外壳的所有要 求)。保护盖必须有足够的机械强度;保护盖的接线 开孔应能防止使用者触及带电端子;而且保护盖不可 以仅用手就能打开; C).使用安全联锁装置,在出现可能接触带电端子的 危险时切断危险电压; D).控制外壳开孔尺寸,以防止触及机内带电件。
b.在试验时,样品绝缘无明显可见 损伤(如烧灼痕迹、焦黑点)而耐压 机动作时,应注意误判击穿。一般应 将整定电流适当放大一个档次,如果 耐压机不再动作,则可以认为样品并 没有击穿。如果复试时,耐压机动作 电压下降,这说明样品绝缘已损坏, 泄漏电流己增大,可认为样品电气强 度不合格。
c.对绝缘薄弱的地方,可用一个 沙袋将金属箔紧压在绝缘层上,其 压力约为5Pa,金属箔应放在不致 引起绝缘边缘闪络的位置。 d.对加强绝缘进行电气强度试验 时,不应使基本绝缘或附加绝缘承 受过大的电应力。
2.5 防绝缘击穿的设计措施: “两通防线” I类设备的措施: 防击穿的第一道防线为带电件的基本 绝缘; 第二道防线是安全接可触及件之间采用加 强绝缘或双重绝缘。 对于双重绝缘,第一道防线是带电 件的基本绝缘,第二道防线是附加绝缘。 对于加强绝缘,在防电击上与双重绝缘 是同等级别的,所以它相当于两道防线。
c.手动调节试验时升压从零开始, 逐渐上升到试验电压的一半,然后迅 速升到规定值。 d.试验电压保持1 min,观察有否 闪络或击穿。 e.试验结束时,应将试验电压逐渐 降下,以免因瞬间电压突变而把试件 误击穿。
5.2.3注意事项 a.对具体产品的特殊安全要求没有 规定耐压试验装置过电流继电器整定 电流的,一般高压侧过电流继电器的 整定电流为100mA。
设计人员千万注意: 绝不能由于采取了附加保护措施而降 低对基本绝缘的要求。 从“绝缘”的构成上说,“绝缘”可 以是固体材料,可以是液体材料,也可以 是满足一定要求的空气间隙/爬电距离。
2.4 电击原因分析
2.4.1 电击原因之- 正常工作条件下,触及带电件。 触及带电件常常有两种清况: 一种是由于功能上需要,连接端子带电, 而连接端子又没有防触及措施; 如:扩音器
相关文档
最新文档