关于三坐标测量机坐标系的建立
三坐标建立坐标系的方法

三坐标建立坐标系的方法
在测量制图等领域,建立合理的坐标系是非常重要的一步。
而三坐标建立坐标系的方法是其中一种应用比较广泛的方法。
下面将会分步骤阐述这种建立坐标系的方法。
一、放置三坐标
首先,在需要建立坐标系的物体上放置三个不同位置的坐标点,可以选择三个位置比较对称的点,这样会比较容易确定坐标系的方向和位置。
二、向三坐标上打指示线
接下来,我们需要在这三个点处向外打三条指示线,使它们互相垂直,并且三条指示线两两垂直。
这样可以确保坐标系的三个方向是垂直的。
三、确定坐标系的方向和位置
然后,我们需要分别确定坐标系的三个方向和位置。
其中,Z轴可以选择与地面平行,并且朝向天空的方向,这样可以方便的测量高度。
X、Y轴的方向则可以根据具体测量的需要来确定。
比如,如果我们需要测量物体的长度和宽度,可以将X轴与物体平行并且与物体上的某一直线重合,将Y轴与X轴垂直,这样三个方向就都确定了。
四、标记坐标系
最后,我们需要在物体上标记出坐标系的位置和方向。
可以将坐标系的原点标记在其中一个点上,并且进行编号,比如Z轴的正方向标记为正方向,反之标记为负方向。
这样就可以简单清晰的使用这个坐标系了。
总之,三坐标建立坐标系的方法是一种简单实用的建立坐标系的方法。
它可以大大提高测量、制图等工作的准确度,对实际工作非常有帮助。
三坐标建立坐标系321方法

三坐标建立坐标系321方法在几何学中,坐标系是一种用于描述点的位置的体系。
三坐标建立坐标系321方法是一种常见的坐标系建立方式,它使用三个轴来表示三维空间中的点的位置。
本文将介绍三坐标建立坐标系321方法的原理和应用。
一、三坐标建立坐标系321方法的原理三坐标建立坐标系321方法是基于数学的向量理论和坐标转换原理。
它使用三个轴来定义一个三维空间中的点的位置。
这三个轴分别称为X轴、Y轴和Z轴。
X轴与Y轴的交点称为原点,Z轴垂直于X 轴和Y轴。
在三坐标建立坐标系321方法中,我们需要先确定X轴、Y轴和Z 轴的方向。
通常情况下,X轴沿着东西方向,Y轴沿着南北方向,Z 轴沿着垂直于地面的方向。
然后,我们需要确定X轴、Y轴和Z轴的单位长度,通常以米为单位。
二、三坐标建立坐标系321方法的应用三坐标建立坐标系321方法在航空航天、工程测量、地理信息系统等领域有着广泛的应用。
下面将介绍三坐标建立坐标系321方法在航空航天和工程测量中的应用。
1. 航空航天在航空航天领域,三坐标建立坐标系321方法被用来确定飞行器在空间中的位置和姿态。
通过测量飞行器在X轴、Y轴和Z轴上的位移和旋转角度,可以确定飞行器的位置和姿态,从而实现飞行器的控制和导航。
2. 工程测量在工程测量领域,三坐标建立坐标系321方法被用来确定建筑物和工程设施的位置和形状。
通过测量建筑物和工程设施在X轴、Y轴和Z轴上的坐标和尺寸,可以确定它们的位置和形状,从而实现工程施工和设计。
三、三坐标建立坐标系321方法的优势三坐标建立坐标系321方法具有以下优势:1. 简单易用:三坐标建立坐标系321方法只需确定轴的方向和单位长度,不需要复杂的计算和转换。
2. 精确度高:三坐标建立坐标系321方法可以实现对点的位置和姿态的精确测量和控制。
3. 应用广泛:三坐标建立坐标系321方法在航空航天、工程测量等领域有着广泛的应用,可以满足不同领域的需求。
四、总结三坐标建立坐标系321方法是一种常见的坐标系建立方式,它使用三个轴来表示三维空间中的点的位置。
关于三坐标测量机坐标系的建立

关于三坐标测量机坐标系的建立三坐标测量机是一种非接触式测量设备,可以测量物体的形状、位置和尺寸等参数。
在进行测量时需要建立三坐标测量机坐标系,以便于对物体进行准确的测量。
下面将介绍三坐标测量机坐标系的建立方法。
