初中数学等腰三角形性质说课稿

合集下载

八年级数学《等腰三角形的性质》说课稿

八年级数学《等腰三角形的性质》说课稿

《等腰三角形的性质》说课稿各位评委、老师:你们好!我是车站中学的xxx,我说课的课题是《等腰三角形的性质》,下面,我从教材、教法、学法、教学过程等几个方面对本课的设计进行说明,并就教学效果进行课后反思.一、说教材1.教学内容:《等腰三角形的性质》是人教版数学的八年级上册第十三章第三节《等腰三角形》的第一课时,本节课的主要内容就是研究等腰三角形的两个性质.2.在教材中的地位与作用:本节课是在学生已经学习了三角形的基本概念、全等三角形和轴对称的知识,具有初步的推理证明能力的基础上进行学习的,在培养学生的思维能力和推理能力等方面有重要的作用;而等腰三角形的性质是今后论证两个角相等、两条线段相等、两条直线垂直的重要依据,也是后续学习等边三角形、菱形、正方形、圆等内容的重要基础.3.教学目标:知识与技能:1.了解等腰三角形的概念.2.掌握等腰三角形性质并运用其进行证明和计算.过程与方法:1.通过亲身观察、证明等腰三角形性质,锻炼推理能力.2.经历折纸活动,培养猜想、探究的能力.情感、态度及价值观:1.从动手操作中,激发数学学习的兴趣.2.从实践活动中,感受数学来源于生活,并应用于生活.4.教学重点与难点:重点:等腰三角形的性质的探索和验证.难点:等腰三角形的性质的应用.5.教学准备:教师课前准备:课件,三角板.学生课前准备:等腰三角形纸片.二、说教法《新课程标准》要求课堂教学要充分体现以学生发展为本的精神,因此结合学生实际情况及教材内容,我主要采用了以下教学方法:教师启发引导、学生动手操作、观察、分析、猜想、验证得出等腰三角形的性质;教师规范板书,指导学生性质的文字语言、图形语言、符号语言;学生课堂完成练习题,教师点评并规范格式方法.针对猜想的得出,主要采用教师提问学生回答的问答法的学习方法;针对性质2的证明,主要采用类比法的教学方式;针对有难度练习题,主要采用合作探究教学方式.三、说学法《数学课程标准》指出:数学的抽象结论,应以观察、实验为前提,几何教学应该把实验方法与逻辑分析结合起来.通过学生动手实践,培养学生的观察能力、分析能力;通过自主探索,调动学生思维的积极性,使学生自主地获取知识;通过合作交流,学生分组讨论,使学生在沟通中创新,在交流中发展,在合作中获得新知.四、说教学过程(一)回顾与引入各小组展示各组课前准备的三角形纸片.(设计意图:通过让学生动手剪纸,获得图形的直观感受,并为下面的折纸操作做好铺垫,为学生提供参与数学活动的时间和空间,调动学生的主观能动性,激发其好奇心和求知欲.)教师提问:你们的三角形纸片都是怎么剪成的?(课堂实录片段)(有的同学是先画一个等腰三角形再剪,由此回顾等腰三角形的定义)1.回顾:学生回顾等腰三角形的定义,教师归纳并板书:在△ABC中,AB=AC,像这样有两边相等的三角形叫等腰三角形.结合图形介绍“腰”、“底边”、“顶角”、“底角”等概念.(设计意图:结合自已剪出的等腰三角形和画出的图形学习相关概念,加深印象.)(课堂实录片段)(有的同学是将长方形纸片对折之后剪一个靠近对称轴的角,展开就得到一个等腰三角形.由此引出等腰三角形的轴对称性.)2.引入:教师引入课题:下面,我们利用轴对称的知识来研究等腰三角形的性质.(设计意图:在正式进行探索和发现前,让学生对探索的目标、意义有十分明确的认识,做好探索前的物质准备和精神准备.)(二)猜想与证明1.猜想1:教师引导学生动手把等腰三角形ABC对折,作出等腰三角形ABC和折痕AD.找出其中重合的线段和角,并填在书上的表格中.(课堂实录片段)拿掉折痕,只关注三角形ABC的边角.①AB=AC →两条腰相等②B=∠C →两个底角相等(设计意图:将两个性质分开探究、简化进行猜想的过程.)教师引导学生用文字语言归纳出猜想1:猜想1 等腰三角形的两个底角相等;(设计意图:在这个过程中训练学生文字语言与符号语言的互换,培养学生自主探究的学习品质和观察分析、归纳概括的能力,发展形象思维.)2.猜想1的证明:教师引导学生根据猜想1的条件和结论画出相应的图形,写出已知和求证,师生共同分析证明思路,提出以下两个问题引导学生思考证明方法:①如何证明两个角相等?②如何构造两个全等的三角形?(课堂实录片段)(设计意图:引导学生在全等三角形的基础上完成这一证明.同时做不同的辅助线得出这一证明的三种不同方法.)3.性质1:在学生证明的基础上,教师板书性质1:等腰三角形的两个底角相等.(“等边对等角”).并强调符号语言的表达.4.猜想2:(课堂实录片段)由性质一的三种证明方法所做的三条辅助线实际是同一条线段,同时也回顾性质一的猜想过程,对剩下的相等线段、相等角进行分析,进而得出第二个猜想:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合.(设计意图:在性质一完全得证后探究性质二,将本节课两个重要的内容分开,降低学生的掌握难度.)5.猜想2的证明:猜想2这个命题的符号语言对学生来说有难度,于是我设计了一个填空题.