一、坐标系介绍坐标系是三维空间中的一种位置定位方式,它由三个互相垂直的轴线构成。
这三条轴线分别称为X轴、Y轴和Z轴。
它们的交点称为坐标原点,也是坐标系的起点。
在三坐标测量机测量中,通常使用的坐标系为右手坐标系,也就是X、Y、Z坐标轴的旋转顺序为逆时针方向。
二、坐标系建立方法1.标定坐标系的原点首先需要在测量台上找到物体的几何中心,并在该位置上标记坐标系原点。
可以使用高精度测量仪器如编制尺、划线板等来测量出原点的位置。
标记坐标系原点时,应注意其位置的稳定性和准确性。
2.确定坐标轴方向确定三个坐标轴的方向,在实际测量中通常采用的方案是将坐标轴朝向物体的三个面,以便于测量物体的尺寸和位置。
根据测量需求,选择适当的坐标轴方向是确保测量准确的重要因素。
3.校正测量误差在建立坐标系时,应该使用高精度的三角板或平面石等工具,校准板面或工作平台的误差。
通过这种方式可以保证坐标系的稳定性,并且减少系统误差对测量结果的影响。
4.校准测量头校准测量头的位置和方向是确保测量精度的关键。
在坐标系建立过程中,需要校准测量头的位置和方向,以确保测量的准确性。
根据测量需求来选择合适的检验头,并使用高精度工具进行校准。
5.确定坐标系偏差在建立坐标系时,测量系统中存在误差,这些误差可以由系统对准标准尺度时产生。
为了纠正这些误差,并确保测量精度,必须对测量系统进行定期的校准。
根据测量需求,确定坐标系的偏差时应注意测量头的选取、标准的选取和误差的定量分析。
三、结论通过建立三坐标测量机坐标系,可以准确测量物体的尺寸、位置和形状等参数。
在建立坐标系时,应该注意选择合适的坐标轴方向,校准测量仪器和工具的误差,并定期对仪器进行校准,以确保测量结果的准确性和可靠性。
三坐标如何建立零件坐标系

三坐标如何建⽴零件坐标系三坐标如何建⽴零件坐标系1、在零件坐标系上编制的测量程序可以重复运⾏⽽不受零件摆放位置的影响,所以编制程序前⾸先要建⽴零件坐标系。
⽽建⽴坐标系所使⽤的元素不⼀定是零件的基准元素。
2、在测量过程中要检测位置度误差,许多测量软件在计算位置度时直接使⽤坐标系为基准计算位置度误差,所以要直接使⽤零件的设计基准或加⼯基准等等建⽴零件坐标系。
3、为了进⾏数字化扫描或数字化点作为CAD/CAM软件的输⼊,需要以整体基准或实物基准建⽴坐标系。
4、当需要⽤CAD模型进⾏零件测量时,要按照CAD模型的要求建⽴零件坐标系,使零件的坐标系与CAD模型的坐标系⼀致,才能进⾏⾃动测量或编程测量。
5、需要进⾏精确的点测量时,根据情况建⽴零件坐标系(使测点的半径补偿更为准确)。
6、为了测量⽅便,和其它特殊需要。
建⽴零件坐标系是⾮常灵活的,在测量过程中我们可能根据具体情况和测量的需要多次建⽴和反复调⽤零件坐标系,⽽只有在评价零件的被测元素时要准确的识别和采⽤各种要求的基准进⾏计算和评价。
对于不清楚或不确定的计算基准问题,⼀定要取得责任⼯艺员或⼯程师的认可和批准,⽅可给出检测结论。
⾄于使⽤哪种建⽴零件坐标系的⽅法,要根据零件的实际情况。
⼀般⼤多数零件都可以采⽤3-2-1的⽅法建⽴零件坐标系。
所谓3-2-1⽅法原本是⽤3点测平⾯取其法⽮建⽴第⼀轴,⽤2点测线投影到平⾯建⽴第⼆轴(这样两个轴绝对垂直,⽽第三轴⾃动建⽴,三轴垂直保证符合直⾓坐标系的定义),⽤⼀点或点元素建⽴坐标系零点。
现在已经发展为多种⽅式来建⽴坐标系,如:可以⽤轴线或线元素建⽴第⼀轴和其垂直的平⾯,⽤其它⽅式和⽅法建⽴第⼆轴等。
⼤家要注意的是:不⼀定⾮要3-2-1的固定步骤来建⽴坐标系,可以单步进⾏,也可以省略其中的步骤。
⽐如:回转体的零件(圆柱形)就可以不⽤进⾏第⼆步,⽤圆柱轴线确定第⼀轴并定义圆⼼为零点就可以了。
⽤点元素来设置坐标系零点,即平移坐标系,也就是建⽴新坐标系。