如图,① 已知:AB=AC ∠BAD=∠CAD (即AD 是顶角的角平分线), 求证: ② 已知AB=AC BD=BC (即AD 是底边上的中线), 求证:③ 已知AB=AC AD ⊥BC (即AD 是底边上的高线)求证:(设计意图:弱化将这一命题条件、结论区分清楚的难度,引导学生将语言文字转化为符号文字.)(课堂实录片段)类比猜想1的证明,探究猜想2的证明.选三个明天中的一个进行证明.6.性质2:在学生证明的基础上,教师板书性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合.(“三线合一”).并强调符号语言的表达.(第(二)环节设计意图:等腰三角形的性质的探索与验证是本节课的重点,本环节中,充分调动学生的主观能动性,让学生大胆猜想、小心求证,经历性质证明的过程,增强理性认识,体验性质的正确性和辅助线在几何论证中的作用,在学生的自主探索中,完成了重点知识的教学,突出了教学重点,培养了学生的合情推理能力和演绎推理的能力.)(三)应用与提高1.课件出示:练习1(1)△ABC 中, AB =AC , ∠A =36°, 则∠B = °;(2)△ABC 中, AB =AC , ∠B =36°, 则∠A = °;(3)已知等腰三角形的一个内角为70°,则它的另外两个内角的度数分别是 .(设计意图:应用“等边对等角”,结合三角形内角和求三角形的角.第三问在第一二问的铺垫下应用分类思想.)2.课件出示:例:如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD.求△ABC 各角的度数.(设计意图:课本例题,使学生认识到从复杂图形中分解出 等腰三角形是利用性质解决问题的关键,培养学生数形结合的能力和方程的思想.)B AC D3.课件出示:练习2如图,在△ABC 中,AB=AC ,D 、E 在AC 、AB 上,BC=BD,AD=DE=EB,求∠A 的度数.(设计意图:在讲解例题的基础上让学生再练习一个同类型题目,巩固解决这一题型的方法步骤,进一步培养学生数形结合能力,强化方程思想的应用.)4.课件出示:练习3如图⑴∵AB=AC ,AD ⊥BC∴∠_=∠_,_=_;⑵∵AB=AC ,BD=DC∴∠_=∠_,_⊥_;⑶∵AB=AC ,AD 平分∠BAC∴_⊥_,_=_(设计意图:让学生再次理解和运用等腰三角形的“三线合一”性质,再次以填空的形式强化三线合一的符号表达形式,及时巩固所学知识,了解学生的学习效果,增强学生应用知识的能力.)5.课件出示:练习4如图,在△ABC 中,AB=AC ,点D 、E 在BC 上,且AD=AE.求证:BD =CE.(设计意图:本题考察学生对“三线合一”这一性质的灵活运用,体现这一性质有时候可以代替证全等的方法证线段相等.)(第(三)环节设计意图:等腰三角形的性质的应用,是这节课的难点,本环节就是通A B CDE过运用这一性质解决有关问题,让学生在解答活动中提高运用知识和技能的能力,在掌握重点知识的同时,获得成功的体验,建立学习的自信心.)(四)小结与作业请学生总结:(1)本节课学习了哪些主要内容?(2)我们是怎么探究等腰三角形的性质的?(3)本节课你学到了哪些证明线段相等或角相等的方法?(通过对本节课的回顾,增强学生对等腰三角形的理解和对轴对称图形的理解,培养学生“学习——总结——学习——反思”的良好习惯,同时通过自我的评价来获得成功的快乐,提高学生学习的自信心.)作业:课本77面练习1、2、3(五)板书设计13.3等腰三角形第一课时等腰三角形的性质1.定义:有两边相等的三角形叫做等腰三角形.△ABC 中,AB =AC2.三角形的性质:性质1 “等边对等角”.在△ABC 中,∵AB =AC∴∠B=∠C性质2 “三线合一”.①∵AB =AC,AD平分∠BAC∴AD平分BC,AD⊥BC②∵AB =AC,AD平分BC∴AD平分∠BAC,AD⊥BC④∵AB =AC,AD⊥BC∴AD平分BC,AD平分∠BAC五、课后反思现代数学教学观念要求学生从“学会”向“会学”转变.所以本节课在教学设计上,我尝试将两个性质的探究分开进行,降低学生自主探究的难度.先让学生通过剪纸来认识等腰三角形;再通过折纸注意等腰三角形的相等边、相等角,从而得出等腰三角形的两个底角相等之一猜想;然后运用全等三角形的知识加以论证,再由性质1的不同证明方法关注等腰三角形对折的折痕,猜想这条线段既是等腰三角形顶角的角平分线,也是底边上的高,也是底边上的中线,再类比性质1的证明进行证明得出性质2.但在教学过程中还需要注意以下几点:1.学生参与了知识的形成过程,但有些学生没有投入到自主探索过程中.改进:教师引导,学生为主体,放手让学生展示、学生说.2.师生间、学生间的互动不够多.改进:增加谈论环节,共同提高;3.由于课堂时间的原因,性质2的证明只提了思路,学生课堂上没有完全完成.改进:分组证明,集中展示.以上是我关于《等腰三角形的性质》这一节的教学设计,不足之处,请各位评委老师批评指正,谢谢大家.。