三坐标测量机CAD数模导入功能迭代法建立坐标系

三坐标测量机CAD数模导入功能迭代法建立坐标系三坐标测量机是一种常用于测量三维物体形状和位置的仪器,可以通过测量点的坐标来建立物体的数学模型。
而CAD数模导入功能则是指将已建立的CAD文件导入到三坐标测量机的软件中进行测量分析。
为了提高测量的精确度和效率,可以利用迭代法建立坐标系。
首先,我们需要准备一台三坐标测量机和相应的软件。
在使用CAD数模导入功能之前,我们需要先确保CAD文件的准确性和完整性,以确保导入后的坐标系和物体模型的准确性。
接下来,我们需要进行迭代法建立坐标系的过程。
迭代法是一种逐步逼近的方法,通过多次测量和调整,最终得到准确的坐标系。
首先,我们将CAD文件导入到三坐标测量机的软件中。
软件会自动解析CAD文件,并将物体模型显示在屏幕上。
这时,我们可以进行一次初步的测量。
在第一次测量中,我们需要确定至少三个标定点的坐标。
标定点可以是物体上的特征点或者边缘点,我们需要确保这些点在CAD文件中的位置是准确的。
在测量时,我们需要使用精密的探针测量仪器,以确保测量的精确度。
测量完成后,我们将得到标定点的测量坐标。
我们可以将这些坐标与CAD文件中的坐标进行比较,以计算出测量误差。
如果误差较大,我们需要进行调整。
调整的方法有多种,一种常用的方法是通过调整三坐标测量机的各个轴向的步进值。
步进值是指探针在测量时移动的最小单位,通过调整步进值的大小,可以提高测量的精确度。
我们通过不断的调整步进值,重新测量标定点,然后计算误差,直到误差达到可接受范围为止。
在调整完成后,我们再次测量标定点,以确保误差足够小。
如果误差在可接受范围内,我们就可以将这些测量点作为基准点建立坐标系。
建立坐标系的方法有多种,可以是基于标定点的最小二乘法、基于标定点的最大似然估计等。
建立坐标系后,我们就可以进行进一步的测量分析了。
通过三坐标测量机的软件,我们可以测量物体上其他点的坐标,并与CAD文件进行比较,计算出测量误差。
如果误差较大,我们可以根据需要进行进一步的调整和优化。
三坐标测量机CAD数模导入功能迭代法建立坐标系

三坐标测量机CAD数模导入功能迭代法建立坐标系三坐标测量机作为一种高精度的通用测量设备已经有了几十年的发展历史,其在工业生产领域中的使用越来越为广泛,也越来越受到制造企业的重视.而三坐标测量软件中自从可以对CAD 功能的导入,更是将三坐标测量机的应用领域和易用性推到一个新的高度。
以下对CAD在三坐标测量中的应用做简要介绍。
虚拟测量.虚拟测量就是在没有实际工件的情况下对CAD模型在软件中进行测量.虚拟测量可以通过对没有尺寸数据的CAD模型进行测量,确定其各种尺寸参数.但这不是虚拟测量的主要目的,虚拟测量的主要功能是为在脱机状态下进行自动测量编程做服务.三坐标测量软件要进行虚拟测量时,先打开测量软件,选择脱机工作模式,然后导入所要测量的CAD模型,并将CAD模型对应到选定的坐标系中即进行测量.根据所要测量的几何元素,使用鼠标在CAD模型上点击所要采点的位置,此时CAD模型上会显示所采点的位置及其矢量方向.根据所测量的几何要素的需要,可进行多次采点.当采够所需要的点数后再在采点窗口中点确定,系统将会驱动虚拟测头进行采点,并拟和出要测的几何元素及其图形.评定位置公差.在以往的三坐标测量软件中,要对几何元素的位置公差进行评定,必须手工输入几何元素的理论位置,然后再和实际测量得到的值进行比对,这样对位置公差的评定很不方便.当坐标测量机软件引入CAD功能之后,就可以在软件中对CAD模型进行测量,由于模型是设计出来的,所以对其进行测量所测得值既为几何元素的理论值.在有了理论值之后,在对应的坐标系下再对实际工件进行测量,即得到了所需几何元素的实际值.这样就可以对所测几何元素的位置公差进行评定.脱机编程.在三坐标测量软件没有引入CAD功能之前,对测量程序的编制要求专业人员对应图纸进行编程,这种编程方法使用较为复杂,且对操作人员要求较高.还有一种方法就是使用三坐标测量软件的自学习编程功能,在对工件进行实际测量的同时自动生成测量程序.当再次测量同样的工件时即可调用此程序进行自动测量.由于这种方法简单易用,适应面广,因此在业内被广泛使用.但由于这种编程离不开实际工件,所以也就带来了很多难以克服的缺点.一.由于编程离不开硬件环境,必须要将给测量机配套的气源等打开,使测量机能正常运行方能进行编程,这样编成较为繁琐.二.编程离不开工件,所以就必须等工件加工完成后才能进行编程,这样便会降低了工作效率从而影响生产.三坐标测量软件中加入了导入CAD功能之后,由于可在脱机状态下通过对CAD模型进行虚拟测量,从而可完成自学习编程的过程,因此解决了以上问题.无论生产是否进行,只要将设计部门设计的CAD图纸文件输入到测量软件中,就可以进行编程.等工件加工完成就可以进行程序测量,这样就大大提高的生产效率.其具体的方法是先在三坐标测量机软件中打开要测量工件的CAD模型,然后打开测量程序自学习功能,建立好坐标系后就可以开始模拟对工件的测量.系统将自动生成测量程序,在程序编制完成之后,还可以在CAD环境中调用程序进行模拟测量,对程序进行验证,找出运行过程中出现的错误测量路径和采点,并对程序进行修正,将实际测量中可能出现的问题降到最低,也最大程度的保证了测量过程中的安全性.三坐标测量机应用三个点、二个圆作为特征元素建立迭代坐标系。
关于三坐标测量机坐标系的建立

关于三坐标测量机坐标系的建立前言三坐标测量机是现代工业制造中常用的精密测量工具,通过其高精度的测量结果,可以对制造零部件的质量和工艺进行评估,并保证其满足设计要求。
在三坐标测量机测量过程中,建立合适的坐标系是非常重要的一环。
本文将介绍三坐标测量机坐标系的建立方法和注意事项。
三坐标测量机坐标系三坐标测量机通常具有三个工作方向:X、Y、Z轴。
为了对零件进行精确测量,我们需要在三坐标测量机上建立一个三维坐标系,以方便对测量数据的统计和分析。
在三坐标测量机上,建立坐标系需要注意以下几点:1.建立坐标系的原点应该确定,并且不应该改变。
2.坐标系应该与零件的特征坐标系相对应,以便于数据的处理和分析。
3.选择合适的工件夹具并严格按照夹具规范进行夹紧,以保证测量精度。
在确定了以上几点之后,就可以开始建立坐标系了。
建立坐标系的步骤1. 检查设备状态在使用三坐标测量机之前,需要对设备进行检查,确保其状态正常。
可以检查设备的轨道和导轨是否干净,是否需要润滑。
同时需要检查夹具是否牢固。
2. 确定工件位置将待测件放置在三坐标测量机工作台上,并根据实际需要进行调整,以保证测量时夹具不会发生移动,同时保证待测件在测量范围内。
3. 建立初始坐标系在完成工件调整之后,需要建立一个初始坐标系,以便于后续操作。
一般情况下,可以使用指针或者触发探测器对待测件的的三面或六面进行测量取点,并将得到的点依次标记为A、B、C、D、E、F等。
4. 确定坐标系方向在建立了初始坐标系后,需要确定坐标系的方向,以便之后的工作能够在正确的坐标系内进行。
这个步骤需要根据实际情况进行判断,一般可以选择具有较高平面度和垂直度的面进行方向判定。
在判定完成后,可以用工具将得到的方向数据输入到三坐标测量机的程序中。
5. 建立坐标系在确定了坐标系的方向之后,需要对坐标系进行建立。
将六个取点测量数据输入到三坐标测量机中,并根据输入的顺序进行标定,即可完成坐标系建立。
总结三坐标测量机坐标系的建立对于高精度测量至关重要。
三坐标测量机建立坐标系的方法