《等腰三角形》 说课稿

《等腰三角形》 说课稿

《等腰三角形》说课稿尊敬的各位评委老师:大家好!今天我说课的题目是《等腰三角形》。

下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程以及教学反思这几个方面来展开我的说课。

一、教材分析《等腰三角形》是人教版八年级上册第十三章第三节的内容。

等腰三角形是一种特殊的三角形,它不仅具有一般三角形的性质,还有其独特的性质。

本节课是在学生已经学习了三角形的基本概念和全等三角形的基础上进行的,为后续学习等边三角形、直角三角形以及勾股定理等知识奠定了基础。

教材通过观察、操作、猜想、证明等活动,引导学生探究等腰三角形的性质和判定,培养学生的动手能力、逻辑推理能力和创新思维能力。

同时,教材注重数学思想方法的渗透,如分类讨论思想、转化思想等,提高学生的数学素养。

二、学情分析八年级的学生已经具备了一定的观察、分析和推理能力,但他们的思维还处于形象思维向抽象思维的过渡阶段。

在学习过程中,学生可能会对等腰三角形性质的证明感到困难,需要教师给予适当的引导和启发。

此外,学生在之前的学习中已经掌握了全等三角形的判定和性质,这为本节课的学习提供了知识储备。

但学生在运用这些知识解决等腰三角形的问题时,可能会出现思路不清晰、方法不当等情况。

三、教学目标基于以上对教材和学情的分析,我制定了以下教学目标:1、知识与技能目标(1)理解等腰三角形的概念,掌握等腰三角形的性质和判定。

(2)能够运用等腰三角形的性质和判定解决简单的几何问题。

2、过程与方法目标(1)通过观察、操作、猜想、证明等活动,培养学生的动手能力、逻辑推理能力和创新思维能力。

(2)经历等腰三角形性质和判定的探究过程,体会数学中的转化思想和分类讨论思想。

3、情感态度与价值观目标(1)通过小组合作学习,培养学生的合作意识和团队精神。

(2)让学生在数学活动中获得成功的体验,增强学习数学的自信心。

四、教学重难点1、教学重点(1)等腰三角形的性质和判定。

(2)等腰三角形性质和判定的证明。

等腰三角形的说课稿

等腰三角形的说课稿

等腰三角形的说课稿等腰三角形的说课稿1一、说教材本节课是在学生掌握了一般三角形基础知识和初步推论证明的基础上进行学习的,担负着训练学生学会分析证明思路的任务,在培养学生逻辑推理能力方面有着非常重要的作用。