大家要注意的是:不一定非要3-2-1的固定步骤来建立坐标系,可以单步进行,也可以省略其中的步骤。比如:回转体的零件(圆柱形)就可以不用进行第二步,用圆柱轴线确定第一轴并定义圆心为零点就可以了。用点元素来设置坐标系零点,即平移坐标系,也就是建立新坐标系。
如何确定零件坐标系的建立是否正确,可以观察软件中的坐标值来判断。方法是:将软件显示坐标置于“零件坐标系”方式,用操纵杆控制测量机运动,使宝石球尽量接近零件坐标系零点,观察坐标显示,然后按照设想的方向运动测量机的某个轴,观察坐标值是否有相应的变化,如果偏离比较大或方向相反,那就要找出原因,重新建立坐标系。
6、为了测量方便,和其它特殊需要。
建立零件坐标系是非常灵活的,在测量过程中我们可能根据具体情况和测量的需要多次建立和反复调用零件坐标系,而只有在评价零件的被测元素时要准确的识别和采用各种要求的基准进行计算和评价。对于不清楚或不确定的计算基准问题,一定要取得责任工艺员或工程师的认可和批准,方可给出检测结论。
至于使用哪种建立零件坐标系的方法,要根据零件的实际情况。一般大多数零件都可以采用3-2-1的方法建立零件坐标系。所谓3-2-1方法原本是用3点测平面取其法矢建立第一轴,用2点测线投影到平面建立第二轴(这样两个轴绝对垂直,而第三轴自动建立,三轴垂直保证符合直角坐标系的定义),用一点或点元素建立坐标系零点。现在已经发展为多种方式来建立坐标系,如:可以用轴线或线元素建立第一轴和其垂直的平面,用其它方式和方法建立第二轴等。
1、在零件坐标系上编制的测量程序可以重复运行而不受零件摆放位置的影响,所以编制程序前首先要建立零件坐标系。而建立坐标系所使用的元素不一定是零件的基准元素。
2、在测量过程中要检测位置度误差,许多测量软件在计算位置度时直接使用坐标系为基准计算位置度误差,所以要直接使用零件的设计基准或加工基准等等建立零件坐标系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
参考文献 [1]佩罗东.石油地质动力学[M].北京:石油工业出版社,1993,1 [2]孙永传.石油地质动力学的理论与实践[J].地学前缘,1995,2(224): 92141 [3]康永尚等.油气成藏流体动力系统分析原理及应用[J].沉积学 报,1998,16(3):802841 [4]康永尚等.油气成藏流体动力学[M].北京:地质出版社,1999 [5]王英民.残余盆地成藏动力学过程研究方法[J].成都理工学院 学报,1998,25(3):38523921 [6]胡 朝 元 等 . 成 油 系 统 概 念 在 中 国 的 提 出 及 应 用[J]. 石 油 学 报 , 1996,17(1)1 [7]龚再升等.南海北部大陆边缘盆地分析与油气聚集[M].北京:科 学出版社,1997,1 [8]张厚福等.石油地质学[M].北京:石油工业出版社,1993,1 [9]田世澄等.论成藏动力学系统[J].勘探家,1996,1(2):202241 [10]张厚福.石油地质学新进展[M].北京:石油工业出版社,1998,1 [11]费琪等.成油体系与成藏动力学论文集[C].北京:地震出版社, 1999,1
作用, 在含油气盆地内才出现油气成藏动力系统与流体压力封存箱等 地质实体, 后二者之间互有联系和影响。油气从烃源岩生成并排出到相 邻的输导层经运移聚集而成藏及成藏后发生的物理化学变化这一系列 过程都始终贯穿“三场”的作用[8-10]。