等腰三角形两底角相等的性质是今后论证两角相等的的依据之一,等腰三角形底边上的三条主要线段重合的性质是今后论证两条线段相等、两个角相等及两条直线垂直的重要依据,因此在教材中处于非常重要的地位。

二、说教学目标知识与能力:探索并掌握等腰三角形性质定理,能运用它们进行有关的论证和计算。

理解等腰三角形和等边三角形性质定理之间的联系。

过程与方法:培养学生对命题的抽象概括能力,逐步渗透几何证题的基本思想方法:分析法和综合法。

情感与态度:引导学生进行规律的再发现,培养学生勇于实践、大胆探索的精神。

加强学生数学应用意识。

三、教学重点与难点重点:等腰三角形的性质定理。

难点:等腰三角形三线合一性质的运用四、说教法与学法课堂教学要体现以学生发展为本的精神,因此本堂课我采取了“开放型的探究式”教学模式,从问题提出到问题解决都竭力把参与认知过程的主动权交给学生,使学生全面参与、全员参与、全程参与,真正确立其主体地位。

而教师只是作为数学学习的组织者、引导者、合作者,及时地给以引导、点拨、纠正。

五、说教学过程:学生的学习过程是在其原有认知基础上的主动建构,因此我依据学生的认知规律将教学过程分为以下五个环节:教学过程教学活动设计意图一、回顾与思考电脑展示人字型屋顶的图像,提问:1、屋顶设计成了何种几何图形?2、我们都知道它是一种特殊的三角形,那么它特殊在哪里呢?(两腰相等,是轴对称图形)3、它的对称轴是哪一条呢?由日常生活中的等腰三角形引出课题,目的在于培养学生从实际问题中抽象出数学问题的能力。

同时创造丰富的旧知环境,有利于帮助学生找准新旧知识的连接点,特别是问题3,其实就是等腰三角形三线合一性质的伏笔。

除了这些特殊点,等腰三角形还有其它特殊性质吗?这节课我们就要一起来研究等腰三角形的性质(由此引出课题)现代教学论认为,在正式进行发现过程前要让学生对探索的目标、意义认识得十分明确,做好探索的物质准备和精神准备。

初中数学等腰三角形性质说课稿

初中数学等腰三角形性质说课稿

初中数学等腰三角形性质说课稿第一篇:初中数学等腰三角形性质说课稿“等腰三角形性质”说课稿一、教材分析1、教材的地位和作用:《等腰三角形的性质》是初中几何第二册第三章《三角形(二)》的第一课时,是全等三角形的续篇。

等腰三角形是最常见的图形,由于它具有一些特殊性质,因而在生活中被广泛应用。

等腰三角形的性质,特别是它的两个底角相等的性质,可以实现一个三角形中边相等与角相等之间的转化,也是今后论证两角相等的重要依据之一。

等腰三角形沿底边上的高对折完全重合是今后论证两条线段相等及线段垂直的重要依据。

同时通过这节课的学习还可培养学生的动手、动脑、动口、合作交流等能力,加强学生对直觉、猜想、演绎、类比、归纳、转化等数学思想、方法的领会掌握,培养学生的探究能力和创新精神。

2、教材重组:《数学新课程标准》要求教师要创造性地使用教材,积极开发,利用各种教学资源,为学生提供丰富多彩的学习素材,所以我制作了学生非常熟悉和感兴趣的房屋人字架课件,让学生观察寻找出其熟悉的几何图形,然后动手作出这个图形,并裁下来,动手折叠,发现规律。

如此把教材内容还原成生动活泼的思维创造活动,促使学生在教师指导下生动活泼地、主动地、富有个性地学习。

3、学习目标:根据《数学新课程标准》对学生在知识与技能、数学思考以及情感与态度等方面的要求,我把本节课的学习目标确定为:知识目标:了解等腰三角形和等边三角形有关概念,探索并掌握等腰三角形和等边三角形性质,能应用性质进行计算和解决生产、生活中的有关问题。

能力目标:能结合具体情境发现并提出问题,逐步具有观察、猜想、推理、归纳和合作学习能力。

情感目标:通过创设问题情境,激发学生自主探求的热情和积极参与的意识;通过合作交流,培养学生团结协作、乐于助人的品质。

4、教学重、难点:重点:等腰三角形性质的探索及其应用。

难点:等腰三角形性质的探索及证明。

5、突破难点策略:通过创设具有启发性的、学生感兴趣的、有助自主学习和探索的问题情境,使学生在活动丰富、思维积极的状态中进行探究学习,组织好合作学习,并对合作过程进行引导,使学生朝着有利于知识建构的方向发展。

13.3.1等腰三角形说课稿 2023—2024学年人教版数学八年级上册

13.3.1等腰三角形说课稿  2023—2024学年人教版数学八年级上册

13.3.1《等腰三角形》说课稿20231121130赵兰聪尊敬的各位评委老师好,我说课的内容是《等腰三角形》,接下来我将从以下六个方面展开说课。

一、教材分析(包含教学重点分析)本节选自人教版八年级上册第十三章第三节第一课时等腰三角形,是在学习了轴对称图形及三角形全等的判定的基础上进行的,主要学习“等腰三角形的等边对等角”和“等腰三角形的三线合一”两个性质。

本节内容是对前面知识的深化和应用,性质定理不仅是证明角相等、线段相等及两直线互相垂直的依据,而且也是后继学习等腰三角形判定、线段垂直平分线和等腰梯形的预备知识。

本节内容在教材中具有非常重要的地位,起着承前启后的作用。

因此等腰三角形性质的探究及应用为本节课的重点。

二、学情分析(包含教学难点分析)我所面对的是八年级的学生,学生已经学习了三角形的内角和,三角形的中线、高线、角平分线、三角形全等及轴对称的知识,了解了等腰三角形的定义及两腰相等的特点,这为本节课的学习奠定了理论基础。

同时已经具有初步的合情推理和演绎推理能力,动手操作能力明显增强,他们喜欢动手实验,敢于大胆猜想,愿意与人合作,这些都为探究活动的顺利进行提供了保障。

但是,性质定理的证明涉及到添加辅助线,这对八年级学生来说是一个难点,可能会使学习活动受阻。

因此等腰三角形性质的证明为本节课的难点。

三、教学目标分析根据学生知识能力和心理特征的实际情况,本节课确定的教学目标是:1.理解等腰三角形的性质,会利用等腰三角形的性质进行简单的判断、推理和计算。

2.通过动手操作、观察、证明等腰三角形的性质,发展学生合情推理和演绎推理能力,通过运用等腰三角形的性质解决有关问题,提高学生分析问题、解决问题的能力。

3.在实际动手操作中激发学生的学习兴趣,体验几何发现的乐趣,从而增强学生学数学、用数学的意识。

四、教法学法分析爱因斯坦曾说,发现一个问题往往比解决一个问题更难,教学是引导学生把知识转化为能力的一种形式,所以在教法上我以学生为中心,采用讨论法和引导探究相结合的教学方法,通过精心设问引导学生发现问题、分析问题、解决问题,充分发挥学生的积极性和主动性。

八年级数学《等腰三角形的性质》说课课件

八年级数学《等腰三角形的性质》说课课件
问答法类比法探究法
说学法

实验法探究法讨论法
说教学过程

(一)回顾与引入(二)猜想与证明(三)应用与提高(四)心得与体会(五)作业与巩固
你们的三角形都是如何剪成的?
对折长方形纸片,剪下靠近对称轴一个角再展开。
先画一个等腰三角形,再剪下来。
教师提问
(一)回顾与引入
一学生回答
另一学生回答
1、回顾等腰三角形的定义
图1
图2
(三)应用与提高
例 : 如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD.求△ABC各角的度数
(三)应用与提高
练习2:如图,在△ABC中,AB=AC,D、E在AC、AB上,BC=BD,AD=DE=EB,求∠A的度数。
(三)应用与提高
练习3 填空:如图⑴∵AB=AC,AD⊥BC∴∠_=∠_,_=_; ⑵∵AB=AC,BD=DC∴∠_=∠_,_⊥_;⑶∵AB=AC,AD平分∠BAC∴_⊥_,_=_
重合的线段
重合的角
AB=AC
BD=CD
AD=AD
∠B = ∠C.
∠BAD = ∠CAD
∠ADB = ∠ADC
猜想2
等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合.
①已知:AB =AC,AD平分∠BAC 求证:②已知: AB =AC,AD平分BC 求证:③已知: AB =AC,AD⊥BC 求证:
WHAT MAKES USDIFFERENT?
85%
《等腰三角形的性质》是人教版数学的八年级上册第十三章第三节第一小节《等腰三角形》的第一课时,本节课的主要内容就是研究等腰三角形的两个性质。
1、教学内容