4.含油气系统和油气成藏动力学的关系探讨 目前对含油气系统和油气成藏动力系统之间的关系众说纷纭。主 要有 3 种说法。(1)含油气系统研究是油气成藏动力学研究的起点。(2)油 气成藏动力学研究是含油气系统研究的基础。王英民(1998)认为含油气 系统划分是成藏动力学研究的结果。(3)含油气系统和油气成藏动力学 系统是交叉关系。笔者认为由油气运聚的物质空间和动力因素控制的 流体输导系统的研究是油气成藏动力学研究的核心内容, 油气成藏动 力学研究应按照从源岩到圈闭这一历史主线, 侧重于油气成藏的动力 学与运动学机制的研究。但油气成藏动力系统对应的状态空间是油气 藏。而含油气系统是从油气显示开始, 而不考虑其是否具有工业价值。 因此油气成藏动力系统是在大的合油气系统研究基础上进一步按油气 运聚动力学条件而追踪油气分布规律。因此笔者倾向于第一种说法, 认 为在含油气系统是在宏观研究思路基础上进行油气成藏动力学过程的 系统研究, 并根据成藏动力源泉进一步划分油气成藏动力系统, 才能弄 清我国陆相盆地的成藏机理和油气分布规律并建立当代高等石油地质 理论, 从而更好地指导 21 世纪的油气勘探[11]。
2.2 三点找正法 三点法以三个点坐标为基准,适用于曲面类零件的找正。多点找 正,又叫“Best Fit”是基于 CAD 数模的多测点找正方法。已知工件上的 三个点的理论坐标值,则可以在测量后快速建立工件坐标系。 对三点 基本要求是:(1)必须是可测量的,例如点,圆,球,圆锥;或可通过测量 计算的,例如,各种交点等,三点不能位于一条直线上。(2)在工件上的 分布越大,精度越高。(3)一个典型的应用,是当一个工件无法在一个装 夹工位下完成测量时,例如需要反转后测量,但需保持坐标系不变。可 在工件上布置三个辅助参考球,则可以实现坐标系的统一。具体方法如 下: (1)在测头与坐标系菜单条目下打开建坐标系(3 点)对话框(图 2),测量元素列表区内列出了当前文件中所有的元素,例如这里是 4 个 测量元素。第一点先用光标在列表栏内选中第一个元素,再按该按钮, 将把该元素名填入点元素组的第一个文本框内。用同样方法选出第二 点和第三点。例如,这里的圆 8、圆 6 和圆 3。 (2)将三个测量点对应的理论坐标填入到对应的文本框内。要注意 的是从左至右,第一列对应第一点,以此类推,不要混淆次序。 (3)完成计算。
图2
(下转第 113 页)
— 112 —
科技信息
高校理科研究
油气成藏动力学研究
长江大学地球科学学院 许浩宇
[摘 要]广义的油气成藏动力学研究,泛指一切有关油气生、排、运、聚的机理性研究。文中所说的油气成藏动力学研究系统,是指在 某一特定的地质单元内,在相应的烃源体和流体输导体系发育的格架下,通过对温度、压力(势)、应力、含烃流体等各种物理、化学场 的综合定量研究,在古构造发育的背景上历史再现油气生、排、运、聚乃至成藏全过程的多学科综合研究体系,这实际上是含油气系 统意义上的一种定量动力学研究体系。 [关键词]油气成藏动力 学油气运移油 油气成藏机理
CMM 在检测批量产品或单件产品时,通过编程可以提高测量速 度,降低劳动强度。然而,在编程中坐标系的建立是后续测量的基础,建 立了错误的坐标系将导致测量错误的尺寸,因此建立一个正确的参考 方向即坐标系是非常的关键和重要的,它直接影响测量速度和数据精 度。
1.测量系统的组成 本文所用的数据化采集系统为 CHXY-30-17-15CTJ 型三坐标测 量仪及相关软件,系统结构包括三坐标测量机、电气控制硬件系统、计 算机以及测量软件等,有 X、Y、Z 三个运动方向。电气控制装置包括主 控制单元、电机驱动电路、数据传送接口、电源和电源保护电路等。它与 测量机和计算机连接,接收测量机的位置检测信号后传送给计算机。系 统采用 ZCR-CAD 和 Industry3DCam 软件,完成各种三维空间曲面的数 据测量和造型设计工作。 2.坐标系的建立 ZCR-CAD 提供有三种建坐标系方法,我们可以按照设计和加工基 准来建立严格准确的工件坐标系,在工件坐标系下直接测量,与工件在 测量台上的位置、方位完全无关。 2.1 3-2-1 法 3-2-1 法是最基本的建坐标方式,以平面元素为主要基准,适用于 箱体类机加零件; 按照此方法确定一个坐标系,需要若干基准元素。典 型的情况是:(1)需要两个方向矢量作为工件坐标系的两个轴,第三个 轴按右手法则自动算出。(2)需要 1-3 个坐标点,确定工件坐标系的原 点(3 个分量)。在建坐标系的对话框上(图 1),相应地用第一轴、第二 轴、原点(X,Y,Z)对应于各个基准元素的选择操作。