2、教材的地位和作用

等腰三角形的性质说课稿

等腰三角形的性质说课稿

等腰三角形的性质说课稿一、教材分析:本节课是人教版八年级上册《等腰三角形》的第一课时的内容,主要介绍等腰三角形的性质。

等腰三角形是一种特殊的三角形,具有对称性和一些特殊的性质。

本节课将利用对称的知识来研究等腰三角形的性质。

作为特殊的三角形,等腰三角形应用更为广泛,掌握它的基本性质对学生的认识现实世界、发展空间观念和推理能力都是很重要的。

本节课是在学生掌握了一般三角形和轴对称的知识,具有初步的推理证明能力的基础上进行研究的,担负着进一步训练学生学会分析、学会证明的任务,在培养学生的思维能力和推理能力等方面有重要的作用。

本节课也是第三课时研究等边三角形的基础,是全章的重点之一。

通过本节课的研究,学生可以掌握等腰三角形的性质,运用它们进行证明和计算,发展形象思维和合情推理能力,解决问题,提高运用知识和技能解决问题的能力,培养观察、分析、归纳问题的能力,发展应用意识。

二、学情分析:学生在小学已经接触过等腰三角形,对等腰三角形并不陌生。

在进入八年级后,学生观察、操作、猜想的能力较强,已经具备了独立思考的能力。

但演绎推理、归纳、建立数学模式的意识等方面比较薄弱,自主探究、合作交流的能力也需要在课堂教学中进一步加强和提高。

三、教法学法分析:本节课的教学应采用启发式教学法,通过引导学生观察、发现,激发学生的好奇心和求知欲。

教师可以通过提问、举例、演示等方式,引导学生自主探究,培养学生的合情推理能力和演绎推理能力。

同时,教师也应该注重学生的合作交流,鼓励学生互相讨论,共同解决问题。

在教学过程中,教师应该注重激发学生的兴趣,让学生在实践、观察、证明等活动中获取成功的体验,建立研究的自信心。

教师还应该注重知识的渗透,将本节课的内容与其它数学知识相结合,让学生更好地理解和掌握知识。

教学方法:为了符合数学教学就是数学活动的教育原则,教师应当成为学生数学活动的组织者、引导者、合作者。

因此,我们主要采用以下教学方法:启发引导、学生动手操作、观察、分析、猜想、验证等方法,以让学生更好地理解等腰三角形的概念和性质。

等腰三角形的说课稿(通用4篇)

等腰三角形的说课稿(通用4篇)

No matter what you do, do not rush to return, because sowing and harvesting are not in the same season, and there is a period of time between them. We call it persistence.(页眉可删)等腰三角形的说课稿(通用4篇)等腰三角形的说课稿1一、教材分析1、教材的地位和作用《等腰三角形的性质》是“华东师大版八年级数学(上)”第十三章第三节第一课时的内容。

本节先课利用轴对称的知识来探索发现等腰三角形的有关性质,然后利用全等三角形的知识证明这些性质。

学习过程中运用的“操作——观察——发现——猜想——论证——应用”的方法是探究数学知识的常用方法。

同时“等边对等角”和“三线合一”的性质是又是接下来学习等边三角形知识以及等腰三角形的判定的基础知识,更是今后论证两个角相等、两条线段相等、两条线垂直的重要依据。

起着承前启后的作用。

2、教材的教学目标:①知识与技能目标:掌握等腰三角形的有关概念和相关性质,能运用它们解决等腰三角形的边、角计算问题。

②过程与方法目标:通过实践、观察、同组间学生以及小组与小组间的合作与交流,培养学生多角度思考问题和分析问题、解决问题的能力。

③情感与态度目标:通过合作交流培养学生团结协作、乐于助人的品质。

3、教学重点与难点:重点:等腰三角形“等边对等角”和“三线合一”性质的探究和应用。

难点:等腰三角形性质的推理证明。

二、学情分析八年级上期学生学习几何知识有了初步的抽象思维感知,有一定的形象直观思维能力,能进行简单的推理论证。

但其运用数学思维的广阔性、紧密性、灵活性比较欠缺,在学习过程中要加强引导和培养。

三、教法与手段根据本课内容特点和初二学生思维活动的特点,在教学中我将采用“操作——观察——发现——猜想——论证——应用”的教学法,利用分组活动,组间合作与交流从而达到对“等边对等角”和“三线合一”的性质的探究的层层深入。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学等腰三角形性质说课稿
一、教材分析
1、教材的地位和作用:《等腰三角形的性质》是初中几何第二册第三章《三角形(二)》的第一课时,是全等三角形的续篇。