1.油气成藏动力学研究方法 成藏动力学研究是在综合分析区域钻探、地球物理、分析测试和地 质地化等资料的基础上, 采用静态描述和动态模拟相结合的方法, 其中 计算机模拟方法可以定量地、动态地刻画各种因素相互作用的历史过 程, 从而更深刻地揭示其内在规律性, 因此是成藏动力学过程研究的一 项关键技术。成藏动力学模拟实质上是成藏动力学过程模拟, 是一项高 度复杂的系统工程, 它需要以当代最先进的地质学和石油地质学理论 为基础, 全面利用各种地质、物探资料, 采用最先进的盆地描述和盆地 模拟技术方可进行[1]。盆地描述部分用于刻画盆地现今的构造、沉积岩 性和各种地质参数的空间展布特征, 为盆地模拟奠定基础。盆地模拟方 面包括构造、沉积、储层、古水动力场、古地温、生烃、排烃、圈闭演化和 油气运移聚集等各个部分。其中, 从生烃到运移的模拟构成成藏动力学 过程模拟的主体, 而其他的描述和模拟则是成藏动力学过程模拟必不 可少的重要基础。成藏动力学过程模拟的最终结果体现在油气资源量 计算部分上, 包括计算出盆地的生烃量、排烃量、烃碳转换量、油气损失 量, 最后要计算出盆地中聚集的油气资源量[2]。 2.油气成藏动力学系统的划分及类型 田世澄(1996)提出将受地球深部动力学控制的盆地构造沉积旋回 作为一个成藏动力学系统, 把改变地下成藏动力学条件, 影响成藏动力 学过程的区域不整合和区域分布的异常孔隙流体压力界面作为不同成 藏动力学系统的界面。并据动力学特征将成藏动力学系统分为开放型、 封闭型、半封闭型 3 种类型, 据油源特征又区分为自源成藏动力学系统 和他源成藏动力学系统。因此共可划分出 6 种油气成藏动力学系统[3-6]。 康永尚(1999)根据系统动力的来源、去向和系统的演化方式将油气成藏 流体动力系统分为重力驱动型、压实驱动型、封存型和滞留 4 种。实际 上重力驱动型对应开放型, 压实驱动型对应半开放型, 封存型和滞留型 则对应封闭型。因此二者是一致的。这种以油气成藏的动力因素来划分 油气系统的方法比经典的含油气系统的一套源岩对应一个油气系统的 粗略划分方法更深入, 更能体现油气作为一种流体的运动分布规律, 从 而有效指导我国陆相含油气盆地的勘探[7]。 3.油气成藏主要动力因素的研究 沉积盆地实际上是一个低温热化学反应器, 油气的富集是由温度、 力和有效受热时间控制的化学动力学过程及由压力、地应力、浮力和流 体势控制的流体动力学过程的综合结果, 也是盆地中各个成藏动力学 系统中的油、气、水三相渗流过程的结果。张厚福(1998)认为: 地温场、地 压场、地应力场等“三场”系受地球内能控制, 是地球内部能量在地壳上 的不同表现表现形式。“三场”相互之间彼此影响与联系。“三场”的作用 使地壳上形成海盆、湖盆等各种水域, 才衍生出水动力场, 有了水体才 能出现化学场与生物场, 后二者也相互联系与相互制约。综合这些场的
测量元素,看到表示选中的蓝色小框出现;光标焦点移回到测量对话 框,点击选取“CAD”,即可看到元素索引名自动填入到第一轴编辑框内 的结果。
第二阶段:确定第二轴和原点 X、Y、Z,方法同上,填入坐标原点的 理论值并计算即可。
将 3-2-1 建坐标系可用的元素归纳如下表。
元素调用
第一轴
直线、平面、圆、圆柱、圆锥
第二轴
直线、平面、圆、圆柱、圆锥
原点
点、圆、球、圆柱、圆锥