等腰三角形是最常见的图形,因为它具有一些特殊性质,因而在生活中被广泛应用。

等腰三角形的性质,特别是它的两个底角相等的性质,能够实现一个三角形中边相等与角相等之间的转化,也是今后论证两角相等的重要依据之一。

等腰三角形沿底边上的高对折完全重合是今后论证两条线段相等及线段垂直的重要依据。

同时通过这节课的学习还可培养学生的动手、动脑、动口、合作交流等水平,增强学生对直觉、猜想、演绎、类比、归纳、转化等数学思想、方法的领会掌握,培养学生的探究水平和创新精神。

2、教材重组:《数学新课程标准》要求教师要创造性地使用教材,积极开发,利用各种教学资源,为学生提供丰富多彩的学习素材,所以我制作了学生非常熟悉和感兴趣的电视转播塔、房屋人字架等课件,让学生观察寻找出其熟悉的几何图形,然后动手作出这个图形,并裁下来,动手折叠,发现规律。

如此把教材内容还原成生动活泼的思维创造活动,促使学生在教师指导下生动活泼地、主动地、富有个性地学习。

3、学习目标:根据《数学新课程标准》对学生在知识与技能、数学思考以及情感与态度等方面的要求,我把本节课的学习目标确定为:
知识目标:了解等腰三角形和等边三角形相关概念,探索并掌握等腰三角形和等边三角形性质,能应用性质实行计算和解决生产、生活中的相关问题。

水平目标:能结合具体情境发现并提出问题,逐步具有观察、猜想、推理、归纳和合作学习水平。

情感目标:通过创设问题情境,激发学生自主探求的热情和积极参与的意识;通过合作交流,培养学生团结协作、乐于助人的品质。

4、教学重、难点:
重点:等腰三角形性质的探索及其应用。

难点:等腰三角形性质的探索及证明。

5、突破难点策略:通过创设具有启发性的、学生感兴趣的、有助自主学习和探索的问题情境,使学生在活动丰富、思维积极的状态中实行探究学习,组织好合作学习,并对合作过程实行引导,使学生朝着有利于知识建构的方向发展。

二、学情分析
刚进入初二的学生观察、操作、猜想水平较强,但演绎推理、归纳、使用数学意识的思想比较薄弱,思维的广阔性、敏捷性、结密性、灵活性比较欠缺,自主探究和合作学习水平也需要在课堂教学中进一步增强和引导。

三、教法分析
《数学课程标准》要求教师应激发学生学习的积极性,向学生提供充分从事数学活动的机会,协助他们实行自主探索和合作交流。

为了顺利达到这个目标,引导学生探索性学习,唤起学生的创新意识,我根据教材特点和学生实际,采用了以观察法、发现法、实验操作法、探究法为主的教学方法实行教学。

四、学法建构
《数学新课程标准》指出自主探索与合作交流是学生的主要学习方式,所以,通过本节教学,我将对学生实行以下学法指导:
1、指导学生动眼观察、动手操作、动脑思考、动口表达,注重多感官参与,多种心智水平投入,使学生始终处于主动探索状态。

2、向学生渗透探究、发现的学习方法,培养他们在合作中共同探索新知识、解决新问题的水平。

五、教学模式
本节课设计的指导思想是全日制义务教育《数学课程标准》及新课程改革的教学理念。

《数学课程标准》提出了“问题情境——建立模型——解释、使用与拓展”的基本模式,在此模式指导下,本节课我将采用“创设情境——自主探索——合作交流——引导评价——实践应用——反思归纳”的教学模式,力求着眼于学生探究水平和创造性思维水平的培养,提升学生的自主意识和合作精神。

六、教学程序和设想
《数学课程标准》强调,教师应发扬教学民主,成为学生数学学习活动的组织者、引导者、合作者。

据此本节课我分以下环节组织教学。

(一)创设情境,观察联想。

1、多媒体展示电视转播台、房屋人字架,让学生观察找出其中的几何图形?(等腰三角形、四边形、梯形)2、两幅图中都有哪种几何图形?(等腰三角形)
从学生身边的生活和已有知识出发,创设情境,引导学生观察、联想,使学生感受到生活中处处有数学,并学会从数学的角度去观察事物,思考问题,激发学生对学习数学的兴趣和愿望。

(二)动手操作,揭示课题。

3、什么是等腰三角形?等边三角形?它们有何关系?4、请学生动手作等腰三角形ABC,使AB=AC。

裁下这个三角形,再动手折叠,当两腰重合时,找出发现哪些结论。

5、小组交流发现的结论。

(两底重合,折痕是顶角角平分线,底边上的高,底边上的中线。

)
6、小组代表用语言表达得出的结论。

7、多媒体演示折叠过程,再现归纳得出的结论。

8、揭示、板书课题:等腰三角形性质。

让学生温习、重现已学相关知识,为学习新知识做铺垫。

波利亚曾说过:“学习任何知识的最佳途径都是由自己去发现。

”《新课程标准》要求通过实践、思考探索、交流获得知识,所以我在这里力图通过学生动手操作、动眼观察、动口交流表达,使学生充分感知等腰三角形性质。

(三)独立思考,探究新知。

9、对于观察得出的结论是否能实行论证,请学生动手试一试。

放手让学生决定自己的探索方向,鼓励学生选用不同的方法,把期望带给学生,让学生最大限度地发现自己的潜能,使学生形成自己对数学知识的理解和有效的学习策略。

(四)合作探究,交流创新。

10、当部分同学找到了问题的突破口,而少数找不到思路的同学也充分感知了困难,尝试了困难后,即时组织学生实行合作探究和交流,并作为合作者参与到学生的交流中。

组织学生探索、交流,有利于开阔学生的视野,形成一个既有独立思考,又有互相合作,广泛交流的学习氛围,培养学生合作精神。

(五)引导评价,形成规律。

11、小组合作交流后,请各小组一名代表上台讲解(给学困生提供上台机会,让他们尝试成功的喜悦)共有三种辅助方法:作∠A的角平分线AD、作AD⊥BC、作BC边上的中线AD。

通过师生、生生的相互补充评价,将探究活动引向深入,强化学生的创新思维训练。

12、等边三角形是特殊等腰三角形,它又具有哪些性质呢?
学生探索能得出:①每个角都相等,且都是60°,②每边上的高、中线、角平分线互相重合。

使用知识迁移在新知识的基础上探索新的未知,把学生的探究兴趣进一步推向高潮,激励学生要敢于迎接挑战,持续追求,锻炼意志。

13、阅读课本:等腰三角形性质(一)(注意:等边对等角、三线合一的几何语言表达)。

培养学生的阅读水平和准确的几何语言表达水平。

(六)实践应用,巩固提升。

例:已知房屋的顶角∠ABC=100°,过屋顶的立柱AD⊥BC,屋椽AB=AC,根据图中条件,你能求出哪些角的度数。

把例题改编成开放题,为学生再一次创设探究情境,进一步培养学生的探究水平和思维的广阔性、灵活性。

达标练习(抢答)①填空。

设计基础练习,体现素质教育的全员性,通过抢答训练,更好地激发学生的学习兴趣和求知欲望。

②△ABC中,AB=AC,D为BC上一点,DE⊥AB,FD⊥BC交AC于F点,∠A=56°,求∠EDF的度数通过水平训练题,提升学生分析问题和解决问题的实践水平。

③应用:某厂车间的人字屋架为等腰三角形,跨度AB=12米,为使屋架更加牢固,需安装中柱CD,你能帮工人师傅确定中柱的位置吗?说明选用的工具和原理。

进一步体现数学来源于实践,又应用于实践,培养学生的应用意识和应用水平。

(七)反思归纳,形成结构。

1、引导学生对学习过程实行小结:
①本节课你有哪些收获?(知识、方法、技能),你认为重点是什么?
②所学知识能解决哪些实际问题?
③本节课所使用的学习方法对你今后学习有什么启示?
2、布置作业:(分层布置)
这样实行课堂小结,注重学生个体差异,使每一个学生都有成功的学习体验,得到相对应的提升和发展,进一步培养学生的主体意识,锻炼学生的归纳总结水平。

相关文档
最新文档